JavaOne

Enterprise JavaBeans " 3.1
Technology

Kenneth Saks
Senior Staff Engineer
Sun Microsystems

1S-4247

2007 JavaOne®M Conference | Session TS-4247 | java.sun.com/javaone



=%

JavaOne

Objective

2007 JavaOne®M Conference | Session TS-4247 | java.sun.com/javaone



JavaOne

Agenda

Overview

Ease of Use Enhancements
New Features

Summary

Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 3 java.sun.com /javaone



JavaOne

EJB 3.0 Specification (JSR 220)

- Final Release May 2006

. Part of Java™ Platform, Enterprise Edition
(Java™ EE Platform) 5
. Features
- Simplified EJB API
. Java Persistence API

- Approach
. POJO style development

. Leverage Java Platform, Standard Edition
(Java SE Platform) 5 annotations

- Minimize use of XML deployment descriptors

- Intelligent defaults
JSR = Java Specification Request

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 4 java.sun.com/javaone



JavaOne

EJB 3.1 Technology Motivation

- Further improve ease-of-use
- Reduce number of required interfaces
- Loosen packaging restrictions

. Add features that could not be realized
in EJB 3.0 specification

. Since earlier focus was ease-of-use

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 5 java.sun.com/javaone



JavaOne

EJB 3.1 Technology

. Part of Java EE platform 6

- Scope is EJB components only

. Java Persistence API will evolve as a separate
specification and expert group

- Timeline
- Submit JSR: May 2007
- Community Review: August 2007
- Public Review: January 2008
- Final Release: Q3 2008

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 6 java.sun.com/javaone



JavaOne

Agenda

Overview

Ease of Use Enhancements
New Features

Summary

Q&A

®Sun 2007 JavaOneSM Conference | Session TS-4247 | 7 java.sun.com /javaone



JavaOne

Ease of Use Enhancements

- Optional Local business interfaces

- Develop local EJB components using only
a bean class

- EJB components in the web tier

. Package/deploy EJB components in a .war
without an ejb-jar

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 8 java.sun.com/javaone



la%negGSSlOn Eean WlH !

[.ocal Business Interface

FooBean Local Client <<interface>
) com.acme. Foo
// inject ejb ref void
@EJB doSomething() ;
private Foo foo; \——————————————————
—
// call FooBean com.acme.FooBean
foo.doSomething ()
' public void
doSomething () {

Ne—————
}

—

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 9 java.sun.com/javaone



~-EJB 3.0 Technology Local Client

Programming Model

Define a dependency on a Local EJB component
Via annotation(@EJB) or XML(ejb-local-ref)
Dependency Type is <local business interface>

Inject or lookup the dependency to acquire
a reference object

Client never calls new() on <bean class>

Local reference is a special container object,
not a bean instance

Caller may invoke any methods defined on Local
business interface, but cannot directly access
bean instance state

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 10



=
—  Java
JavaOne

echnology Local Clien
Programming Model (Cont.)

Separation of client reference and bean instance
allows container to provide:

Efficient resource management
Pooling of stateless session bean instances
Activation/Passivation of stateful session beans

Lazy initialization
Transparent clustering support

Concurrency control

Single-threaded bean instance guarantee without use
of Java SE platform level synchronization

%.H}m 2007 JavaOneSM Conference | Session TS-4247 | 11 java.sun.com/javaone



JavaOne

[.ocal Business Interfaces

In some cases, separating Local business
interface and bean class does not add much value

Local EJB components often invoked through an
expression language

Local EJB components/clients packaged in same
application
Same class loader

Local EJB components often already very fine grained
and tightly coupled to Local client

Very rare to provide different bean implementations
for same Local business interface

If not strictly needed, only adds to development/
maintenance burden

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 12 java.sun.com/javaone



Optional Local Business Interfaces

Make Local business interface optional

But...preserve separation between client
reference objects and bean instances

Client still never uses new() to obtain a reference

Reference is of type <bean class> but client
contract only exposes the EJB component’s
public Local business methods

Local client programming model essentially the
same with/without Local business interface

