
2007 JavaOneSM Conference | Session TS-4092 |

TS-4092

Developing Applications
With Seam and Eclipse

Gavin King
JBoss, A Division of Red Hat

gavin@hibernate.org

2007 JavaOneSM Conference | Session TS-4092 | 2

My Dilemma

• If I talk about the really unique stuff in Seam, everyone
thinks it must be complicated and difficult to use

2007 JavaOneSM Conference | Session TS-4092 | 3

My Dilemma

• If I talk about the really unique stuff in Seam, everyone
thinks it must be complicated and difficult to use

• If I show how easy it is to use, people think it’s just
another action/CRUD framework

2007 JavaOneSM Conference | Session TS-4092 | 4

My Dilemma

• If I talk about the really unique stuff in Seam, everyone
thinks it must be complicated and difficult to use

• If I show how easy it is to use, people think it’s just
another action/CRUD framework

• Usually I go down the first path, because at least
that way the presentation is interesting

2007 JavaOneSM Conference | Session TS-4092 | 5

My Dilemma

• If I talk about the really unique stuff in Seam, everyone
thinks it must be complicated and difficult to use

• If I show how easy it is to use, people think it’s just
another action/CRUD framework

• Usually I go down the first path, because at least
that way the presentation is interesting

• Today I’m going to try the second path, and risk
being boring

2007 JavaOneSM Conference | Session TS-4092 | 6

My Dilemma

• If I talk about the really unique stuff in Seam, everyone
thinks it must be complicated and difficult to use

• If I show how easy it is to use, people think it’s just
another action/CRUD framework

• Usually I go down the first path, because at least
that way the presentation is interesting

• Today I’m going to try the second path, and risk
being boring

• …because I’m sick to death of hearing people who think
that Java technology has to be complicated, and has to
involve reams and reams of XML files, and has to mean
waiting around for the server to restart for hours each day

2007 JavaOneSM Conference | Session TS-4092 | 7

Getting Started

• After the first day of development, I want to have
something to show the users of my system

2007 JavaOneSM Conference | Session TS-4092 | 8

Getting Started

• After the first day of development, I want to have
something to show the users of my system

• Most Java projects spend weeks arguing about
frameworks, project structures, architecture,
programming in PowerPoint (ugh) or rational rose
(worse), writing build scripts, etc.

2007 JavaOneSM Conference | Session TS-4092 | 9

Getting Started

• After the first day of development, I want to have
something to show the users of my system

• Most Java projects spend weeks arguing about
frameworks, project structures, architecture,
programming in PowerPoint (ugh) or rational rose
(worse), writing build scripts, etc.

• The user doesn’t care about this sh*t

2007 JavaOneSM Conference | Session TS-4092 | 10

Getting Started

• After the first day of development, I want to have
something to show the users of my system

• Most Java projects spend weeks arguing about
frameworks, project structures, architecture,
programming in PowerPoint (ugh) or rational rose
(worse), writing build scripts, etc.

• The user doesn’t care about this sh*t
• I don’t have to be an obsessive unit-testing-pair-

programming-no-overtime-collective-code-
ownership-time-boxed-releases fetishist to think
that it’s good to spend time on sh*t that users
care about

2007 JavaOneSM Conference | Session TS-4092 | 11

Getting Started

• seam-gen can get you started in minutes…

2007 JavaOneSM Conference | Session TS-4092 | 12

What Was Generated?

• A basic project skeleton
• With an Ant build script
• That deploys to a WAR or exploded directory
• With support for persistence via JPA

• With test, dev, and prod database profiles
• Basic login/logout
• A Facelets template

• What if we don’t like it?
• And a welcome page

• What if we don’t like the welcome message?

2007 JavaOneSM Conference | Session TS-4092 | 13

Let’s Create Our Own Page
<ui:composition xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
template="layout/template.xhtml">

<ui:define name="body">
Hello!

</ui:define>

</ui:composition>

2007 JavaOneSM Conference | Session TS-4092 | 14

Now for Some Dynamic Content…
<ui:composition xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
template="layout/template.xhtml">

<ui:define name="body">
Hello!
The time is #{currentTime}.

