

lavaOne

Deploying and Scaling Massive Digital Archive Repositories

Sacha Arnoud

Architect Sun Microsystems, Inc. http://www.sun.com

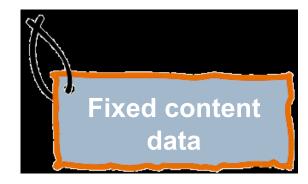
TS-19460

Deploy and Make Use of A Petabyte-Scale Digital Repository

Go through the steps of designing, implementing, and deploying a real-life, petabyte-scale digital repository using Java™ technologies.

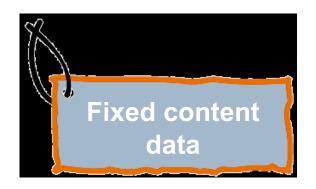
Agenda

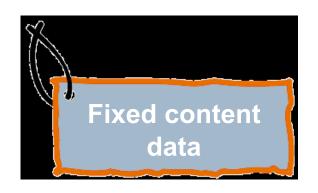
- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- 4. Case Study: fedora.info and Sun StorageTek[™] 5800

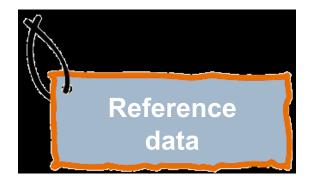


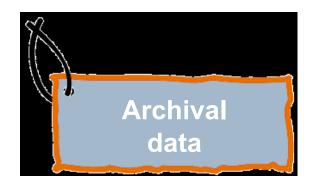
Agenda

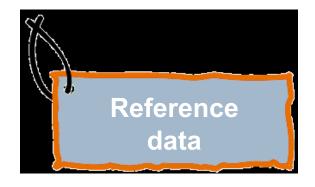
- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- 4. Case Study: fedora.info and Sun StorageTek[™] 5800