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 13



~olOCal Session Bean
Without Business Interface

@Stateless public class FooBean ({

// Local business method doSomething/()
public void doSomething() { ... }

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 14 java.sun.com/javaone



ient of LLocal Session Bean
Without Business Interface

@Stateless public class BarBean implements BarRemote {

JavaOne

// Inject ejb reference to FooBean
@EJB FooBean foo;

public void businessMethod () ({
// WRONG. Even though Bean has no local business
// interface, client does not use new()

// foo = new FooBean () ;

// Call FooBean local business method
foo.doSomething() ;

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 15 java.sun.com/javaone



JavaOne

Optional Local Business Interfaces

Further simplifies development of Local EJB
components

Less code to write/package/maintain

Completely removing an interface from developer
view gives biggest ease-of-use improvement

Better than relying on IDEs to generate interface
and keep it in sync

Does not introduce significant incremental
coupling

Easy transition from earlier Local client view

Optional—Local business interfaces still fully
supported

'@.'ﬂ'm 2007 JavaOneSM Conference | Session TS-4247 | 16 java.sun.com/javaone



omponent Usage From
Tier

- Mostly accessing EJB components within
same application

- Mostly using Local Stateless/Stateful
session beans

. Simplified API has increased the usage of EJB
technology from the web tier

- More simplifications needed, especially
with packaging requirements

2007 JavaOne®sM Conference | Session TS-4247 | 17




Application 1n Java EE Platform 5

foo.ear foo.ear

lib/foo_common.jar
foo _web.war

F

' WEB-INF/web.xml com/acme/Foo.class
WEB-INF/classes/

com/acme/FooServlet.class foo web.war
WEB-INF/classes -

com/acme/Foo.class WEB-INF/web.xml

WEB-INF/classes/
com/acme/FooServlet.class

foo_ejb.jar

com/acme/FooBean.class foo_ejb.jar
com/acme/Foo.class r

com/acme/FooBean.class

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 18 java.sun.com/javaone



JavaOne

Common Issues With Combined
Web/EJB Technology Applications

Requiring separate ejb-jar increases
development burden/learning curve
ejb-jar layout/packaging different than .war

Requires .ear module to contain .war and ejb-jar

Confusion about how to package shared classes
e.g., bean interfaces, utility classes

No sharing of component environment
namespaces

2007 JavaOne®sM Conference | Session TS-4247 | 19



- ¥

jaué

~xc] JEIINEG EJDB Components within
.war

foo.war

WEB-INF/classes/
com/acme/FooServlet.class

WEB-INF/classes/
com/acme/FooBean.class

05'{;.5‘._’ 2007 JavaOneSM Conference | Session TS-4247 | 20 java.sun.com/javaone



l < I
-

ession Beans accessed by web
components

No ejb-jar needed

Bean/interface/supporting classes placed
in WEB-INF/classes

One component environment (java:comp/env)
shared between web application and EJB
components

Any Java Persistence API persistence units
In .war are shared by EJB components

Full EJB container functionality available

Although most useful for Local Session Beans accessed by web
components

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 21



~Pefine EJB Components in .war
(Cont.)

EJB components in .war have no special
knowledge of web container

Invocation semantics the same regardless

of packaging
Transaction/Security/PersistenceContext propagation,
exception behavior, etc.

Ensures packaging decisions can be changed
with minimal impact on application

e.g., .war becomes too big so some EJB components
are moved out into separate ejb-jar

'@.'ﬂ'm 2007 JavaOneSM Conference | Session TS-4247 | 22 java.sun.com/javaone



We’ve Come a Long Way...
J2EE Platform 1.4 Java EE Platform 6
foo.ear foo.war

META-INF/application.xml
foo_web.war

WEB-INF/classes/
com/acme/FooServlet.class

WEB-INF/classes/
com/acme/FooBean.class

WEB-INF/web.xml

WEB-INF/classes
com/acme/FooServlet.class

WEB-INF/classes/

com/acme/FoolLocalHome.class
WEB-INF/classes/
com/acme/Foo.class

foo_ejb.jar

META-INF/ejb-jar.xml
com/acme/FooBean.class

com/acme/Foo.class
com/acme/FoolLocalHome.class

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 23 java.sun.com/javaone



JavaOne

Agenda

Overview

Ease of Use Enhancements
New Features

Summary

Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 24 java.sun.com /javaone



@Sun

Features

Singleton Beans

Additional Concurrency Options
Timer Service Enhancements

Simple Asynchrony

Stateful Web Service Endpoints

2007 JavaOneSM Conference

Session TS-4247 | 25




JavaOne

State in EJB Components

. Stateful Session Beans
- Hold client-specific state
- Not intended to be shared by multiple clients

