
2007 JavaOneSM Conference | Session TS-4225 |

Session TS-4225

What’s New in the Java™ Portlet
Specification 2.0
(JSR 286)?

Stefan Hepper Wesley Budziwojski
JSR 286 Spec Lead JSR 286 EG

Member
IBM Corp. Sun Microsystems,
Inc.

2007 JavaOneSM Conference | Session TS-4225 | 2

Goal of This Talk

Learn what the Java™ Portlet
Specification v.2.0 provides and how
you can leverage these capabilities
in your portlets

2007 JavaOneSM Conference | Session TS-4225 | 3

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 4

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 5

Where do we want to go from v.1.0?
Major Themes
● v.1.0 (JSR 168)

● Provide the programming model for standalone,
pluggable UI application components

● v.2.0 (JSR 286)
● Enable coordination between portlets and allow

building composite applications based on portlet
components

● Allow for a better user experience using AJAX patterns
● Alignment with Web Service for Remote Portlets

(WSRP) 2.0

JSR= Java Specification Request

2007 JavaOneSM Conference | Session TS-4225 | 6

Details on the Expert Group (EG)
JSR 286
● IBM is leading this JSR, all major Java technology portal

(commercial and open source) vendors in the EG
● Expert Group members:

● Apache, BEA, R. Butler, P. Dabke, D. DeWolf, C. Doremus, A.
Douma, eXo, S. Frid, IBM, JBoss, Liferay, K. Mann, S. Millidge,
Novell, J. Novotny, Oracle, P. Pandey, S&N, SAP, C. Severance,
H. Suleiman, Sun, SunGard Higher Education, TIBCO, University
Jena, Vignette

● Reference implementation will be provided at Apache
● As Apache Pluto 2.0

● http://portals.apache.org/pluto

● TCK will be available for free
● Will extend the JSR 168 TCK

2007 JavaOneSM Conference | Session TS-4225 | 7

Details on the schedule
JSR 286
Schedule

● Kick-off: February 2006
● First draft with base features: July 2006
● Second draft: April 2007
● Public draft (planned): June 2007
● Final version (planned): August 2007

More information at
● http://jcp.org/en/jsr/detail?id=286
● http://ipc658.inf-swt.uni-jena.de/spec/

● Contains the most current version of spec and API

2007 JavaOneSM Conference | Session TS-4225 | 8

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 9

Why is coordination so important?
Overview
● The #1 complaint about v.1.0 was the missing

capability to send events between portlets
● V.1.0 only has the portlet application session scope

for coordination
● Only usable within the one portlet application, not across

portlet applications

● V.2.0 will add additional coordination capabilities
● Eventing
● Public render parameters across portlets

● Coordination allows business users building
composite applications out of portlet components
● Can be done at runtime, without programming

2007 JavaOneSM Conference | Session TS-4225 | 10

Overview
Events
● JSR 286 introduces a loosely coupled event

paradigm
● A portlet can declare events it wants to receive and events

it wants to emit
● The portal/portlet container will act as broker and distribute

the events accordingly
● Allows wiring of portlets at runtime
● Dynamic event declaration only for sending events

● Event handling will be an additional step in the
overall action phase
● State changes are allowed
● Event handling must be finished before rendering starts

2007 JavaOneSM Conference | Session TS-4225 | 11

Overview
Events
● Event types

● Can be complex, but must be Java technology and Java
Architecture for XML Binding (JAXB) serializable

● Note: String or XML simple types as type is strongly
recommended in as complex types introduce coupling
between portlet components

● Use complex types only as last resort

● Event names
● Are defined as QNames in the DD

2007 JavaOneSM Conference | Session TS-4225 | 12

Request flow
Events

Client

A

B C

A’

B’ C’

Portal
Portlet

Container
Portlets

A B C

Action on B

New Page

Wire
between B
and A exists

processAction
Resp(event(X))

processEvent(X)

render

The Action Phase must
be finished before the
render phase starts

Render requests are
fired in no specific order.
They may be fired
one after the other or
in parallel.