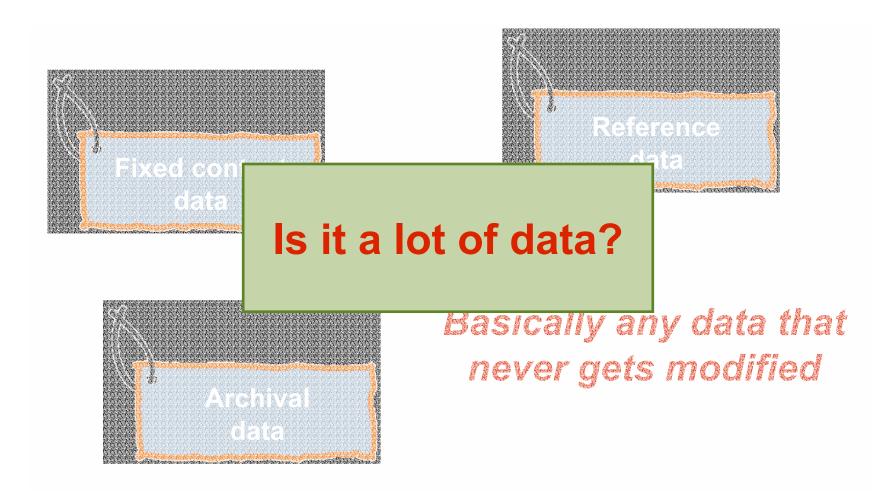




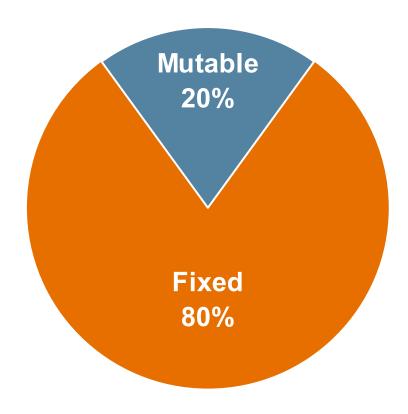




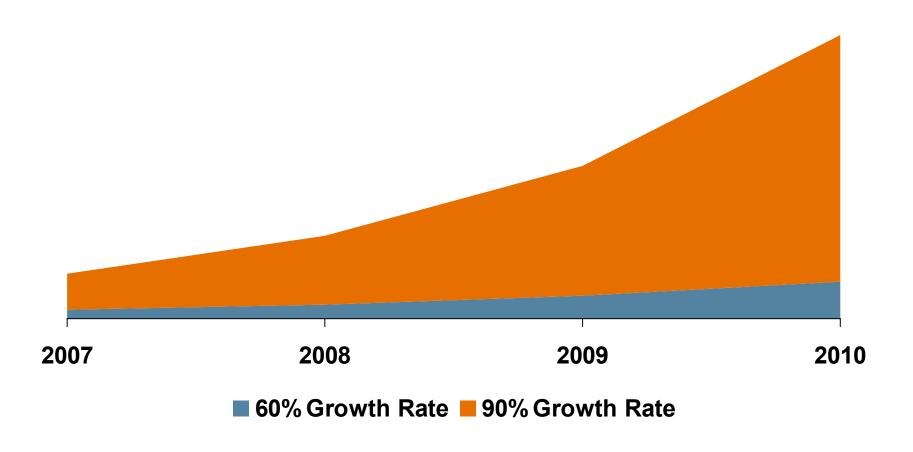




Basically any data that never gets modified



Yes!



Source: Hal Varian, UC Berkeley

And Even More Tomorrow

Reference Data Is Everywhere

- Most of the new digital content is born fixed
 - Video (1 million YouTube uploads per day¹)
 - Pictures (top sites generate multiple PB a year)
 - Flickr, Kodak EasyShare Gallery, ...
 - Commodity storage (xdrive, box.net, Amazon S3, ...)
 - Digital libraries (all major universities)
 - Healthcare industry
 - •
- Through the archival process mutable data becomes fixed
- Federal regulations

Let's go, build, and use our own digital repository, right now!

Agenda

- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- 4. Case Study: fedora.info and Sun StorageTek 5800

What Components Do I Need?

My Application

You still need to think about your application

- What kind of data do you generate?
- What data model for your repository?

What Components Do I Need?

My Application

Repository Model and Its APIs

Repository Engine

Tap into existing digital repository solutions

- Look at their data models
- Their APIs
- And a lot of them are based on Java technology!

What Components Do I Need?

My Application

Repository Model and Its APIs

Repository Engine

Persistent Storage

- What storage APIs do these implementations rely on?
- Do you have to deploy a database?
- Can you change the repository engine to use other storage solutions?

Agenda

- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- Case Study: fedora.info and Sun StorageTek 5800

DSpace

- http://dspace.org/
 - MIT Libraries
 - Hewlett-Packard Labs
- Emphasizes the curation of digital content
- The reference implementation relies on:
 - A filesystem
 - Tomcat
 - A relational DB (PostgreSQL, Oracle)

fedora.info

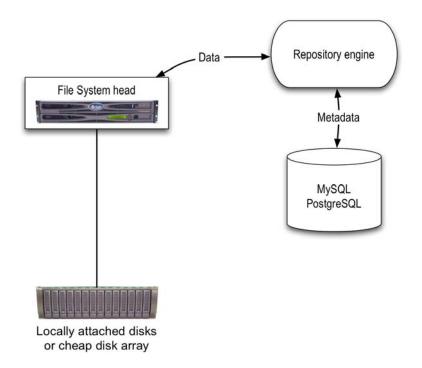
- http://fedora.info/
 - Cornell University Information Science
 - University of Virginia Library
- Based on objects that encapsulate:
 - Data streams;
 - Metadata;
 - Code that implements behaviors (disseminators)
- The reference implementation relies on:
 - A filesystem
 - Tomcat
 - A relational DB (MySQL or mckoi)
- VTLS is a commercial offering on top of Fedora

