
2007 JavaOneSM Conference | Session TS-4247 |

Enterprise JavaBeans™ 3.1
Technology

TS-4247

Kenneth Saks
Senior Staff Engineer
Sun Microsystems

2007 JavaOneSM Conference | Session TS-4247 | 2

Objective

Learn about the new features planned
for Enterprise JavaBeans™ (EJB™)
technology.

2007 JavaOneSM Conference | Session TS-4247 | 3

Agenda
Overview
Ease of Use Enhancements
New Features
Summary
Q&A

2007 JavaOneSM Conference | Session TS-4247 | 4

EJB 3.0 Specification (JSR 220)
● Final Release May 2006

● Part of Java™ Platform, Enterprise Edition
(Java™ EE Platform) 5

● Features
● Simplified EJB API
● Java Persistence API

● Approach
● POJO style development
● Leverage Java Platform, Standard Edition

(Java SE Platform) 5 annotations
● Minimize use of XML deployment descriptors
● Intelligent defaults

JSR = Java Specification Request

2007 JavaOneSM Conference | Session TS-4247 | 5

EJB 3.1 Technology Motivation
● Further improve ease-of-use

● Reduce number of required interfaces
● Loosen packaging restrictions

● Add features that could not be realized
in EJB 3.0 specification
● Since earlier focus was ease-of-use

2007 JavaOneSM Conference | Session TS-4247 | 6

EJB 3.1 Technology
● Part of Java EE platform 6
● Scope is EJB components only

● Java Persistence API will evolve as a separate
specification and expert group

● Timeline
● Submit JSR: May 2007
● Community Review: August 2007
● Public Review: January 2008
● Final Release: Q3 2008

2007 JavaOneSM Conference | Session TS-4247 | 7

Agenda
Overview
Ease of Use Enhancements
New Features
Summary
Q&A

2007 JavaOneSM Conference | Session TS-4247 | 8

Ease of Use Enhancements
● Optional Local business interfaces

● Develop local EJB components using only
a bean class

● EJB components in the web tier
● Package/deploy EJB components in a .war

without an ejb-jar

2007 JavaOneSM Conference | Session TS-4247 | 9

Session Bean with
Local Business Interface

<<interface>
com.acme.Foo

void
doSomething();

com.acme.FooBean

public void
doSomething() {
... }

// inject ejb ref
@EJB
private Foo foo;

...

// call FooBean
foo.doSomething()
;

FooBean Local Client

2007 JavaOneSM Conference | Session TS-4247 | 10

EJB 3.0 Technology Local Client
Programming Model
● Define a dependency on a Local EJB component

● Via annotation(@EJB) or XML(ejb-local-ref)
● Dependency Type is <local business interface>

● Inject or lookup the dependency to acquire
a reference object
● Client never calls new() on <bean class>

● Local reference is a special container object,
not a bean instance

● Caller may invoke any methods defined on Local
business interface, but cannot directly access
bean instance state

2007 JavaOneSM Conference | Session TS-4247 | 11

EJB 3.0 Technology Local Client
Programming Model (Cont.)
● Separation of client reference and bean instance

allows container to provide:
● Efficient resource management

● Pooling of stateless session bean instances
● Activation/Passivation of stateful session beans

● Lazy initialization
● Transparent clustering support
● Concurrency control

● Single-threaded bean instance guarantee without use
of Java SE platform level synchronization

2007 JavaOneSM Conference | Session TS-4247 | 12

Local Business Interfaces
● In some cases, separating Local business

interface and bean class does not add much value
● Local EJB components often invoked through an

expression language
● Local EJB components/clients packaged in same

application
● Same class loader

● Local EJB components often already very fine grained
and tightly coupled to Local client

● Very rare to provide different bean implementations
for same Local business interface

● If not strictly needed, only adds to development/
maintenance burden

2007 JavaOneSM Conference | Session TS-4247 | 13

Optional Local Business Interfaces
● Make Local business interface optional
● But…preserve separation between client

reference objects and bean instances
● Client still never uses new() to obtain a reference

● Reference is of type <bean class> but client
contract only exposes the EJB component’s
public Local business methods

● Local client programming model essentially the
same with/without Local business interface

2007 JavaOneSM Conference | Session TS-4247 | 14

Local Session Bean
Without Business Interface

@Stateless public class FooBean {

// Local business method doSomething()
public void doSomething() { ... }

}

2007 JavaOneSM Conference | Session TS-4247 | 15

Client of Local Session Bean
Without Business Interface
@Stateless public class BarBean implements BarRemote {