Not defined by the Java Portlet Specification

2007 JavaOneSM Conference | Session TS-4225 | 13

Code Sample for Sending an Event
Event defined in the DD:
<event-definition>

<name xmlns:x=”http:acme.com/events”>
x:Address.Created

</name>
<java-class>com.acme.Address</java-class>

</event-definition>

<portlet>
<supported-publishing-event>

<name xmlns:x=”http:acme.com/events”>
x:Address.Created

</name>
</supported-publishing-event>

</portlet>

2007 JavaOneSM Conference | Session TS-4225 | 14

Event Processing in the Portlet
@XmlRootElement

public class Address implements Serializable {
private String street; private String city;
public void setStreet(String s) {street = s;}
public String getStreet() { return street;}
public void setCity(String c) { city = c;}
public String getCity() { return city;}

}
void processEvent(EventRequest req, EventResponse resp) {

...
Address sampleAddress = new Address();
sampleAddress.setStreet(“myStreet”);
sampleAddress.setCity(“myCity”);
QName name = new QName (”http:acme.com/events”,

“Address.Created”);
resp.setEvent(name, sampleAddress);

}

2007 JavaOneSM Conference | Session TS-4225 | 15

Code Sample for Receiving an
Event
event defined in the DD:
<event-definition>

<name xmlns:x=”http:acme.com/events”>
x:CustomerID.Changed

</name>
<java-class>java.lang.String</java-class>

</event-definition>

<portlet>
<supported-processing-event>

<name xmlns:x=”http:acme.com/events”>
x:CustomerID.Changed

</name>
</supported-processing-event>

</portlet>

2007 JavaOneSM Conference | Session TS-4225 | 16

Event Processing in the Portlet
void processEvent(EventRequest req, EventResponse resp)
{

...
Event event = req.getEvent();
if (event.getName().getLocalPart().

equals(“CustomerID.Changed”))
{

String payload = event.getValue();
...

}

2007 JavaOneSM Conference | Session TS-4225 | 17

Overview
Public Render Parameters
● Allow render parameters to be shared

across portlets
● Not restricted to the portlet application
● May be even across pages
● Lightweight coordination based on HTTP GET (contrary to events which

have POST semantics)

● Example
● The zip code of a selected city allowing different portlets (map, tourist

information, weather) to display information for this city

2007 JavaOneSM Conference | Session TS-4225 | 18

Overview
Public Render Parameters
● Semantic is that these are visible to the portal

and allowed to be shared with other components
● Re-use existing render parameter APIs

● Allows to even enable JSR 168 portlets to use public
render params by just giving them an JSR 286 DD

● Define in the portlet.xml which render parameters
are public
● Has an simple string ID that the portlet can use in the code
● Provides a QName and optional alias names for wiring the

parameter
● Allow getting all public params via the PortletContext

at runtime

2007 JavaOneSM Conference | Session TS-4225 | 19

Public render parameters versus events
Public Render Parameters
● Advantages of using public render parameters

● Less processing overhead, no action phase required
● Parallel rendering of portlets possible

● Limitations when using public render parameters
● Only defines new view state, no server side state changes

(HTTP GET semantics)
● No active notification that something has changed

● As public render parameters can be encoded in the URL
this allows for
● Bookmarkablity
● Support of browser back/forward button
● Caching in the browser

2007 JavaOneSM Conference | Session TS-4225 | 20

Code Sample for Public Render
Parameters: Deployment
Descriptor
<public-render-parameter>

<identifier>zip</identifier>
<name xmlns:x=”http://acme.com/params”>

x:address.zipcode
</name>

</public-render-parameter>
<portlet>

<portlet-name>portletA</portlet-name>
…
<supported-public-render-parameter>zip
</supported-public-render-parameter>

</portlet>

2007 JavaOneSM Conference | Session TS-4225 | 21

DEMO
Coordination

2007 JavaOneSM Conference | Session TS-4225 | 22

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 23

v.1.0 versus v.2.0
Overview
● Resource serving in JSR 168: Direct serving via

the portal/portlet container
● Done using encodeURL(resourceURL)
● No portlet runtime context available