</ui:define>

</ui:composition>

2007 JavaOneSM Conference | Session TS-4092 | 15

Using JSF Components
<ui:composition xmlns="http://www.w3.org/1999/xhtml"

xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html"
xmlns:s="http://jboss.com/products/seam/taglib"
template="layout/template.xhtml">

<ui:define name="body">
<rich:panelBar>

<rich:panelBarItem label="hello">Hello!</rich:panelBarItem>
<rich:panelBarItem label="time">

The time is

<h:outputText value="#{currentTime}">

<s:convertDateTime type="time" timeStyle="long"/>
</h:outputText>.

</rich:panelBarItem>
<rich:panelBarItem label="nothing">nothing to see here</rich:panelBarItem>

</rich:panelBar>
</ui:define>

</ui:composition>

2007 JavaOneSM Conference | Session TS-4092 | 16

What Do Actions Look Like?

• It’s time to write some Java code!

2007 JavaOneSM Conference | Session TS-4092 | 17

What Do Actions Look Like?

• It’s time to write some Java code!
• There are no “actions” in Seam

2007 JavaOneSM Conference | Session TS-4092 | 18

What Do Actions Look Like?

• It’s time to write some Java code!
• There are no “actions” in Seam
• Or, if you prefer, all Seam components

are “actions”
• Seam-gen pretends that there is something called

an “action”, just to make it easy for Struts and Ruby
on Rails guys

2007 JavaOneSM Conference | Session TS-4092 | 19

What Do Actions Look Like?

• It’s time to write some Java code!
• There are no “actions” in Seam
• Or, if you prefer, all Seam components

are “actions”
• Seam-gen pretends that there is something called

an “action”, just to make it easy for Struts and Ruby
on Rails guys

• A traditional action framework binds a class
to a URL, and request parameters to attributes,
unidirectionally—JavaServer™ Faces lets you bind
buttons to methods and fields to attributes,
bidirectionally
• Let’s make an “action” now…

2007 JavaOneSM Conference | Session TS-4092 | 20

What Was Generated?
<ui:composition xmlns="http://www.w3.org/1999/xhtml"

...
template="layout/template.xhtml">

<ui:define name="body">

<h:messages globalOnly="true" styleClass="message"/>

<rich:panel label="ping">

<h:form id="pingForm">
<h:commandButton id="ping" value="ping!"

action="#{ping.ping}"/>
</h:form>

</rich:panel>

</ui:define>

</ui:composition>

2007 JavaOneSM Conference | Session TS-4092 | 21

What Was Generated?
@Name("ping")
public class Ping {

@Logger private Log log;

@In FacesMessages facesMessages;

public void ping()
{

log.info("ping.ping() action called");
facesMessages.add("ping");

}

}

2007 JavaOneSM Conference | Session TS-4092 | 22

What Was Generated?
public class PingTest extends SeamTest {

@Test
public void test() throws Exception {

new FacesRequest() {
@Override
protected void invokeApplication() {

invokeMethod("#{ping.ping}");
}

}.run();

}
}

2007 JavaOneSM Conference | Session TS-4092 | 23

Not a Unit Test!

• Unit tests test a component in isolation
(supposedly)

2007 JavaOneSM Conference | Session TS-4092 | 24

Not a Unit Test!

• Unit tests test a component in isolation
(supposedly)

• Hence they are next to useless

2007 JavaOneSM Conference | Session TS-4092 | 25

Not a Unit Test!

• Unit tests test a component in isolation
(supposedly)

• Hence they are next to useless
• Useful tests test the interaction between a

component and its collaborators and container
environment
• Please, please stop writing StringUtilTest classes

2007 JavaOneSM Conference | Session TS-4092 | 26

Not a Unit Test!

• Unit tests test a component in isolation
(supposedly)

• Hence they are next to useless
• Useful tests test the interaction between a

component and its collaborators and container
environment
• Please, please stop writing StringUtilTest classes

• Or they test that the external behavior of the
system is correct, from the point of view
of the user

2007 JavaOneSM Conference | Session TS-4092 | 27

Debugging

• Debugging is easy!
• Let’s try debugging the test case…
• Let’s try debugging the running app…
• Now, let’s meet the Seam debug page…

2007 JavaOneSM Conference | Session TS-4092 | 28

Using Seam Security
@Name("ping")
public class Ping {

@Logger private Log log;

@In FacesMessages facesMessages;

@Restrict("#{identity.loggedIn}")
public void ping()
{

log.info("ping.ping() action called");
facesMessages.add("pong!");

}

}

2007 JavaOneSM Conference | Session TS-4092 | 29

Using EL in the Action
@Name("ping")
public class Ping {

@Logger private Log log;

@In FacesMessages facesMessages;

