
2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL

Session TS-1419

OSGi Best Practices!
BJ Hargrave Peter Kriens
OSGi Alliance CTO OSGi Alliance Technical Director
IBM Lotus aQute

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 2

OSGi Best Practices!

Learn how to prevent common mistakes
and build robust, reliable, modular, and
extendable systems using OSGi™
technology

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 3

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion
Q&A

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 4

Introduction to OSGi Technology

• It’s a module system for the Java platform
• Includes visibility rules, dependency management

and versioning of bundles, the OSGi modules
• It’s dynamic

• Installing, starting, stopping, updating, uninstalling
bundles, all dynamically at runtime

• It’s service-oriented
• Services can be registered and consumed inside a

VM, again all dynamically at runtime
• A specification of the OSGi Alliance, a non-profit

organization http://www.osgi.org

The Dynamic Module System for Java™ Platforms

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 5

OSGi Technology Key Benefits

• Avoids Java Archive (JAR) file hell
• Reuse code “out of the box”
• Simplifies multi-team projects
• Enables smaller systems
• Manages deployments local or remotely
• Extensive tool support
• No lock in, many providers of core technology

including many open source
• Very high adoption rate

The Dynamic Module System for Java™ Platforms

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 6

OSGi Layering

OS + Hardware

Execution Environment

Module

Lifecycle

Services

S
E
C
U
R
I
T
Y

Applications
(Bundles)

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 7

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion
Q&A

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 8

Portable Code

• You compile your code using source level 1.3 on
a Java 5 platform compiler, assuming you are
safe to run on older VMs

• But then it fails to run when you deploy to a Java
platform 1.3 or CDC/Foundation 1.0 environment

• It turns out that despite your 1.3 source level,
you were still linked to new parts in the Java 5
class library

Problem

java.lang.NoSuchMethodError: java.lang.StringBuffer: method
append(Ljava/lang/StringBuffer;)Ljava/lang/StringBuffer;
not found

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 9

Portable Code

• Compile your code against the minimum suitable
class libraries

• OSGi specification defines Execution Environments (EE)
• OSGi minimum—Absolute minimum, suitable for API design
• Foundation—Fairly complete EE, good for most applications;

used for Eclipse
• JAR files available from OSGi website

• Java platforms are backward compatible so you should
always compile against the lowest version you are
comfortable with
• New features are good, but there is a cost!
• At least think about this

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 10

Proper Imports

• You develop and test your bundles on an
OSGi Service Platform that you have
configured yourself

• Your colleague tries these bundles on another
OSGi Service Platform and complains of a
ClassNotFoundError in your bundles

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 11

Proper Imports
Code:

import org.osgi.framework.*;
import javax.xml.parsers.*;

public class Activator implements BundleActivator {
public void start(BundleContext ctxt) {

SAXParserFactory factory =
SAXParserFactory.newInstance();

SAXParser parser = factory.newSAXParser();
...

}
}

Manifest:
Import-Package: org.osgi.framework

Missing an import for
javax.xml.parsers in
the manifest

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 12

Proper Imports

• Do not assume that everything in the Java Runtime
Environment (JRE) will be available to your bundle
• Only java.* packages are reliably available from the boot

class path

• Your bundle must import all packages that it needs
• Except: java.* does not need to be imported

• Why?
• Enables bundles to provide substitute implementations of JRE

implementation release software version packages

• The org.osgi.framework.bootdelegation
system property may be set differently on different
configurations, so you should never rely on its setting

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 13

Minimize Dependencies

• You find an interesting bundle and want to use it
• You install it in an OSGi framework
• You find it has dependencies on other bundle
• So you find and install those bundles
• Those bundles end up depending on still

other bundles…
• Ad nauseum…

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 14

Minimize Dependencies
• Use Import-Package instead of Require-Bundle

• Require-Bundle can have only one provider—
the named bundle

• Import-Package can have many providers
• Allows for more choices during resolving
• Has a lower fan out, which gain adds up quickly

• Use version ranges
• Using precise version numbers gives the dependency

resolver less choice

• Design your bundles
• Don’t put unrelated things in the same bundle
• Low coupling, high cohesion