Content Repository for Java Technology API (JSR 170)

- http://jcp.org/aboutJava/communityprocess/review/jsr170/index.html
- Lower level
 - Requires a higher level application to implement a workflow
- Documents are nodes in a hierarchical structure
 - With data
 - And properties (metadata)
- R.I. is Apache Jackrabbit
 - http://jackrabbit.apache.org/
- Day software is a compliant commercial implementation
 - http://www.day.com/site/en/index.html

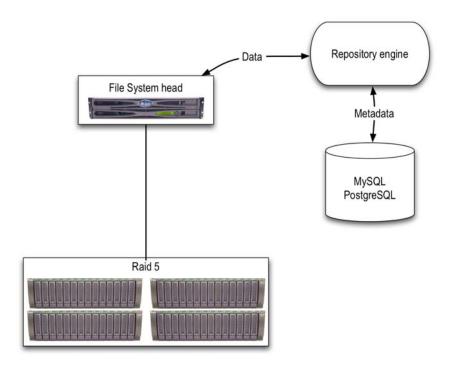
XAM (FCAS TWG-SNIA)

- http://www.snia.org/xam/home
- Focuses on a abstraction at the storage layer
 - SNIA standard
- Demonstrates the industry commitment to fixed content storage
- Work on both a C and a Java API


Agenda

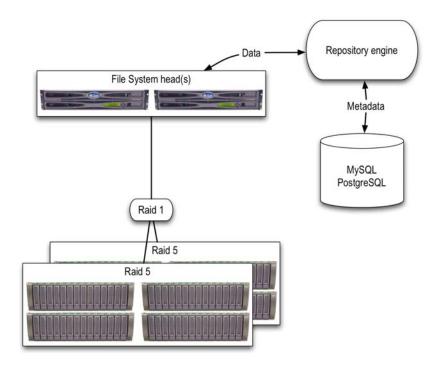
- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- Case Study: fedora.info and Sun StorageTek 5800

Let's Build Our Storage Solution


Use simple components required by most R.I.:

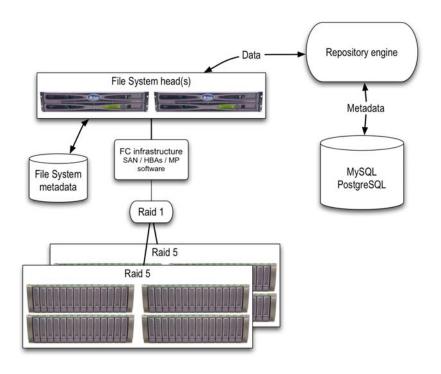
- Directly attached diska
- An open source database

We Need More Storage!



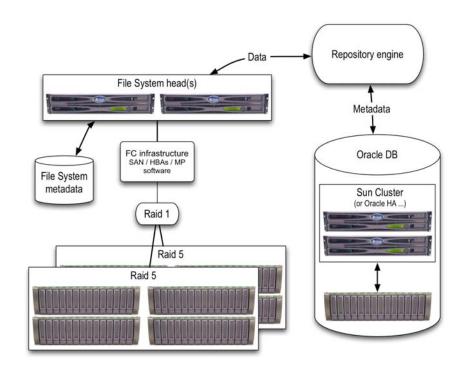
We all know the virtues of RAID!

Even More Storage


Keep adding cheap DATA disks

- Do RAID 5.1 for reliability
- Put a distributed FS for availability and performance

I Need to Scale Better



- Switch to fiber channel
- Switch to a high-performance FS

And What About the Database?

Switch to a distributed DB:

- Oracle DB
- Scale the DB storage

Agenda

- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- Case Study: fedora.info and Sun StorageTek 5800

I Just Built a Complex Solution

- Expensive to acquire
 - Fiber channel infrastructure
 - RAID 5.1
 - Costly RDBMS license
- Technically advanced
 - High-performance filesystem
 - Distributed filesystem
- Managing it is complex

And I Am Not Using It!