@Restrict("#{identity.loggedIn}")
public void ping()
{

log.info("ping.ping() action called by #{identity.username}");
facesMessages.add("pong to #{identity.username}");

}

}

2007 JavaOneSM Conference | Session TS-4092 | 30

Calling the Action by Ajax
<ui:composition xmlns="http://www.w3.org/1999/xhtml"

...
template="layout/template.xhtml">

<ui:define name="body">

<s:span id="msg">
<h:messages globalOnly="true" styleClass="message"/>

</s:span>

<rich:panel>
<f:facet name="header">ping</f:facet>

<h:form id="pingForm">

<a:commandButton id="ping" value="ping!"
action="#{ping.ping}" reRender="msg"/>

</h:form>

</rich:panel>

</ui:define>

</ui:composition>

2007 JavaOneSM Conference | Session TS-4092 | 31

Drag and Drop
<s:span id="msg">

<h:messages id="msg" globalOnly="true" styleClass="message"/>
</s:span>

<rich:panel label="ping">

<h:form id="pingForm">

<rich:panel>
<rich:dragSupport dragType="text"/>
drag me!

</rich:panel>

<rich:panel>
<rich:dropSupport id="drop" acceptedTypes="text"

dropListener="#{ping.ping}" reRender="msg"/>
drop me!

</rich:panel>

...
</h:form>

</rich:panel>

2007 JavaOneSM Conference | Session TS-4092 | 32

Navigation From an Action
@Name("ping")
public class Ping {

@Logger private Log log;

@In FacesMessages facesMessages;

@Restrict("#{identity.loggedIn}")
public String ping()
{

log.info("ping.ping() action called by #{identity.username}");
facesMessages.add("pong to #{identity.username}");
return "/home.xhtml";

}

}

2007 JavaOneSM Conference | Session TS-4092 | 33

Using #xternal Navigation Rules
<!DOCTYPE page PUBLIC

"-//JBoss/Seam Pages Configuration DTD 1.2//EN"
"http://jboss.com/products/seam/pages-1.2.dtd">

<page>
<navigation from-action="#{ping.ping}">

<redirect view-id="/home.xhtml"/>
</navigation>

</page>

2007 JavaOneSM Conference | Session TS-4092 | 34

“One Kind of Stuff”

• A single component model that unifies
JavaServer Faces, Enterprise JavaBeans™
(EJB™) 3, BPM, WS, ESB…

• A single rendering technology for HTML, XML,
email, PDF…

• A single EL for binding rendering, orchestration,
configuration to the component model

2007 JavaOneSM Conference | Session TS-4092 | 35

Sending an Email
<m:message xmlns="http://www.w3.org/1999/xhtml"

xmlns:m="http://jboss.com/products/seam/mail">

<m:from name="Seam" address="seam@hibernate.org" />
<m:to name="#{identity.username}">#{identity.username}@hibernate.org</m:to>
<m:subject>Hello...</m:subject>
<m:body>

Hello #{identity.username}!
</m:body>

</m:message>

2007 JavaOneSM Conference | Session TS-4092 | 36

Sending an Email
@Name("ping")
public class Ping {

@Logger private Log log;

@In FacesMessages facesMessages;
@In Renderer renderer;

@Restrict("#{identity.loggedIn}")
public void ping()
{

log.info("ping.ping() action called by #{identity.username}");
facesMessages.add("pong to #{identity.username}");
renderer.render("/email.xhtml");

}

}

2007 JavaOneSM Conference | Session TS-4092 | 37

What About Persistence?

• Remember how we said there are no actions
in Seam?

2007 JavaOneSM Conference | Session TS-4092 | 38

What About Persistence?

• Remember how we said there are no actions
in Seam?

• There are no DAOs either
• At least not in the traditional sense

2007 JavaOneSM Conference | Session TS-4092 | 39

What About Persistence?

• Remember how we said there are no actions
in Seam?