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 15

Hide Implementation Details

• You wrote a bundle that has a public API and
associated implementation code
• This implementation code defines public classes because it

needs to make cross-package calls and references

• You exported all the packages in your bundle
• In the future, you release an update to the bundle

with the same public API but a vastly different
implementation

• You then get an angry call because you broke some
customer’s code
• And you told them not to use the implementation packages…

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 16

Hide Implementation Details

• Put implementation details in separate packages
from the public API
• org.example.foo – exported API package
• org.example.foo.impl – private implementation

package

• Do not export the implementation packages
• Export and/or import the public details while keeping

the implementation details private
• Export-Package: org.example.foo; version=1.0

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 17

Avoid Class Loader Hierarchy
Dependencies

• You are designing a multimedia system and want to
allow other bundles to provide plug-in codecs

• Your design requires them to pass names of the codec
classes which you load via Class.forName
• Either by method call or configuration file

• This design works in a traditional tree-based class
loader model since the multimedia system’s class loader
has visibility to the codec classes

• However, in an OSGi environment, the multimedia
system gets ClassNotFoundErrors since it does
not have visibility to the codec classes

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 18

Avoid Class Loader Hierarchy
Dependencies

• Better to use a safe OSGi model like services
or the Extender Model to have bundles
contribute codecs
• More dynamic, you can add new services on the fly

by installing bundles
• Workaround for using Class.forName

• Use DynamicImport-Package: * and have the
contributing bundles export their codec package

• This may work but can result in unintended side
effects since your bundle may import packages it
did not expect

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 19

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion
Q&A

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 20

Avoid Start Ordering
Dependencies

• You develop a bundle that uses the Http Service and get
the service in your BundleActivator
public class Activator implements BundleActivator {
HttpService http;
public void start(BundleContext ctxt) {

ServiceReference
ref = ctxt.getServiceReference(
HttpService.class.getName());

http = ctxt.getService(ref);
http.registerServlet(); }}

• Your bundle works fine on your workstation but fails with
a NullPointerException on the call to getService when
integrated into the build

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 21

Avoid Start Ordering
Dependencies

• Do not assume that you can always obtain a
service during initialization
• Bundles can start in different orders on different

systems and you usually do not have control over
the order

• Use ServiceTracker to track services and
respond to their publication by subclassing or
via a ServiceTrackerCustomizer

• Use a declarative service model like OSGi
Declarative Services or Spring OSGi

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 22

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion
Q&A

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 23

Handle Service Dynamism

• You develop a bundle with a servlet
• You get the HttpService and register your servlet
• After deployment, you receive problem reports

that your servlet seems to vanish after working
for a while

• It turns out the HttpService was unpublished
temporarily when the HttpService bundle was
stopped and restarted during an update

• Your bundle did not react and re-register
the servlet

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 24

Handle Service Dynamism

• A service is a dynamic entity and can be
unpublished after you get it
• A bundle must respond to the lifecycle of a

dependent service
• The OSGi framework provides an API to handle

these dynamics but they are rather low level
• There are helpers, based on this API, like:

• Service Tracker and Service Activator Toolkit (SAT)
• Declarative models like Declarative Services, iPOJO,

and Spring OSGi

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 25

Whiteboard Pattern

• You design a service provided by your bundle to
use the familiar addListener and removeListener
methods

• In practice, you find that other bundles forget to
call removeListener when they stop or you stop,
or forget to call addListener when you restart

• Both bundles need special code to track the other
bundle or events are not properly delivered

• The OSGi LogReaderService design is an
example of this problem

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 26

Whiteboard Pattern
• Design your API to have the listener registered as

a service
• Simple
• More robust
• Leverages the OSGi service model and its lifecycle model

awareness
• The event source tracks the listener services and calls

them when there is an event to deliver
• This is called the Whiteboard Pattern

• It can be considered an Inversion of Control pattern
• The OSGi EventAdmin design is an example of this

best practice

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 27

Extender Model

• You design a Help System where other bundles
contribute help content to your bundle

• The other bundles need to track the Help System
bundle and contribute their Help content

• The Help System bundle must clean up when the
bundles that contribute Help content are stopped

• This problem of tracking bundle lifecycles is much like
the one solved by the Whiteboard Pattern
• But there is a another pattern to address this use case