// Inject ejb reference to FooBean
@EJB FooBean foo;

public void businessMethod() {

// WRONG. Even though Bean has no local business
// interface, client does not use new()

// foo = new FooBean();

// Call FooBean local business method
foo.doSomething();

}
}

2007 JavaOneSM Conference | Session TS-4247 | 16

Optional Local Business Interfaces
● Further simplifies development of Local EJB

components
● Less code to write/package/maintain
● Completely removing an interface from developer

view gives biggest ease-of-use improvement
● Better than relying on IDEs to generate interface

and keep it in sync

● Does not introduce significant incremental
coupling

● Easy transition from earlier Local client view
● Optional—Local business interfaces still fully

supported

2007 JavaOneSM Conference | Session TS-4247 | 17

EJB Component Usage From Web
Tier
● Mostly accessing EJB components within

same application
● Mostly using Local Stateless/Stateful

session beans
● Simplified API has increased the usage of EJB

technology from the web tier
● More simplifications needed, especially

with packaging requirements

2007 JavaOneSM Conference | Session TS-4247 | 18

Combined Web/EJB Technology
Application in Java EE Platform 5

foo.ear

WEB-INF/web.xml
WEB-INF/classes/

com/acme/FooServlet.class
WEB-INF/classes

com/acme/Foo.class

foo_web.war

com/acme/FooBean.class
com/acme/Foo.class

foo_ejb.jar

foo.ear

lib/foo_common.jar

com/acme/Foo.class

WEB-INF/web.xml
WEB-INF/classes/

com/acme/FooServlet.class

foo_web.war

com/acme/FooBean.class

foo_ejb.jar

OR

2007 JavaOneSM Conference | Session TS-4247 | 19

Common Issues With Combined
Web/EJB Technology Applications
● Requiring separate ejb-jar increases

development burden/learning curve
● ejb-jar layout/packaging different than .war

● Requires .ear module to contain .war and ejb-jar
● Confusion about how to package shared classes

● e.g., bean interfaces, utility classes
● No sharing of component environment

namespaces

2007 JavaOneSM Conference | Session TS-4247 | 20

foo.war

WEB-INF/classes/
com/acme/FooServlet.class

WEB-INF/classes/
com/acme/FooBean.class

Define EJB Components Within
.war

2007 JavaOneSM Conference | Session TS-4247 | 21

● No ejb-jar needed
● Bean/interface/supporting classes placed

in WEB-INF/classes
● One component environment (java:comp/env)

shared between web application and EJB
components

● Any Java Persistence API persistence units
in .war are shared by EJB components

● Full EJB container functionality available
● Although most useful for Local Session Beans accessed by web

components

Although most useful for Local
Session Beans accessed by web
components

2007 JavaOneSM Conference | Session TS-4247 | 22

Define EJB Components in .war
(Cont.)
● EJB components in .war have no special

knowledge of web container
● Invocation semantics the same regardless

of packaging
● Transaction/Security/PersistenceContext propagation,

exception behavior, etc.
● Ensures packaging decisions can be changed

with minimal impact on application
● e.g., .war becomes too big so some EJB components

are moved out into separate ejb-jar

2007 JavaOneSM Conference | Session TS-4247 | 23

We’ve Come a Long Way…

WEB-INF/classes/
com/acme/FooServlet.class

WEB-INF/classes/
com/acme/FooBean.classWEB-INF/web.xml

WEB-INF/classes
com/acme/FooServlet.class

WEB-INF/classes/
com/acme/FooLocalHome.class

WEB-INF/classes/
com/acme/Foo.class

foo_web.war

META-INF/ejb-jar.xml
com/acme/FooBean.class
com/acme/Foo.class
com/acme/FooLocalHome.class

foo_ejb.jar

META-INF/application.xml

Java EE Platform 6
foo.ear

J2EE Platform 1.4
foo.war

2007 JavaOneSM Conference | Session TS-4247 | 24

Agenda
Overview
Ease of Use Enhancements
New Features
Summary
Q&A

2007 JavaOneSM Conference | Session TS-4247 | 25

Features
● Singleton Beans
● Additional Concurrency Options
● Timer Service Enhancements
● Simple Asynchrony
● Stateful Web Service Endpoints

2007 JavaOneSM Conference | Session TS-4247 | 26

State in EJB Components
● Stateful Session Beans

● Hold client-specific state
● Not intended to be shared by multiple clients

● Stateless Session Beans
● No client-specific state
● Can hold client-independent instance state

● e.g., @PersistenceContext EntityManager em;

● Multiple instances per bean
● No guarantee that multiple client invocations on same bean will

executed by same bean instance

2007 JavaOneSM Conference | Session TS-4247 | 27

What About Shared State?
● Very common to have state that needs

to be shared across multiple components
in an application

● Handled in web tier through Web Application
level context (ServletContext)
● One ServletContext per .war per server instance
● Only accessible to associated web application

● How can state be shared between EJB
components in an application?