- My data is never modified
 - Why paying the price of a consistent distributed FS?
- I probably don't need a HPC kind of performance
- I am not really using the FS hierarchical structure

But I need to:

- Scale my application with my storage;
- Get reliability and high-availability to my data at a low cost per GB

Maybe I Chose the Wrong Model?

- Storage is evolving
 - From block-based storage
 - To file- and filesystem-based storage
 - To objects
- A storage object
 - Has data
 - Has searchable metadata
 - Has code that can be executed against the data
- It is up to the repository model to organize them logically!
 - Using enhanced new generation storage capabilities

How Does That Affect Me?

- If you develop digital archives frameworks
 - Abstract storage using an object based approach
 - Don't use java.io.File
 - Stay tuned and expect new Java technology standards in that space
- If you develop digital archive applications
 - Use an existing framework that will do the abstraction work for you
 - · Focus on your workflow, business logic, ...

Agenda

- 1. Is fixed data important?
- 2. Let's go and build our digital repository! What components do I need? Which existing technologies can I reuse? How do I design and grow my storage?
- 3. Did I get something wrong? ...or how real life can bite you
- 4. Case Study: fedora.info and Sun StorageTek 5800

The Fedora Stack

Fedora Repository Model

iLowlevelStorage interface

Default Implementation

DefaultLowlevelStorageModule

(relies on a FS)

Sun StorageTek 5800

- a.k.a. Honeycomb
- Fixed content, object-based storage
 - Cheap
 - Reliable
 - Available
 - Scalable
 - With metadata support, including search
- Check out booth POD-986

StorageTek 5800 APIs

- Built-in Java APIs
- Store

```
objectHandler =
   storeObject(
   java.nio.channels.ReadableByteChannel, # Data
   java.util.Map); # Metadata
```

Retrieve

```
retrieveObject(objectHandler,
    java.nio.channels.WritableByteChannel);
```

Query

```
objectHandler List = query(String);
```


Map Fedora Objects Into Storage Objects

- Fedora objects have a pid (string)
- Each object in storage has a metadata field fedora.pid = "my value";
- To retrieve, first lookup the fedora pid in storage object handle = query("fedora.pid='my value'"); retrieve(object handle);
- Fedora FOXML metadata can be pushed to the storage
 - ...and the storage can take care of queries

Example: addObject

```
public void addObject(String pid,
                       InputStream content)
       throws LowlevelStorageException {
       LOG.info("HCStorage: store ["+pid+"]");
       try {
           NameValueRecord record = oa.createRecord();
           record.put(PID FIELD NAME, pid);
           record.put(TYPE FIELD NAME, type);
           SystemRecord res =
  oa.storeObject(Channels.newChannel(content),
                                              record);
           LOG.info("HCStorage: stored object");
       } catch (...) { }
```


Summary

- The explosion of fixed content data applications is a huge opportunity
- Most (all?) existing solutions heavily rely on Java technology
- Storage and Java technology are going to integrate more!
- Sun Microsystems is committed to make both integrations converge
 - ...and Sun is committed to open source

Stay tuned!

For More Information

Sun StorageTek 5800

http://www.sun.com/storagetek/disk_systems/enterprise/5800/index.xml http://www.sun.com/emrkt/innercircle/newsletter/0606edchoice_nontrad.html

Check out Booth POD-986

fedora.info

http://fedora.info/

The expanding digital universe

http://www.emc.com/about/destination/digital_universe/pdf/ Expanding_Digital_Universe_IDC_WhitePaper_022507.pdf

Q&A

lavaOne

Deploying and Scaling Massive Digital Archive Repositories

Sacha Arnoud

Architect Sun Microsystems, Inc. http://www.sun.com

TS-19460