JavaOne

BJ Hargrave Peter Kriens

OSGi Alliance CTO OSGi Alliance Technical Director
IBM Lotus aQute

Session TS-1419

2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL iava.sun.com/iavaone

JavaOne

OSGi Best Practices!

2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 2 java.sun.com/javaone

JavaOne

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices

Conclusion

Q&A

QSun 2007 JavaOneSM Conference Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 3 java.sun.com/javaone
I

JavaOne

Introduction to OSGi Technology

The Dynamic Module System for Java™ Platforms

It's a module system for the Java platform

Includes visibility rules, dependency management
and versioning of bundles, the OSGi modules

It's dynamic

Installing, starting, stopping, updating, uninstalling
bundles, all dynamically at runtime

It's service-oriented

Services can be registered and consumed inside a
VM, again all dynamically at runtime

A specification of the OSGi Alliance, a non-profit
organization http://www.osgi.org

'@"iﬁm 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 4 java.sun.com/javaone

JavaOne

OSGi Technology Key Benefits

The Dynamic Module System for Java™ Platforms

» Avoids Java Archive (JAR) file hell

* Reuse code “out of the box”

+ Simplifies multi-team projects

- Enables smaller systems

- Manages deployments local or remotely
- Extensive tool support

* No lock in, many providers of core technology
including many open source

* Very high adoption rate

'@'ﬁffh’ 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 5 java.sun.com/javaone

JavaOne

OSGi Layering

[¥s

Applications E |
(Bundles) ‘ Services ‘ :
‘ Lifecycle ‘ % :

‘ Module ‘ T :

‘ Execution Environment ‘ _:

'9‘5!#! 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 6 java.sun.com/javaone

JavaOne

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion

Q&A

'@J\EEH 2007 JavaOneSM Conference Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 7 java.sun.com/javaone
I

|avaOne

Portable Code

Problem

You compile your code using source level 1.3 on
a Java 5 platform compiler, assuming you are
safe to run on older VMs

But then it fails to run when you deploy to a Java
platform 1.3 or CDC/Foundation 1.0 environment

It turns out that despite your 1.3 source level,
you were still linked to new parts in the Java 5
class library

java.lang.NoSuchMethodError: java.lang.StringBuffer: method
append (Ljava/lang/StringBuffer;)Ljava/lang/StringBuffer;
not found

'@"‘r'.?w 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 8 java.sun.com/javaone

JavaOne

Portable Code

Best Practice

- Compile your code against the minimum suitable
class libraries

+ OSGi specification defines Execution Environments (EE)
* OSGi minimum—Absolute minimum, suitable for API design

- Foundation—Fairly complete EE, good for most applications;
used for Eclipse

- JAR files available from OSGi website

- Java platforms are backward compatible so you should
always compile against the lowest version you are
comfortable with

- New features are good, but there is a cost!
- At least think about this

'@'ﬁffh’ 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 9 java.sun.com/javaone

JavaOne

Proper Imports
Problem

* You develop and test your bundles on an
OSGi Service Platform that you have
configured yourself

* Your colleague tries these bundles on another

OSGi Service Platform and complains of a
ClassNotFoundError in your bundles

'Qﬁ'HH 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 10 java.sun.com/javaone

JavaOne

Proper Imports

Problem

Code:
import org.osgi.framework. *;
import javax.xml.parsers.¥*;

public class Activator implements BundleActivator ({
public void start (BundleContext \ctxt) ({
SAXParserFactory factory =
SAXParserFactory.newInstangke () ;
SAXParser parser = factory.newSAXParser () ;

} Missing an import for
} javax.xml.parsers in
the manifest

Manifest: |
Import-Package: org.osgi.framework

05!#! 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 11 java.sun.com/javaone

JavaOne

Proper Imports

Best Practice

D Sun

Do not assume that everything in the Java Runtime
Environment (JRE) will be available to your bundle

- Only java.” packages are reliably available from the boot
class path

Your bundle must import all packages that it needs
- Except: java.” does not need to be imported

Why?

- Enables bundles to provide substitute implementations of JRE
implementation release software version packages

The org.osgi. framework.bootdelegation
system property may be set differently on different
configurations, so you should never rely on its setting

2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 12 java.sun.com/javaone

S,
=
JEVE]

JavaOne

D Sun

Minimize Dependencies
Problem

You find an interesting bundle and want to use it
You install it in an OSGi framework

You find it has dependencies on other bundle
So you find and install those bundles

Those bundles end up depending on still
other bundles...

 Ad nauseum...

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 13 java.sun.com/javaone

JavaOne

Minimize Dependencies
Best Practice
* Use Import-Package instead of Require-Bundle

* Require-Bundle can have only one provider—
the named bundle

+ Import-Package can have many providers
- Allows for more choices during resolving
- Has a lower fan out, which gain adds up quickly

- Use version ranges

» Using precise version numbers gives the dependency
resolver less choice

- Design your bundles

- Don'’t put unrelated things in the same bundle
- Low coupling, high cohesion

'QHHH 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 14 java.sun.com/javaone

<
——

. Java

JavaOne

Hide Implementation Details
Problem

You wrote a bundle that has a public APl and
associated implementation code

This implementation code defines public classes because it
needs to make cross-package calls and references

You exported all the packages in your bundle

In the future, you release an update to the bundle
with the same public API but a vastly different
Implementation

You then get an angry call because you broke some
customer’s code

And you told them not to use the implementation packages...

