
2007 JavaOneSM Conference | Session TS-4089 |

TS-4089

Update on JSR 299: Web Beans
Gavin King

Red Hat, Inc.
JBoss Seam

Bob Lee

Google, Inc.
Google Guice

2007 JavaOneSM Conference | Session TS-4089 2

JSR 299: Web Beans

Learn how Web Beans can enable
you to use a consistent and cohesive
component model throughout your
application.

Defining a unified Java™ component model

32007 JavaOneSM Conference | Session TS-4089

Introductions
Your Humble Presenters

2007 JavaOneSM Conference | Session TS-4089 4

Gavin King

• JSR 299 spec. lead
• Created Hibernate
• Created Seam
• Heavy contributer to

Enterprise JavaBeans™

(EJB™) 3.0
• Author of Hibernate in Action
• Former hip hop star

Fellow, Red Hat, Inc.

2007 JavaOneSM Conference | Session TS-4089 5

Software Engineer, Google, Inc.
Bob Lee

• Created Google Guice
• Java Community

ProcessSM (JCPSM)
EC representative
for Google

• Struts 2 and WebWork
committer

• a.k.a. “Crazy Bob”

2007 JavaOneSM Conference | Session TS-4089 6

JSR 299: Web Beans
The Expert Group

• Companies
– Adobe Systems, Inc.
– Apache Software

Foundation
– Google, Inc.
– Oracle
– Pramati Technologies
– Red Hat, Inc.
– Sun Microsystems, Inc.
– Tmax Soft, Inc.

• Individual members
– Jacob Hookom
– Oliver Ihns
– Richard Kennard
– Conny Lundgren
– Chris Maki
– Kito Mann
– Martin Marinschek

Spec. Lead: Gavin King

2007 JavaOneSM Conference | Session TS-4089 7

JSR 299: Web Beans
Status

• The specification itself is just getting started
• But it’s seeded by mature contributions

• Seam
• Guice
• Shale
• And others…

2007 JavaOneSM Conference | Session TS-4089 8

Web Beans addresses
Problems

• Need for a unified component model
• Managing state

• Scoping components
• Conversation management

• Finding components
• Configuration

2007 JavaOneSM Conference | Session TS-4089 9

Web Beans is architected with the Java EE platform in mind

Relationship to Java Platform,
Enterprise Edition (Java EE
Platform) 5

• Web Beans components may be used seamlessly
as JavaServer™ Faces technology managed beans
• In a sense, the model is an extension/replacement of the

managed beans model that is transactional, secure, etc.

• EJB 3.x technology components may be
Web Beans
• Web Beans addresses the problem of integrating EJB

technology components into the web tier

• The core of Web Beans is being architected
to have no hard dependency upon JavaServer Faces
or EJB 3 technology

2007 JavaOneSM Conference | Session TS-4089 10

What Is a Web Bean?

• The Web Beans component model is all
about loose coupling:
• Decouple implementations of server and client

• By allowing easy overriding of server implementation
• Decouple lifecycles of collaborating components

• Using automatic state/lifecycle management
• “Contextual components”

• Decouple orthogonal concerns
• Using interceptors
• (True AOP is a boondoggle—an absurdly overcomplex

solution to a narrow range of problems)

2007 JavaOneSM Conference | Session TS-4089 11

What Is a Web Bean?

• Ingredients
• API
• Implementation
• Scope
• Name
• Binding annotations
• Priority

• Kinds of components
• Stateful and stateless session beans

• Even WebService endpoints!
• Entity beans
• Any Java class file

2007 JavaOneSM Conference | Session TS-4089 12

Simple Example

• Trivial case

public
@Stateless
@Component
class Hello {

public String hello(String name) {
return “hello “ + name;

}

}

2007 JavaOneSM Conference | Session TS-4089 13

Simple Example

• Java platform client

public
@Stateless
@Component
class Printer {

@In Hello hello;

public void hello() {
System.out.println(hello.hello(“world”));

}

}

2007 JavaOneSM Conference | Session TS-4089 14

Simple Example

• EL client

<h:commandButton value=”Say Hello”
action=”#{hello.hello}”/>

2007 JavaOneSM Conference | Session TS-4089 15

Overriding Components

• It is legal to have multiple implementations
of the same component
• i.e., same API, name, binding annotations
• But they must specify different priorities