. Stateless Session Beans
- No client-specific state

- Can hold client-independent instance state
» €.0., lPersistenceContext EntityManager em;

- Multiple instances per bean

- No guarantee that multiple client invocations on same bean will
executed by same bean instance

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 26 java.sun.com/javaone



;

JavaOne

What About Shared State?

Very common to have state that needs

to be shared across multiple components
iIn an application

Handled in web tier through Web Application
level context (ServletContext)
One ServletContext per .war per server instance
Only accessible to associated web application

How can state be shared between EJB
components in an application?

@ Sun 2007 JavaOne®M Conference | Session TS-4247 | 27



ernative 1: Use Stateless
Session Bean Instance State

public class SharedData { ... }

JavaOne

@Stateless public class FooBean implements Foo ({
private SharedData shared;
@PostConstruct void init() {

// Initialize shared data
shared = ...;

}

public void doSomething() {
// Access shared state

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 28 java.sun.com/javaone



e Alternative 1: Use Stateless
Session Bean Instance State

Doesn’t work for mutable shared state

Shared state will be replicated for every bean
Instance created by container

No way for application to update each instance

Even if state is immutable, wasteful to replicate
across all instances of the bean

Shared state commonly used for large in-memory
data structures

Large initialization time
Large memory footprint

'@.'ﬁ}m 2007 JavaOneSM Conference | Session TS-4247 | 29 java.sun.com/javaone



—]

Jav

JavaOne

ession Bean
State

dSS-1.CVC aticC

@Stateless public class FooBean implements Foo ({
static private SharedData shared;
@PostConstruct wvoid init() {

synchronized (shared) ({
if( shared == null ) {

// Initialize shared data
shared = ...;

}

public void doSomething() { ... }

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 30 java.sun.com/javaone



ession Bean
State

dSS-1.CVC aticC

JavaOne

- Behavior is too closely coupled to classloaders

- 1 instance per classloader is not necessarily the
same thing as 1 per Stateless Session Bean

. Container is unaware of shared state

- No opportunity to provide value-adds
- Additional concurrency options
. Container initialization time callbacks

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 31 java.sun.com/javaone



JavaOne

Singleton Beans

. For each singleton bean, one instance per application
per server Java Virtual Machine (JVM™)

- Not intended to provide a cluster-wide singleton

- Fits easily into existing environment dependency
architecture
- Acquisition through QEJIB or lookup
- Good for sharing data within entire application,
not just EJB components

. Singleton also provides useful way to add new lifecycle
callbacks for:

. Container initialization
. Container shutdown

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.
@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 32 java.sun.com/javaone



JavaOne

Singleton

@Singleton
public class SharedBean implements Shared ({

private SharedApplicationData shared;

// Called once at container-initialization time
@PostConstruct void init() {

// Initialize shared data

shared = ...;

}

public int getFoo() ({
return shared. foo;

}

035'!;;._’ 2007 JavaOneSM Conference | Session TS-4247 | 33 java.sun.com/javaone



&,

]EI\I'-E-I

JavaOne

1C1N drcC

State

Accessing

@Stateless
public class FooBean implements Foo {

// Declare ejb dependency on Singleton bean
@EJB private Shared shared;

public void doSomething() {

// Access shared data
int foo = shared.getFoo() ;

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 34 java.sun.com/javaone



JavaOne

EJB Concurrency

- EJB Container provides single-threaded
guarantee for all bean instances

- SLSBs/MDBs

. Each client invocation/message handled by different
bean instance

. SFSBs

. Each stateful session bean identity allows one invocation
at a time

- Frees bean programmer from dealing
with instance state synchronization issues

- Non-final static variables prohibited

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 35 java.sun.com/javaone



aterul dSession bean

Behavior

11N

JavaOne

. If a request arrives for a SFSB while it is still
processing an earlier request...