'@j{;m 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 15 java.sun.com/javaone

)
!
. Java

JavaOne

Hide Implementation Details
Best Practice

Put implementation details in separate packages
from the public API

org.example. foo — exported AP| package

org.example. foo.impl - private implementation
package

Do not export the implementation packages

Export and/or import the public details while keeping
the implementation details private

Export-Package: org.example.foo; version=1.0

'@j{;m 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 16 java.sun.com/javaone

JavaOne . .
Avoid Class Loader Hierarchy
Dependencies
Problem
You are designing a multimedia system and want to
allow other bundles to provide plug-in codecs
Your design requires them to pass names of the codec
classes which you load via Class . forName

Either by method call or configuration file

This design works in a traditional tree-based class
loader model since the multimedia system’s class loader
has visibility to the codec classes

However, in an OSGi environment, the multimedia
system gets ClassNotFoundErrors since it does
not have visibility to the codec classes

'@"iﬁm 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 17 java.sun.com/javaone

" Avoid Class Loader Hierarchy

Dependencies
Best Practice

Better to use a safe OSGi model like services
or the Extender Model to have bundles
contribute codecs
More dynamic, you can add new services on the fly
by installing bundles
Workaround for using Class. forName

Use DynamicImport-Package: * and have the
contributing bundles export their codec package

This may work but can result in unintended side
effects since your bundle may import packages it
did not expect

'@"‘iﬁm 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 18 java.sun.com/javaone

JavaOne

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion

Q&A

'@J\EEH 2007 JavaOneSM Conference Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 19 java.sun.com/javaone
I

JavaOne

& Sun

Avoid Start Ordering
Dependencies

Problem
> You develop a bundle that uses the Http Service and get

the service in your BundleActivator

public class Activator implements BundleActivator ({
HttpService http;
public void start (BundleContext ctxt) {
ServiceReference
ref = ctxt.getServiceReference (
HttpService.class.getName()) ;
http = ctxt.getService (ref)
http.registerServlet(); }}

Your bundle works fine on your workstation but fails with
a NullPointerException on the call to getService when
iIntegrated into the build

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 20 java.sun.com/javaone

" Avoid Start Ordering

Dependencies
Best Practice

Do not assume that you can always obtain a
service during initialization

Bundles can start in different orders on different
systems and you usually do not have control over
the order

Use ServiceTracker to track services and

respond to their publication by subclassing or
via a ServiceTrackerCustomizer

Use a declarative service model like OSGi
Declarative Services or Spring OSGi

'@"‘r'.?w 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 21 java.sun.com/javaone

JavaOne

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices
General Best Practices
Conclusion

Q&A

'@J\EEH 2007 JavaOneSM Conference Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 22 java.sun.com/javaone
I

S Sun

Handle Service Dynamism
Problem

You develop a bundle with a servlet

You get the HttpService and register your servlet

After deployment, you receive problem reports
that your servlet seems to vanish after working
for a while

It turns out the HttpService was unpublished
temporarily when the HttpService bundle was
stopped and restarted during an update

Your bundle did not react and re-register
the servlet

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 23

JavaOne

Handle Service Dynamism
Best Practice

A service is a dynamic entity and can be
unpublished after you get it

A bundle must respond to the lifecycle of a
dependent service

The OSGi framework provides an API| to handle
these dynamics but they are rather low level

There are helpers, based on this API, like:
Service Tracker and Service Activator Toolkit (SAT)

Declarative models like Declarative Services, iPOJO,
and Spring OSGi

'@"’r'.?m 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 24 java.sun.com/javaone

@D Sun

Whiteboard Pattern

Problem
You design a service provided by your bundle to
use the familiar addListener and removeListener
methods

In practice, you find that other bundles forget to
call removelListener when they stop or you stop,
or forget to call addListener when you restart

Both bundles need special code to track the other
bundle or events are not properly delivered

The OSGi LogReaderService design is an
example of this problem ®

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 25

S,
=
JEVE]

JavaOne

Whiteboard Pattern

Best Practice

- Design your API to have the listener registered as
a service

+ Simple
* More robust

- Leverages the OSGi service model and its lifecycle model
awareness

+ The event source tracks the listener services and calls
them when there is an event to deliver

+ This is called the Whiteboard Pattern
It can be considered an Inversion of Control pattern

+ The OSGi EventAdmin design is an example of this
best practice

'Q}r'fm 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 26 java.sun.com/javaone

<
!
. Java

JavaOne

S Sun

Extender Model

Problem

You design a Help System where other bundles
contribute help content to your bundle

The other bundles need to track the Help System
bundle and contribute their Help content

The Help System bundle must clean up when the
bundles that contribute Help content are stopped

This problem of tracking bundle lifecycles is much like
the one solved by the Whiteboard Pattern