• There are no DAOs either
• At least not in the traditional sense

• In Seam it is common to bind components
which access the database via JPA/Hibernate—
and the entities themselves—directly to the view

2007 JavaOneSM Conference | Session TS-4092 | 40

What About Persistence?
• Remember how we said there are no actions in Seam?
• There are no DAOs either

• At least not in the traditional sense

• In Seam it is common to bind components which access the
database via JPA/Hibernate—and the entities themselves—
directly to the view

• Seam solves a bunch of persistence-related problems
(LazyInitializationException, etc.) by providing persistence
context management and transaction management that
is aware of the boundaries of the user interaction
• A conversation-scoped persistence context
• We havn’t met conversations yet, so let’s start with something simple…

2007 JavaOneSM Conference | Session TS-4092 | 41

The Entity Bean
@Entity
public class User {

@Id
private String username;
private String name;

public String getName() {
return name;

}
public void setName(String name) {

this.name = name;
}
public String getUsername() {

return username;
}
public void setUsername(String username) {

this.username = username;
}

}

2007 JavaOneSM Conference | Session TS-4092 | 42

Using a Seam Persistence
Context

@Name("ping")
public class Ping {

@Logger private Log log;

@In FacesMessages facesMessages;

@In EntityManager entityManager;

@Restrict("#{identity.loggedIn}")
public void ping()
{

User user = (User) entityManager
.createQuery("from User where username = #{identity.username}")
.getSingleResult();

log.info("ping.ping() action called by #{identity.username}");
facesMessages.add("pong to #0", user.getName());

}

}

2007 JavaOneSM Conference | Session TS-4092 | 43

What About Form Processing?

• This is the one thing JavaServer Faces does
really well!
• Of course, we’ll use seam-gen to get us started…

2007 JavaOneSM Conference | Session TS-4092 | 44

What Was Generated?
<h:form id="adderForm">

<rich:panel>
<f:facet name="header">adder</f:facet>

<s:decorate id="valueDecoration" template="layout/edit.xhtml">
<ui:define name="label">Value</ui:define>
<h:inputText id="value" required="true"

value="#{adder.value}"/>
</s:decorate>

<div style="clear:both"/>

</rich:panel>

<div class="actionButtons">
<h:commandButton id="adder" value="adder"

action="#{adder.adder}"/>
</div>

</h:form>

2007 JavaOneSM Conference | Session TS-4092 | 45

What Was Generated?
@Name("adder")
public class Adder {

@Logger private Log log;

@In FacesMessages facesMessages;

private String value;

public void add()
{

log.info("adder.add() action called with: #{adder.value}");
facesMessages.add("add #{adder.value}");

}

//get/set pair for value...

}

2007 JavaOneSM Conference | Session TS-4092 | 46

What Was Generated?
public class AdderTest extends SeamTest {

@Test
public void test() throws Exception {

new FacesRequest() {
@Override
protected void updateModelValues() throws Exception {
setValue("#{adder.value}", "seam");

}
@Override
protected void invokeApplication() {

invokeMethod("#{adder.add}");
}
@Override
protected void renderResponse() {
assert getValue("#{adder.value}").equals("seam");
}

}.run();
}

}

2007 JavaOneSM Conference | Session TS-4092 | 47

Implementing an “adder”
@Name("adder")
public class Adder {

@Logger private Log log;

@In FacesMessages facesMessages;

private BigDecimal value;
private BigDecimal total = BigDecimal.ZERO;

public void add()
{

total = total.add(value);
log.info("adder.add() action called with: #{adder.value}");
facesMessages.add("total: #{adder.total}");

}

//get/set pair for value and total...

}

2007 JavaOneSM Conference | Session TS-4092 | 48

It Doesn’t Work!

• Our component doesn’t “remember” the total
across multiple requests

2007 JavaOneSM Conference | Session TS-4092 | 49

It Doesn’t Work!

• Our component doesn’t “remember” the total
across multiple requests

• We could keep state in the http session
• But what if we wanted to be keeping multiple totals

at the same time?

2007 JavaOneSM Conference | Session TS-4092 | 50

It Doesn’t Work!

• Our component doesn’t “remember” the total
across multiple requests

• We could keep state in the http session
• But what if we wanted to be keeping multiple totals

at the same time?
• Let’s try using a conversation

• Finally, this is our first baby-step into the world
of Seam…

2007 JavaOneSM Conference | Session TS-4092 | 51

Implementing an “adder”
@Name("adder")
@Scope(ScopeType.CONVERSATION)
public class Adder {

@Logger private Log log;

@In FacesMessages facesMessages;

private BigDecimal value;
private BigDecimal total = BigDecimal.ZERO;

@Begin(join=true)
public void add()
{

total = total.add(value);
log.info("adder.add() action called with: #{adder.value}");
facesMessages.add("total: #{adder.total}");

}

//get/set pair for value and total...