• The OSGi HttpService design is an example of this
problem

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 28

Extender Model
• The bundle being “extended” specifies a data schema
• Contributing bundles define this data in their bundle
• The extender bundle will track the bundles via certain

lifecycle event and process the data, if present
• This can include loading classes from the contributing bundle

• Extenders have more advantages
• Lazy: less time pressure on startup and less memory later
• More robust in case of failures: extender bundle can make

consistent and policy driven choices
• Many bundles use this pattern

• Declarative Services, iPOJO, Spring OSGi, and Eclipse
Extension Point Registry

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 29

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion
Q&A

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 30

Avoid OSGi Framework API
Coupling

• You wrote your code and packaged it in a bundle
• Your code publishes an OSGi service for other

bundles to use and also uses services provided
by other bundles

• Your code uses the OSGi service layer API in
quite a number of classes and is now coupled to
the OSGi API

• You no longer can easily use your code in a
non-OSGi environment

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 31

Avoid OSGi Framework API
Coupling

• Write your code as POJOs (Plain Old Java Objects)
• Program against interfaces, not concrete classes
• Isolate the use of OSGi API to a minimal number

of classes
• Let these coupled classes inject dependencies into

the POJOs
• Make sure none of your domain classes depend on

these OSGi coupled classes
• Use an OSGi-ready IoC container like Declarative

Services or Spring OSGi to express these dependencies
in a declarative form
• Let the IoC containers handle all of the OSGi API calls

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 32

Return Quickly from Framework
Callbacks

• You work in a large team building an enterprise
OSGi based system

• Each developer develops their part of the system in a
modular fashion and does extensive and continuous
unit testing

• When all bundles are put together for integration test,
a week before deadline, it takes too long to bring up
the whole system

• It turns out that each bundle spent a long time
in their activator and the cumulative effect on the
complete system was significant

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 33

Return Quickly from Framework
Callbacks

• Bundle developers have a tendency to do too much up
front activation

• 1s per bundle (think DNS name lookup)
• → 1 minute with 60 bundles
• → 5 minutes with 300 bundles

• Lazy is good
• See new lazy activation features in release 4 Version 4.1

• Framework callbacks need to return quickly
• If you need to do something that takes some time

then either:
• Use eventing
• Spin off a background thread to perform the long running work

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 34

Thread Safety

• You develop a bundle and test it extensively
• However when deployed in the field with a set

of other bundles, your bundle fails with
exceptions in strange places

• Ultimately your realize that these other bundles
are triggering events
• Which your bundle receives and processes
• But the events are being delivered on many

different threads
• Time to consult a concurrency expert…

Problem

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 35

Thread Safety

• In an OSGi environment, framework callbacks to
your bundle can occur on many different threads
simultaneously

• Your code must be thread-safe!
• Callbacks are likely running on different threads and can occur

really simultaneously
• Do not hold any locks when you call a method and you do not

know the implementation, they might call back to bite you
• Java platform monitors are intended to protect low level data

structures; use higher level abstractions with time-outs for
locking entities

• In multi-core CPUs, memory access to shared mutable state
must always be synchronized

Best Practice

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 36

Conclusion
• We have presented a number of pitfalls and showed the

best practices to prevent those pitfalls
• Some are common sense and apply to other Java environments

as well
• Some are needed because of the characteristics of the OSGi

environment

• Despite these pitfalls, OSGi technology provides a robust
environment for software development that gives a
tremendous amount of advantages
• Many OSGi mechanisms were designed to prevent common

pitfalls in traditional Java technology programming

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 37

OSGi Service Platform

For More Effective Software
Development!

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 38

For More Information

• If you have further question on these or want to
discuss other issues in developing for OSGi
• Please try the osgi-dev@www2.osgi.org mail list
• http://www2.osgi.org/mailman/listinfo/osgi-dev

• OSGi Developer website
• http://www2.osgi.org/

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 39

Q&A
BJ Hargrave
Peter Kriens

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL

Session TS-1419

OSGi Best Practices!
BJ Hargrave Peter Kriens
OSGi Alliance CTO OSGi Alliance Technical Director
IBM Lotus aQute