● New in JSR 286: Resource serving via the portlet
● New ResourceURLs that trigger a new lifecycle

method serveResource
● Portlet context available (render params, portlet mode,

window state, preferences...)
● No state changes on portlet container managed

state allowed
● Protected via the portal access control

2007 JavaOneSM Conference | Session TS-4225 | 24

Details
Resource Serving via the Portlet
● Different cache levels of resource URLs

● For supporting caching of the resource at the browser
● Three types introduced: FULL, PORTLET, PAGE

● Resource Ids
● You can set a specific resource ID on a resource URL
● Default behavior of GenericPortlet is to try to forward

the resource serving to the resource ID specified

2007 JavaOneSM Conference | Session TS-4225 | 25

API
Resource Serving via the Portlet
● Resource URLs

● ResourceURL
● setResourceID(String id)
● setCacheability(String cacheLevel)
● cacheLevels: full, portlet, page

● New lifecycle interface
● ResourceServingPortlet

● void serveResource (ResourceRequest req,
ResourceResponse resp)

● ResourceRequest
● Like render request + ability to get uploaded data

● ResourceResponse
● Like render response + full control over the output stream

2007 JavaOneSM Conference | Session TS-4225 | 26

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 27

Portlets run in an aggregated environment—JSR 168

AJAX Usages in a Portal
Environment
● Portlet level

● Portlet brings its favorite AJAX library
● Portlet has to manages end-point on its own
● JSR 168 is limited

● Response without portlet context (served via servlet)
● No state changes for state managed by the portlet container

● Portal level
● Portal does an aggregation on the client (browser)
● Portal manages AJAX interaction
● Transparent to the portlet
● Possible with JSR 168 portlets

2007 JavaOneSM Conference | Session TS-4225 | 28

Portlets run in an aggregated environment—JSR 286

AJAX Usages in a Portal
environment
● Portlet owned AJAX calls

● Full access to the portlet state
● Via XmlHttpRequest and ResourceURLs

● Functionality restricted
● No state changes for navigational state
● No support for events

● Coordinated between portal and portlet
● Not covered by JSR 286
● Will be defined as an extension on-top

of serveResource
● Needs to include a client side library that the portlet

can leverage

2007 JavaOneSM Conference | Session TS-4225 | 29

Fragment Serving JSR 168

Browser

XHR (EP1URL)

FragP1

http://myPortal

Request flow with non-portlet endpoints

P1 P2

P3

Portal

render()

render()

render()

E1 E3

2007 JavaOneSM Conference | Session TS-4225 | 30

Fragment Serving JSR 286:
Resource URLs
Request flow via serveResource call

Portal P2 P3Browser P1

XHR (EP1URL)

FragP1

render()

render()

render()
http://myPortal

P1 P2

P3

serveResource()

render()

2007 JavaOneSM Conference | Session TS-4225 | 31

Code Sample for AJAX: Client
Code
<form id="bookFF" method="post"
action="javascript:bookFlightForm('myForm1','bookingResult')
">

<table>
<tr>
<td>Guest name:</td>
<td><input name="firstName" type="text"/></td>

</tr>
<tr>
<td>Flight number</td>
<td><input name="flightNumber" type="text"/></td>
<td></td><td><input name="submit" type="submit"/></td>
</tr>

</table>
</form>

2007 JavaOneSM Conference | Session TS-4225 | 32

Code Sample for AJAX: Client
Code
function bookFlightForm(formId, resultId)
{

var url = <%=renderRequest.createResourceURL()%>;
var form = document.getElementById(formId);
var request = new XMLHttpRequest();
request.onreadystatechange = function()
{
if (request.readyState == 4 && request.status == 200) {

// update the form with flight confirmation num
}

};
request.open('POST', url, true);
request.setRequestHeader("Content-Type", "application/x-

www-form-urlencoded");
var query = encodeForm(form); // encode form using

application/x-www-form-urlencoded
request.send(query);