2007 JavaOneSM Conference | Session TS-4247 | 28

Alternative 1: Use Stateless
Session Bean Instance State
public class SharedData { ... }

@Stateless public class FooBean implements Foo {

private SharedData shared;

@PostConstruct void init() {
// Initialize shared data
shared = ...;

}

public void doSomething() {
// Access shared state
...

}
}

2007 JavaOneSM Conference | Session TS-4247 | 29

Alternative 1: Use Stateless
Session Bean Instance State
● Doesn’t work for mutable shared state

● Shared state will be replicated for every bean
instance created by container

● No way for application to update each instance
● Even if state is immutable, wasteful to replicate

across all instances of the bean
● Shared state commonly used for large in-memory

data structures
● Large initialization time
● Large memory footprint

2007 JavaOneSM Conference | Session TS-4247 | 30

Alternative 2: Use Stateless
Session Bean Class-Level (Static)
State
@Stateless public class FooBean implements Foo {

static private SharedData shared;

@PostConstruct void init() {
synchronized(shared) {
if(shared == null) {
// Initialize shared data
shared = ...;

}
}

}

public void doSomething() { ... }
}

2007 JavaOneSM Conference | Session TS-4247 | 31

Alternative 2: Use Stateless
Session Bean Class-Level (Static)
State
● Behavior is too closely coupled to classloaders

● 1 instance per classloader is not necessarily the
same thing as 1 per Stateless Session Bean

● Container is unaware of shared state
● No opportunity to provide value-adds

● Additional concurrency options
● Container initialization time callbacks

2007 JavaOneSM Conference | Session TS-4247 | 32

Singleton Beans
● For each singleton bean, one instance per application

per server Java Virtual Machine (JVM™)
● Not intended to provide a cluster-wide singleton

● Fits easily into existing environment dependency
architecture
● Acquisition through @EJB or lookup
● Good for sharing data within entire application,

not just EJB components

● Singleton also provides useful way to add new lifecycle
callbacks for:
● Container initialization
● Container shutdown

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-4247 | 33

Singleton
@Singleton
public class SharedBean implements Shared {

private SharedApplicationData shared;

// Called once at container-initialization time
@PostConstruct void init() {

// Initialize shared data
shared = ...;

}

public int getFoo() {
return shared.foo;

}
}

2007 JavaOneSM Conference | Session TS-4247 | 34

SLSB Client Accessing Shared
State
@Stateless
public class FooBean implements Foo {

// Declare ejb dependency on Singleton bean
@EJB private Shared shared;

public void doSomething() {

// Access shared data
int foo = shared.getFoo();

...
}

}

2007 JavaOneSM Conference | Session TS-4247 | 35

EJB Concurrency
● EJB Container provides single-threaded

guarantee for all bean instances
● SLSBs/MDBs

● Each client invocation/message handled by different
bean instance

● SFSBs
● Each stateful session bean identity allows one invocation

at a time

● Frees bean programmer from dealing
with instance state synchronization issues
● Non-final static variables prohibited

2007 JavaOneSM Conference | Session TS-4247 | 36

Stateful Session Bean Client
Behavior
● If a request arrives for a SFSB while it is still

processing an earlier request…
● Spec allows container to either:

● Throw ConcurrentAccessException
● Serialize second request

● Developer should be able to specify desired
behavior through standard metadata
@ConcurrencyManagement(policy=RejectConcurrentRequests)

2007 JavaOneSM Conference | Session TS-4247 | 37

Singletons and Concurrency
● Single-threaded policy too restrictive

for Singletons
● One Instance
● Multiple clients
● Typically read-only or read-mostly

● Need new concurrent access options to allow
for balance of performance vs. code complexity
● Container-managed concurrency

● Method-level locking metadata
● Bean-managed concurrency

● Direct use of synchronized
● Allow for Singletons only or all component types?