But there is a another pattern to address this use case

The OSGi HttpService design is an example of this
problem ®

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 27 java.sun.com/javaone

Extender Model

Best Practice

The bundle being “extended” specifies a data schema
Contributing bundles define this data in their bundle

The extender bundle will track the bundles via certain
lifecycle event and process the data, if present

This can include loading classes from the contributing bundle

Extenders have more advantages

Lazy: less time pressure on startup and less memory later

More robust in case of failures: extender bundle can make
consistent and policy driven choices

Many bundles use this pattern

Declarative Services, iPOJO, Spring OSGi, and Eclipse
Extension Point Registry

2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 28 java.sun.com/javaone

JavaOne

Agenda

Introduction to OSGi Technology
Module Layer Best Practices
Lifecycle Layer Best Practices
Service Layer Best Practices

General Best Practices

Conclusion
Q&A

@ Sun 2007 JavaOne®M Conference Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 29 java.sun.com/javaone
I

Avoid OSGi Framework API
Coupling
Problem
You wrote your code and packaged it in a bundle

Your code publishes an OSGi service for other
bundles to use and also uses services provided
by other bundles

Your code uses the OSGi service layer API in

quite a number of classes and is now coupled to
the OSGi API

You no longer can easily use your code in a
non-OSGi environment

'@"’iﬁw 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 30 java.sun.com/javaone

|avaOne
Avoid OSGi Framework API
Coupling
Best Practice
Write your code as POJOs (Plain Old Java Objects)

Program against interfaces, not concrete classes

Isolate the use of OSGi API to a minimal number
of classes

Let these coupled classes inject dependencies into
the POJOs

Make sure none of your domain classes depend on
these OSGi coupled classes

Use an OSGi-ready loC container like Declarative
Services or Spring OSGi to express these dependencies
In a declarative form

Let the 10C containers handle all of the OSGi API calls

'@"’iﬁw 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 31 java.sun.com/javaone

JavaOne .
Return Quickly from Framework
Callbacks
Problem

You work in a large team building an enterprise
OSGi based system

Each developer develops their part of the system in a
modular fashion and does extensive and continuous
unit testing

When all bundles are put together for integration test,
a week before deadline, it takes too long to bring up
the whole system

It turns out that each bundle spent a long time
in their activator and the cumulative effect on the
complete system was significant

'@"iﬁm 2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 32 java.sun.com/javaone

" Return Quickly from Framework
Callbacks

Best Practice

- Bundle developers have a tendency to do too much up
front activation

1s per bundle (think DNS name lookup)

* — 1 minute with 60 bundles

* — 5 minutes with 300 bundles
Lazy is good

- See new lazy activation features in release 4 Version 4.1
Framework callbacks need to return quickly

If you need to do something that takes some time
then either:
* Use eventing

- Spin off a background thread to perform the long running work

'@'ﬁfw 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 33 java.sun.com/javaone

)
!
. Java

JavaOne

D Sun

Thread Safety

Problem
You develop a bundle and test it extensively

However when deployed in the field with a set
of other bundles, your bundle fails with
exceptions in strange places

Ultimately your realize that these other bundles
are triggering events

Which your bundle receives and processes

But the events are being delivered on many
different threads

Time to consult a concurrency expert...

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 34 java.sun.com/javaone

JavaOne

Thread Safety

Best Practice

+ In an OSGi environment, framework callbacks to
your bundle can occur on many different threads
simultaneously

* Your code must be thread-safe!

- Callbacks are likely running on different threads and can occur
really simultaneously

* Do not hold any locks when you call a method and you do not
know the implementation, they might call back to bite you

- Java platform monitors are intended to protect low level data
structures; use higher level abstractions with time-outs for
locking entities

* In multi-core CPUs, memory access to shared mutable state
must always be synchronized

'@'ﬁffh’ 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 35 java.sun.com/javaone

JavaOne

Conclusion

* We have presented a number of pitfalls and showed the
best practices to prevent those pitfalls

+ Some are common sense and apply to other Java environments
as well

« Some are needed because of the characteristics of the OSGi
environment

- Despite these pitfalls, OSGi technology provides a robust
environment for software development that gives a
tremendous amount of advantages

- Many OSGi mechanisms were designed to prevent common
pitfalls in traditional Java technology programming

'@'ﬁffh’ 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 36 java.sun.com/javaone

OSGi Service Platform

For More Effective Software
Development!

JavaOne

For More Information

- If you have further question on these or want to
discuss other issues in developing for OSGi

> Please try the osgi-dev@www2.0sgi.orqg mail list
* http://www2.0sgi.org/mailman/listinfo/osgi-dev

- OSGi Developer website
* http://www2.0sgi.org/

@ Sun 2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 38 java.sun.com/javaone

JavaOne

Q&A

BJ Hargrave
Peter Kriens

2007 JavaOneSM Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL | 39 java.sun.com/javaone/sf

JavaOne

BJ Hargrave Peter Kriens

OSGi Alliance CTO OSGi Alliance Technical Director
IBM Lotus aQute

Session TS-1419

2007 JavaOne®M Conference | Session TS-1419 | Copyright © 2007 IBM Corporation and aQute SARL iava.sun.com/iavaone