}

2007 JavaOneSM Conference | Session TS-4092 | 52

Validation

• The word “validation” implies a process that belongs
in the user interface

2007 JavaOneSM Conference | Session TS-4092 | 53

Validation

• The word “validation” implies a process that belongs
in the user interface

• But most “validation” enforces constraints that exist
all the way to the database
• It is an aspect of the data model

2007 JavaOneSM Conference | Session TS-4092 | 54

Validation

• The word “validation” implies a process that belongs
in the user interface

• But most “validation” enforces constraints that exist
all the way to the database
• It is an aspect of the data model

• Hibernate Validator provides model-based constraints
• These are enforced by Seam at the user interface
• And by Hibernate, before writing to the database
• You can even ask Hibernate to generate DDL that includes

the constraint

2007 JavaOneSM Conference | Session TS-4092 | 55

Validation

• The word “validation” implies a process that belongs
in the user interface

• But most “validation” enforces constraints that exist
all the way to the database
• It is an aspect of the data model

• Hibernate Validator provides model-based constraints
• These are enforced by Seam at the user interface
• And by Hibernate, before writing to the database
• You can even ask Hibernate to generate DDL that includes

the constraint
• There are some nice built-in constraints

• But we want higher-level semantics for our constraints…

2007 JavaOneSM Conference | Session TS-4092 | 56

Adding Validation—
The Model

@Name("adder")
@Scope(ScopeType.CONVERSATION)
public class Adder {

...

@Money
public BigDecimal getValue()
{

return value;
}

}

2007 JavaOneSM Conference | Session TS-4092 | 57

Adding Validation—
The Annotation

@Retention(RetentionPolicy.RUNTIME)
@ValidatorClass(MoneyValidator.class)
public @interface Money {

String message() default "please enter an amount in dollars";
}

2007 JavaOneSM Conference | Session TS-4092 | 58

Adding Validation—
The Validator

public class MoneyValidator implements Validator<Money> {

public void initialize(Money money) {}

public boolean isValid(Object value)
{

return ((BigDecimal) value).scale() <= 2;
}

}

2007 JavaOneSM Conference | Session TS-4092 | 59

Adding Validation—
Customizing the Message

@Name("adder")
@Scope(ScopeType.CONVERSATION)
public class Adder {

...

@Money(message="you can only add dollar amounts")
public BigDecimal getValue()
{

return value;
}

}

2007 JavaOneSM Conference | Session TS-4092 | 60

Adding Interactive Validation
<s:div id="total">Total: #{adder.total}</s:div>

<h:form id="adderForm">
<rich:panel>

<f:facet name="header">adder</f:facet>

<s:decorate id="valueDecoration" template="layout/edit.xhtml">
<ui:define name="label">Value</ui:define>
<h:inputText id="value" required="true"

value="#{adder.value}">
<a:support event="onblur" reRender="valueDecoration"/>

</h:inputText>
</s:decorate>

<div style="clear:both"/>

</rich:panel>

<div class="actionButtons">
<a:commandButton id="adder" value="adder"

action="#{adder.add}" reRender="total,valueDecoration"/>
</div>

</h:form>

2007 JavaOneSM Conference | Session TS-4092 | 61

Why Ajax Needs Conversations
• Ajax changes the interaction model of the web

2007 JavaOneSM Conference | Session TS-4092 | 62

Why Ajax Needs Conversations
• Ajax changes the interaction model of the web
• From few, coarse-grained, requests

2007 JavaOneSM Conference | Session TS-4092 | 63

Why Ajax Needs Conversations
• Ajax changes the interaction model of the web
• From few, coarse-grained, requests
• To many, fine-grained, requests

2007 JavaOneSM Conference | Session TS-4092 | 64

Why Ajax Needs Conversations
• Ajax changes the interaction model of the web
• From few, coarse-grained, requests
• To many, fine-grained, requests
• This is going to kill your database if you don’t have

somewhere to keep conversational state
• You can keep some state in the client, but there is plenty you can’t

keep there
• For example, you don’t want to serialize persistence contexts back

and forth, if you can possibly avoid it

2007 JavaOneSM Conference | Session TS-4092 | 65

Why Ajax Needs Conversations
• Ajax changes the interaction model of the web
• From few, coarse-grained, requests
• To many, fine-grained, requests
• This is going to kill your database if you don’t have

somewhere to keep conversational state
• You can keep some state in the client, but there is plenty you can’t

keep there
• For example, you don’t want to serialize persistence contexts back

and forth, if you can possibly avoid it
• With asynchronicity comes concurrency

• The servlet engine offers no construct for managing concurrent
access to state held in the web tier