2007 JavaOneSM Conference | Session TS-4247 | 38

Singleton With Immutable Data
@Singleton @ReadOnly
public class SharedBean implements Shared {

private SharedApplicationData shared;

// Called once at container-initialization time
@PostConstruct void init() {

// Initialize shared data
shared = ...;

}

public int getFoo() {
return shared.foo;

}
}

2007 JavaOneSM Conference | Session TS-4247 | 39

Singleton With Some Updates
@Singleton
public class SharedBean implements Shared {

private SharedApplicationData shared;

@ReadOnly public int getFoo() {
return shared.foo;

}

@ReadWrite public void update(...) {
// update shared data
...

}

...
}

2007 JavaOneSM Conference | Session TS-4247 | 40

Concurrency Fully Controlled by
Bean
@Singleton
@BeanManagedConcurrency
public class SharedBean implements Shared {

private SharedApplicationData shared;

synchronized public int getFoo() { return shared.foo; }

synchronized public void update(...) {
// update shared data
...

}
}

...
}

2007 JavaOneSM Conference | Session TS-4247 | 41

Concurrency Recap
● No change to default concurrency behavior

for existing component types
● Allow specification of client behavior for

concurrent attempts to access non-shared SFSBs
● For shared bean instances, favor container-

managed concurrency
● Allows container to define concurrency semantics
● Use of annotations allows for flexible configuration

● e.g., class-level defaults and method-level overrides

2007 JavaOneSM Conference | Session TS-4247 | 42

Timer Service
● Added in EJB 2.1 Specification
● Persistent

● Timers survive server shutdown/restart
● Transactional

● Timer operations (create/cancel/timeout) are first-class
transactional units of work

● Intended to model long-lived business processes
● Timers created via javax.ejb.TimerService API

● One-time expiration or at fixed recurring intervals

2007 JavaOneSM Conference | Session TS-4247 | 43

Timer Example
@Stateless public class AccountBean implements Account {

@Resource TimerService timerSvc;
@PersistenceContext EntityManager accountDB;

public Integer createNewAccount(Details details) {
Integer acctNum = ...;
// Create new account
...

// Initial deposit must be made within 10 days
timerSvc.createTimer(FUNDING_TIMELIMIT,

acctNum); }

@Timeout void verifyFunding(Timer t) {
// Verify that initial account deposit cleared
...

}
}

2007 JavaOneSM Conference | Session TS-4247 | 44

Use Case:
Generate Monthly Bank
Statements
● A bank needs to generate checking/savings

account statements the 1st of each month
and email them to account holders

● Like a UNIX “cron job” where the work to be
performed at timeout is a good fit for an EJB
component
● Transactions
● Database access
● JavaMail™ API

2007 JavaOneSM Conference | Session TS-4247 | 45

Monthly Bank Statements
Example Using EJB 3.0
Technology
public class InitEvents implements ServletContextListener
{

@EJB Accounts accounts;

// Called whenever web application initializes
public void contextInitialized(ServletContextEvent e)
{

accounts.createTimer();
}

}

2007 JavaOneSM Conference | Session TS-4247 | 46

Monthly Bank Statements
Example Using EJB 3.0
Technology
@Stateless public class AccountBean implements Accounts {

@Resource TimerService timerSvc;
@Resource javax.mail.Session mailSession;
@PersistenceContext EntityManager accountDB;

public void createTimer() {
if (timerSvc.getTimers().size() == 0) {

long timeUntilFirstOfNextMonth = ...;

timerSvc.createTimer(timeUntilFirstOfMonth,...);
}

}

@Timeout void timerExpired(Timer t) {
// Generate and send monthly bank accounts
...

}
}

2007 JavaOneSM Conference | Session TS-4247 | 47

Lessons Learned
● Difficult to configure calendar-based events

using only relative time units
● How to register the timer in the first place?
● Typical container initialization events (Web

Application contextInitialized(), Servlet.init, etc.)
are not a great fit
● They happen every time application initializes

and in every server instance
● Burden is on developer to check if timer already exists
● No way to guarantee that only one is created per cluster

2007 JavaOneSM Conference | Session TS-4247 | 48

Calendar-Based Timer Scheduling
● Should be able to express timer expiration based

on a calendar instead of relative to creation time
● “The second day of every month at noon”
● “Every Wednesday at five a.m.”
● “Every half-hour on Saturdays and Sundays”