• At runtime, the Web Beans container chooses
the implementation with the highest priority
from those in the classpath
• It is illegal to have two components with the same

name and priority, or same binding annotations
and priority

2007 JavaOneSM Conference | Session TS-4089 16

Overriding Components

• Predefined priorities
• BUILT_IN
• FRAMEWORK
• APPLICATION
• DEPLOYMENT
• MOCK Highest

Lowest

2007 JavaOneSM Conference | Session TS-4089 17

Overriding Components

• Implement an interface

public
@Stateless
@Component(type=Greeting.class)
class Hello implements Greeting {

public String greet(String name) {
return “Hello “ + name;

}

}

2007 JavaOneSM Conference | Session TS-4089 18

Simple Example

• Inject by the interface type

public
@Stateless
@Component
class Printer {

@In Greeting greeting;

...

}

2007 JavaOneSM Conference | Session TS-4089 19

Simple Example

• Override the default implementation

public
@Stateless
@Component(type=Greeting.class, priority=DEPLOYMENT)
class Hola implements Greeting {

public String greet(String name) {
return “Hola “ + name;

}

}

2007 JavaOneSM Conference | Session TS-4089 20

Overriding Components

• We can easily mock out a component for testing

public
@Stateless
@Component(type=Greeting.class, priority=MOCK)
class MockHello extends Hello {

public String greet(String name) {
return “Hello World”;

}

}

2007 JavaOneSM Conference | Session TS-4089 21

Interceptors

• EJB 3.0 specification defined a nice
interceptor model
• For dealing with concerns orthogonal to the

business logic
• Extend that model to all kinds of Web Beans

• (Except entities?)
• Actually, the Web Beans container is

implemented using EJB 3.0 specification
interceptors

2007 JavaOneSM Conference | Session TS-4089 22

Scopes

• A scope is a policy for reusing component
instances

• The scope of a component determines
its lifecycle

• Web Beans features an extensible set of scopes

2007 JavaOneSM Conference | Session TS-4089 23

Scope Examples

• no scope (new instance each time)
• request
• session
• conversation
• application (singleton)
• custom extensions

• business process
• cluster
• method

2007 JavaOneSM Conference | Session TS-4089 24

Injection

• Pico, Spring, Guice, EJB 3.0 technology:
injection at component instantiation time
• Via constructor, setter methods, direct field access

• Seam: injection at method invocation time
• Via setters or direct field access
• Allows components in a narrower scope

(e.g., request) to be injected into a component
in a wider scope (e.g., session, conversation)

• Extreme loose coupling

2007 JavaOneSM Conference | Session TS-4089 25

Specifying Component Scope

• Use a scoping annotation

public
@SessionScoped
@Stateful
@Component
class ShoppingCart { ... }

2007 JavaOneSM Conference | Session TS-4089 26

Defining a New Scope

• Create a custom scoping annotation

public
@Documented
@Target(TYPE)
@Rentention(RUNTIME)
@ScopeType
class MethodScoped { ... }

2007 JavaOneSM Conference | Session TS-4089 27

Defining a New Scope

• Use the Contexts API to manage the lifecycle

public class MethodScopeInterceptor {

@AroundInvoke
public Object manageMethodScope(Invocation invocation)
{

Contexts.createContext(MethodScoped.class,
new Context());

try {
return invocation.proceed();

}
finally {

Contexts.destroyContext(MethodScoped.class);
}

}
}

2007 JavaOneSM Conference | Session TS-4089 28

Defining a New Scope

• Now apply it to the component

public
@Stateful
@MethodScoped
@Component
class Timer {

public void start() { ... }
public void stop() { ... }

}

2007 JavaOneSM Conference | Session TS-4089 29

Components With Multiple Roles

• What if we want to use the same component
implementation class in different ways?
• We might need two instances of the component

at once
• From different scopes, even

2007 JavaOneSM Conference | Session TS-4089 30

Components With Multiple Roles

• The implementation class defines the default role

public
@ConversationScoped
@Entity
@Component(name=”user”)
@Roles(LoggedIn.class)
class User {

...
}

2007 JavaOneSM Conference | Session TS-4089 31

Components With Multiple Roles

• The binding annotation defines an additional role

public
@Documented
@Rentention(RUNTIME)
@SessionScoped
@Component(name=”loggedInUser”)
@interface LoggedIn {}