- Spec allows container to either:

. Throw ConcurrentAccessException
. Serialize second request

- Developer should be able to specify desired
behavior through standard metadata

@ConcurrencyManagement (policy=RejectConcurrentRequests)

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 36 java.sun.com/javaone



;

JavaOne

Singletons and Concurrency

Single-threaded policy too restrictive
for Singletons

One Instance
Multiple clients
Typically read-only or read-mostly
Need new concurrent access options to allow

for balance of performance vs. code complexity

Container-managed concurrency
Method-level locking metadata

Bean-managed concurrency
Direct use of synchronized

Allow for Singletons only or all component types?

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 37 java.sun.com/javaone



Singleton With Immutable Data

@Singleton @ReadOnly
public class SharedBean implements Shared ({

private SharedApplicationData shared;

// Called once at container-initialization time
@PostConstruct wvoid init() {

// Initialize shared data

shared = ... ;

}

public int getFoo() ({
return shared.foo;

}

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 38 java.sun.com/javaone



JavaOne

Singleton With Some Updates

@Singleton
public class SharedBean implements Shared {

private SharedApplicationData shared;

@ReadOnly public int getFoo () ({
return shared.foo;

}

@ReadWrite public void update(...) {
// update shared data

& Sun

2007 JavaOne®M Conference | Session TS-4247 | 39 java.sun.com/javaone



& Sun

oncurrency Fully Controlled by
Bean

@Singleton
@BeanManagedConcurrency
public class SharedBean implements Shared ({

private SharedApplicationData shared;

synchronized public int getFoo() { return shared.foo;

synchronized public void update(...) {
// update shared data

2007 JavaOne®M Conference | Session TS-4247 | 40

}

java.sun.com/javaone



;

JavaOne

Concurrency Recap

No change to default concurrency behavior
for existing component types

Allow specification of client behavior for
concurrent attempts to access non-shared SFSBs

For shared bean instances, favor container-
managed concurrency
Allows container to define concurrency semantics

Use of annotations allows for flexible configuration
e.g., class-level defaults and method-level overrides

%.H}m 2007 JavaOneSM Conference | Session TS-4247 | 41 java.sun.com/javaone



JavaOne

Timer Service

- Added in EJB 2.1 Specification

. Persistent
. Timers survive server shutdown/restart

- Transactional

. Timer operations (create/cancel/timeout) are first-class
transactional units of work

- Intended to model long-lived business processes

- Timers created via javax.ejb.TimerService API
- One-time expiration or at fixed recurring intervals

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 42 java.sun.com/javaone



JavaOne

Timer Example

@Stateless public class AccountBean implements Account ({

@Resource TimerService timerSvc;
@PersistenceContext EntityManager accountDB;

public Integer createNewAccount (Details details) ({
Integer acctNum = ...;
// Create new account

// Initial deposit must be made within 10 days
timerSvc.createTimer (FUNDING TIMELIMIT,

acctNum) ; }

@Timeout wvoid verifyFunding(Timer t) {
// Verify that initial account deposit cleared

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 43 java.sun.com/javaone



Statements

- A bank needs to generate checking/savings
account statements the 15t of each month
and email them to account holders

- Like a UNIX “cron job” where the work to be

performed at timeout is a good fit for an EJB
component

. Transactions

. Database access
. JavaMail™ API

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 44



JavaOne

xample Using
Technology

public class InitEvents implements ServletContextListener

{

@EJB Accounts accounts;

// Called whenever web application initializes
public void contextInitialized(ServletContextEvent e)

{

accounts.createTimer () ;

}

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 45 java.sun.com/javaone



JavaOne

xample Using
Technology

@Stateless public class AccountBean implements Accounts {
@Resource TimerService timerSvc;
@Resource javax.mail.Session mailSession;
@PersistenceContext EntityManager accountDB;

public void createTimer () {
if ( timerSvc.getTimers () .size() == 0 ) {
long timeUntilFirstOfNextMonth = ...;

timerSvc.createTimer (timeUntilFirstOfMonth,...);

}
}

@Timeout wvoid timerExpired (Timer t) ({
// Generate and send monthly bank accounts

}

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 46 java.sun.com/javaone



;

JavaOne

[.essons LLearned

Difficult to configure calendar-based events
using only relative time units

How to register the timer in the first place?