● Exact syntax is TBD
● Probably cron-“like”
● Cron syntax well-defined/widespread but difficult

to read
● “0 12 * 2 2” == “Every Tuesday in February”

2007 JavaOneSM Conference | Session TS-4247 | 49

Automatic Timer Creation
● Create a timer as a result of deploying

an application
● Useful for registering a one-time or recurring

application-specific action independent of a business
method invocation
● e.g., “Generate bank statements the 1st of every month”
● For each timer expiration, callback happens in one server

instance, not every server instance in cluster

● Approaches
● Specify via meta-data (annotation or .xml)
● Define callback that happens once per application

deployment and call TimerService.createTimer
within it

2007 JavaOneSM Conference | Session TS-4247 | 50

Automatic Timer Creation
Example
// Create a timer for the 1st day of each month at noon
@EJBTimer(“0 12 1 * *”, “statementTimer”)

@Stateless public class AccountBean {

@Resource javax.mail.Session mailSession;
@PersistenceContext EntityManager accountDB;

@Timeout void sendMonthlyStatements(Timer t) {

// Calculate monthly bank statements and
// send them out via email
...

}
}

2007 JavaOneSM Conference | Session TS-4247 | 51

Asynchronous Support
in EJB 3.0 Specification
● Java APIs for XML Web Services (JAX-WS)/Stateless

WebService Endpoint
● Asynchronous request/response, @OneWay
● Good for web services applications, but too cumbersome to use

for simple intra-application asynchrony

● Java Message Service (JMS)/Message-Driven Beans
● Good for loose coupling/guaranteed delivery semantics

● For intra-application asynchrony, messaging API still too complex compared
to procedural invocation

● Timer Service
● Create single-action timer with “immediate” expiration time

to convert synchronous operation to asynchronous
● Not the intended usage

2007 JavaOneSM Conference | Session TS-4247 | 52

Simple Asynchronous Operations
● Use metadata to mark a Local/Remote business

method as asynchronous
● Container returns control to client before

executing business method
● No separate API to learn

@Asynchronous public void doSomething(Details d) {
// ...

}

2007 JavaOneSM Conference | Session TS-4247 | 53

Async Operation + Task Status
Using Stateful Session Bean
@Stateful @BeanManagedConcurrency
public class AsyncTaskBean implements AsyncTask {

private boolean taskComplete = false;

@Asynchronous public void doSomething(Details d) {
// perform work
...

taskComplete = true;
}

public boolean isTaskComplete() {
return taskComplete;

}
}

2007 JavaOneSM Conference | Session TS-4247 | 54

Stateful Web Service Endpoints
● EJB 3.0 specification supports stateless Web

Service endpoints via Stateless Session Beans
● Based on JAX-WS API/Java Architecture for XML

Binding (JAXB)
● Stateful interaction useful to web service clients

as well
● Allow Stateful Session Beans to be exposed

as web service endpoints
● Details of client programming model/stateful identity

propagation defined by JAX-WS Specification

2007 JavaOneSM Conference | Session TS-4247 | 55

Stateful EJB Web Service
Endpoint
@WebService
@Stateful
public class CartBean {

private Collection<Item> items;

public void addItem(Item i) { ... }
public void removeItem(Item i) { ... }

@Remove public void checkout(...) { ... }
@Remove public void cancel() { ... }

}

2007 JavaOneSM Conference | Session TS-4247 | 56

Agenda
Overview
Ease of Use Enhancements
New Features
Summary
Q&A

2007 JavaOneSM Conference | Session TS-4247 | 57

Summary: Enterprise JavaBeans
3.1 Technology
● Part of Java EE platform 6
● Further simplify EJB component development

● Optional Local Business Interfaces
● EJB components in the Web Tier

● Add new features
● Singletons
● Concurrency Options
● Timer Service Enhancements
● Simple Asynchrony
● Stateful Web Service Endpoints

2007 JavaOneSM Conference | Session TS-4247 | 58

Related Sessions/BOFs
● Java Persistence 2.0

● Linda DeMichiel
● Wednesday, 10:55AM–11:55AM
● TS-4945

● Java EE Platform: Meet the Experts BOF
● Wednesday night, 7:55PM–9:45PM
● BOF-4641, BOF-4642

2007 JavaOneSM Conference | Session TS-4247 | 59

Q&A

2007 JavaOneSM Conference | Session TS-4247 |

TS-4247

Enterprise JavaBeans™ 3.1
Technology

Kenneth Saks
Senior Staff Engineer
Sun Microsystems