2007 JavaOneSM Conference | Session TS-4089 32

Components With Multiple Roles

• Using both roles together is easy

public
@Stateless
@Component
class BanUser {

@In User user;
@In @LoggedIn User administrator;

public void ban() {
user.bannedBy(administrator);

}

}

2007 JavaOneSM Conference | Session TS-4089 33

Components With Multiple Roles

• Or, in EL

#{user} was banned by #{loggedInUser}

2007 JavaOneSM Conference | Session TS-4089 34

Finding Components by Name

• Dynamically typed
• Used exclusively in Seam
• Each component has a unique string identifier
• Useful for:

• Expression languages (JavaServer Faces
technology, JavaServer Pages™ (JSP™))

• XML configuration

2007 JavaOneSM Conference | Session TS-4089 35

Finding Components by Type

• Statically typed
• Used exclusively in Guice
• Each component has:

• A mandatory invariant type
• A parent of the implementation type
• Noun

• An optional set of annotation types
• Adjectives

• Useful for Java platform clients
• Enables concise dependency injection

2007 JavaOneSM Conference | Session TS-4089 36

Binding Annotations

• Used to find components by type
• Describe the component—adjectives
• Reusable across types

•@Transactional DataSource
•@Transactional WebService

• Not just markers
•They can have attribute values, too
•@Named(“Gavin”)

2007 JavaOneSM Conference | Session TS-4089 37

Example: Find by Type
class Client {

@In Service service;
@In @Transactional DataSource dataSource;

...
}

• @In
• Methods
• Fields
• Constructors?

• Component annotations go on:
• The field declaration
• Parameter declarations

2007 JavaOneSM Conference | Session TS-4089 38

Names vs. Types

• Use names in dynamically typed contexts
• Expressions
• XML
• Scripting languages

• Use types for Java platform (and Groovy) clients
• Full support for generic types
• More up front checking
• Better tool support
• Simpler testing

2007 JavaOneSM Conference | Session TS-4089 39

Defining Component Externally

• An alternative way to define new roles
<component
class=’Material’
role=’Hard’
scope=’ApplicationScoped’
name=’concrete’

/>

2007 JavaOneSM Conference | Session TS-4089 40

Conversation Scope

• Primarily used with servlets
• Bigger than a request
• Smaller than a session
• Spans multiple requests
• Useful for implementing wizards
• Support multiple instances of the same wizard

running in different browser windows
• Manage persistence context

• Optimistic locking
• Lazy fetching

2007 JavaOneSM Conference | Session TS-4089 41

Configuration

• Unify existing configuration mechanisms
• JavaServer Faces technology has something nice

(but doesn’t go far enough)
• EJB 3 technology has something awful
• We need one way to do it

• Inject literal values directly
• Support conversion/validation of values
• Wire components together view EL

2007 JavaOneSM Conference | Session TS-4089 42

BPM

• A business process is a long-running collaboration
between multiple users

• A business process engine can manage
(persist and share) state associated with a
process instance

• The engine also manages the process workflow
(tasks, and dependencies between tasks)

• A “task” is just a special kind of conversation
• Java EE platform has no standard business

process management engine
• So Web Beans will be extensible, to allow addition

of a business process scope

2007 JavaOneSM Conference | Session TS-4089 43

Packaging and Deployment

• Currently, Java EE platform requires a complex
deployment archive structure
• EJB technology, Java Archive (JAR), WAR nested

inside the EAR
• Web Beans breaks down the traditional barrier

between the web and transactional tiers
• So we need to simplify the packaging model
• Java EE 6 platform should allow deployment

of EJB technology components (and any other
Web Beans) directly into the classes/directory
of a WAR

2007 JavaOneSM Conference | Session TS-4089 44

Summary

• Early stages of the specification
• Strong existing contributions
• The Future Is Bright

2007 JavaOneSM Conference | Session TS-4089 45

For More Information

• Check out
• Seam
• Guice

462007 JavaOneSM Conference | Session TS-4089 |

Q&A
Gavin King and Bob Lee

2007 JavaOneSM Conference | Session TS-4089 |

TS-4089

Update on JSR 299: Web Beans
Gavin King

Red Hat, Inc.
JBoss Seam

Bob Lee

Google, Inc.
Google Guice