}

2007 JavaOneSM Conference | Session TS-4225 | 33

Code Sample for AJAX: Portlet
Code
void serveResource (ResourceRequest req, ResourceResponse
resp) {

if ((req.getParameter(“firstName”) != null) &&
(req.getParameter(“flightNumber”) != null))

{
// process the fragment request
// e.g. Store data in portlet preferences
...
// return markup for fragment request

...
}
}

2007 JavaOneSM Conference | Session TS-4225 | 34

DEMO
AJAX

2007 JavaOneSM Conference | Session TS-4225 | 35

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 36

Servlet developers dreams come true...
Setting Cookies and HTTP Headers

● Portlets in v.1.0 could not set cookies
and HTTP headers
● Portal has the control over the output stream to the

client and body content may already be written
● Portlets in v.2.0 can set cookies

and HTTP headers
● In all lifecycle methods
● Also available for render response

● But may be overridden by the portal or other portlets
● Restrictions on cookies

● Cookies may be stored on the portal or get re-written
and thus not accessible on the client

2007 JavaOneSM Conference | Session TS-4225 | 37

API
Setting Cookies and HTTP Headers

● HTTP headers
● Setting: via the set/add property methods on the

response
● Retrieving: via the getProperty methods on the request

● Cookies
● Setting: addProperty(javax.servlet.http.Cookie)
● Retrieving: javax.servlet.http.Cookie[] getCookies()

2007 JavaOneSM Conference | Session TS-4225 | 38

Splitting render in two parts

Supporting Setting
Headers/Cookies in Render
● Headers/Cookies needs to be set before the

document body starts
● Buffer all output and at the end create the response

to the client
● Split render into two parts: Headers and markup

● JSR 286 allows portals to set a render request attribute
RENDER_PART with values
● RENDER_HEADERS for setting headers, cookies, title
● RENDER_MARKUP for rendering the markup

● GenericPortlet takes care of this request attribute
● Calls doHeaders and setTitle for RENDER_HEADERS
● Calls dispatch to doXYZ for RENDER_MARKUP

2007 JavaOneSM Conference | Session TS-4225 | 39

Code Sample for Headers
Setting cookies
public class MyPortlet extends GenericPortlet {
...
protected doHeaders(RenderRequest req, RenderResponse resp) {

Cookie cookie = new Cookie(“myCookie”, “42”);
resp.setProperty(cookie);

}
Retrieving cookies
public class MyPortlet extends GenericPortlet {
...
protected doView(RenderRequest req, RenderResponse resp) {

Cookie[] cookies = req.getCookies();
if (cookies != null) {

// find my cookie in the array and retrieve
// value with cookie.getValue()

}

2007 JavaOneSM Conference | Session TS-4225 | 40

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 41

Overview
Portlet Filters
● Portlet filters and request/response wrappers

available
● Similar in large parts to the servlet filter model
● Filters are declared in the DD via the filter

and filter-mapping element
● Filters are restricted to one of the portlet lifecycle

methods in the DD via the filter-mapping element
● One filter interface per portlet lifecycle
● Filter chain that gets called by the portlet container

● Available via new javax.portlet.filter package

2007 JavaOneSM Conference | Session TS-4225 | 42

Code Sample for Portlet Filter
// filter declaration

<filter>
<filter-name>PortletFilter</filter-name>
<filter-class>com.acme.PortletFilter</filter-class>
<lifecycle>RENDER</lifecycle>

</filter>

// filter mapping

<filter-mapping>
<filter-name>PortletFilter</filter-name>
<portlet-name>MyPortlet</portlet-name>

</filter-mapping>

2007 JavaOneSM Conference | Session TS-4225 | 43

Code Sample for Portlet Filter
public class PortletFilter implements RenderFilter

...
public void init(FilterConfig fc) throws .. {;}
...
public void doFilter(RenderRequest req, RenderResponse resp,
FilterChain chain) throws ..