• Seam solves this problem by serializing requests for a particular
conversation, and by serializing access to session-scoped
components

2007 JavaOneSM Conference | Session TS-4092 | 66

Conversations and Bookmarks

• Conversations are a fantastic feature, but they are all
about server-side state

2007 JavaOneSM Conference | Session TS-4092 | 67

Conversations and Bookmarks

• Conversations are a fantastic feature, but they are all
about server-side state

• Usually, this is the most efficient place to keep state
• “Shared nothing” architectures simply don’t scale, no matter

how long you all spend sitting around in circles telling each
other that they do

2007 JavaOneSM Conference | Session TS-4092 | 68

Conversations and Bookmarks

• Conversations are a fantastic feature, but they are all
about server-side state

• Usually, this is the most efficient place to keep state
• “Shared nothing” architectures simply don’t scale, no matter

how long you all spend sitting around in circles telling each
other that they do

• The disadvantage of keeping state on the server is that
you can’t bookmark it, or send a link in an email

2007 JavaOneSM Conference | Session TS-4092 | 69

Conversations and Bookmarks

• Conversations are a fantastic feature, but they are all
about server-side state

• Usually, this is the most efficient place to keep state
• “Shared nothing” architectures simply don’t scale, no matter

how long you all spend sitting around in circles telling each
other that they do

• The disadvantage of keeping state on the server is that
you can’t bookmark it, or send a link in an email

• Seam provides page parameters, a bidirectional binding
from request parameters to the model
• So they are automagically propagated across links, redirects, etc.
• And the model doesn’t need to know anything about them

2007 JavaOneSM Conference | Session TS-4092 | 70

Using Page Parameters
<!DOCTYPE page PUBLIC

"-//JBoss/Seam Pages Configuration DTD 1.2//EN"
"http://jboss.com/products/seam/pages-1.2.dtd">

<page>
<param name="total" value="#{badder.total}"/>
<navigation from-action="#{badder.add}">

<redirect/>
</navigation>

</page>

2007 JavaOneSM Conference | Session TS-4092 | 71

Finale

• The common case in enterprise development
is that we have an existing database
• If we do, seam-gen can give you basic CRUD,

virtually for free…

2007 JavaOneSM Conference | Session TS-4092 | 72

What Was Generated?
@Entity
@Table(name = "User")
public class User implements java.io.Serializable {

private String username;
private String name;

//constructors...

@Id
@Column(name = "username", unique = true, nullable = false)
@NotNull
public String getUsername() {

return this.username;
}

public void setUsername(String username) {
this.username = username;

}

@Column(name = "name")
public String getName() {

return this.name;
}

public void setName(String name) {
this.name = name;

}

}

2007 JavaOneSM Conference | Session TS-4092 | 73

What Was Generated?
@Name("userHome")
public class UserHome extends EntityHome<User> {

public void setUserUsername(String id) {
setId(id);

}

public String getUserUsername() {
return (String) getId();

}

@Override
protected User createInstance() {

User user = new User();
return user;

}

public void wire() {
}

public boolean isWired() {
return true;

}

public User getDefinedInstance() {
return isIdDefined() ? getInstance() : null;

}

}

2007 JavaOneSM Conference | Session TS-4092 | 74

What Was Generated?
@Name("userList")
public class UserList extends EntityQuery {

private static final String[] RESTRICTIONS = {
"lower(user.username) like concat(lower(#{userList.user.username}),'%')",
"lower(user.name) like concat(lower(#{userList.user.name}),'%')",};

private User user = new User();

@Override
public String getEjbql() {

return "select user from User user";
}

@Override
public Integer getMaxResults() {

return 25;
}

public User getUser() {
return user;

}

@Override
public List<String> getRestrictions() {

return Arrays.asList(RESTRICTIONS);
}

}

2007 JavaOneSM Conference | Session TS-4092 | 75

What Was Generated?

• Search, view, and edit pages
• With association management
• With pagination and sorting
• Bookmarkable search results
• With interactive validation via Ajax
• Conversational editing (easy optimistic locking)

762007 JavaOneSM Conference | Session XXXX |

Q&A

2007 JavaOneSM Conference | Session TS-4092 |

TS-4092

Developing Applications
With Seam and Eclipse
Gavin King
JBoss, A Division of Red Hat

gavin@hibernate.org