PrintWriter pw = resp.getWriter();
pw.write(“Pre-processing”);

RenderResponseWrapper resWrapper =
new RenderResponseWrapper(res);

chain.doFilter(req, resWraper);

pw.write(“Post-processing”);
...
public void destroy() {;}

2007 JavaOneSM Conference | Session TS-4225 | 44

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 45

Better support servlet-based frameworks on top of portlets

Extended Request Dispatcher
Capabilities
● Request dispatch includes now allowed for all

lifecycle methods
● For action/event no markup can be returned
● Allows servlet-based bridges to handle controller logic

via servlets
● Request dispatcher forward allowed

for serveResource calls
● Delegate complete resource serving to a page created

with the JavaServer Page™ technology (JSP™ page)
● Leveraged by GenericPortlet for forwarding to the

specified resource ID if that reflects the path of the
resource

2007 JavaOneSM Conference | Session TS-4225 | 46

Address additional caching use cases
Caching
● Shared cache entries

● Response can be cached across users
● Validation based caching

● In addition to the expiry time the portlet can provide
a token for the currently returned markup

● When the content is expired the portal can call the
portlet with the provided token of the expired content

● The portlet can now either re-validate the content
and set a new expiry time for the token or create new
content with a new token and a new expiry time

● Based on the HTTP ETag validation caching scheme

2007 JavaOneSM Conference | Session TS-4225 | 47

Improved useability
Tag lib Additions
● New tag for creating resource URLs
● New variables available via defineObjects

● portletSession
● portletPreferences

● New attributes for the URL tags
● escapeXml for turning of XML escaping, like in JSTL

● Per default URLs are XML escaped
● Default can be change in the portlet.xml via a new container-

runtime-option element and setting javax.portlet.escapeXml
to false

● copyCurrentRenderParameters for copying the current
render parameters

2007 JavaOneSM Conference | Session TS-4225 | 48

Note: This feature is still under discussion in the EG
Portlet Managed Modes
● Allow portlets to specify their own portlet modes

● From the portal point of view they are treated like the
view mode

● Portlet can specify a text and description for that mode
● Portal may include this additional mode in the

navigation area

● Portlet can register for portlet mode change events
● Preset render params or data in prefs/backend systems

● Portlets can return a list of meaningful new portlet
modes from action/event
● Hint for the portal to render the appropriate controls

2007 JavaOneSM Conference | Session TS-4225 | 49

Lots of small but important stuff...
Misc
● Extended runtime Ids

● Namespace is now valid for the lifetime of the
portlet window

● Portlet can access the portlet window ID at the request
● Use this ID if a per portlet window cache key is needed

● PortletURL now accepts a writer
● Much more efficient than creating Strings
● Move default of PortletURL.toString to PortletURL.write

● CC/PP support (JSR 188)
● Available as attribute on the request

2007 JavaOneSM Conference | Session TS-4225 | 50

Lots of small but important stuff...
Misc
● Restricting the custom window states that

a portlet supports for a given markup
● Have a resource bundle allowing text applying

to the portlet application level to be localized
in a resource bundle
● In 1.0 it needed to be inline in the portlet.xml

● Lots of small clarifications and clean-ups

2007 JavaOneSM Conference | Session TS-4225 | 51

Agenda
JSR 286 Overview
Coordination
Resource Serving
AJAX
Cookies and Headers
Filters
Other Additions
Summary

2007 JavaOneSM Conference | Session TS-4225 | 52

Summary
● Portlet moves from stand-alone component model

to a coordinated model enabling composite
applications

● Support for AJAX use cases
● Better integration of portlets with servlet-based

frameworks
● Setting HTTP headers/cookies, filters, request dispatching

● Better scalability
● Different cache levels for resource serving, shared cache

entries, validation-based caching, PortletURL.write

2007 JavaOneSM Conference | Session TS-4225 | 53

Q&A
Stefan Hepper Wesley Budziwojski

2007 JavaOneSM Conference | Session TS-4225 |

Session TS-4225

What’s New in the Java™ Portlet
Specification 2.0
(JSR 286)?

Stefan Hepper Wesley Budziwojski
JSR 286 Spec Lead JSR 286 EG

Member
IBM Corp. Sun Microsystems,
Inc.