Typical container initialization events (Web
Application contextlnitialized(), Servlet.init, etc.)
are not a great fit

They happen every time application initializes
and in every server instance
Burden is on developer to check if timer already exists
No way to guarantee that only one is created per cluster

%.H}m 2007 JavaOne®M Conference | Session TS-4247 | 47 java.sun.com/javaone



JavaOne

Calendar-Based Timer Scheduling

- Should be able to express timer expiration based
on a calendar instead of relative to creation time

. “The second day of every month at noon”
- "Every Wednesday at five a.m.”
- “Every half-hour on Saturdays and Sundays”

- Exact syntaxis TBD
- Probably cron-‘like”

- Cron syntax well-defined/widespread but difficult
to read

. “0 12 * 2 2’ == “Every Tuesday in February’

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 48 java.sun.com/javaone



———

JavaOne

Automatic Timer Creation

Create a timer as a result of deploying
an application
Useful for registering a one-time or recurring
application-specific action independent of a business
method invocation
e.g., “Generate bank statements the 1%t of every month”

For each timer expiration, callback happens in one server
instance, not every server instance in cluster

Approaches

Specify via meta-data (annotation or .xml)

Define callback that happens once per application
deployment and call TimerService.createTimer
within it

%h}m 2007 JavaOneSM Conference | Session TS-4247 | 49 java.sun.com/javaone



=eoe AULOINAUIC 1 1IMCT LTCALI01

Example

// Create a timer for the 1lst day of each month at noon
@EJBTimer ("0 12 1 * *” “statementTimer”)

@Stateless public class AccountBean {

@Resource javax.mail.Session mailSession;
@PersistenceContext EntityManager accountDB;

@Timeout void sendMonthlyStatements (Timer t) ({

// Calculate monthly bank statements and
// send them out via email

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 50 java.sun.com/javaone



“-Asynchronous Support
in EJB 3.0 Specification

Java APIs for XML Web Services (JAX-WS)/Stateless
WebService Endpoint

Asynchronous request/response, @OneWay
Good for web services applications, but too cumbersome to use
for simple intra-application asynchrony

Java Message Service (JMS)/Message-Driven Beans

Good for loose coupling/guaranteed delivery semantics

For intra-application asynchrony, messaging API still too complex compared
to procedural invocation

Timer Service

Create single-action timer with “immediate” expiration time
to convert synchronous operation to asynchronous

Not the intended usage

'@.'ﬂ'm 2007 JavaOneSM Conference | Session TS-4247 | 51 java.sun.com/javaone



JavaOne

Simple Asynchronous Operations

. Use metadata to mark a Local/Remote business
method as asynchronous

. Container returns control to client before
executing business method

- No separate API to learn

@Asynchronous public void doSomething (Details d) {
// ...
}

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 52 java.sun.com/javaone



% Sync !;pera%mn % !I!aSE g%a%us

Using Stateful Session Bean

@Stateful (@BeanManagedConcurrency
public class AsyncTaskBean implements AsyncTask ({

private boolean taskComplete = false;
@Asynchronous public void doSomething (Details d) {

// perform work

taskComplete = true;

}

public boolean isTaskComplete () {
return taskComplete;

}

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 53 java.sun.com/javaone



JavaOne

Stateful Web Service Endpoints

EJB 3.0 specification supports stateless Web
Service endpoints via Stateless Session Beans
Based on JAX-WS API/Java Architecture for XML

Binding (JAXB)

Stateful interaction useful to web service clients
as well

Allow Stateful Session Beans to be exposed
as web service endpoints

Details of client programming model/stateful identity
propagation defined by JAX-WS Specification

'@.'ﬂ'm 2007 JavaOneSM Conference | Session TS-4247 | 54 java.sun.com/javaone



Jav

JavaOne

@Sun

atetu
Endpoint

@WebService
@Stateful
public class CartBean {

Web dDErvice

private Collection<Item> items;

public void addItem(Item i ) { ... }
public void removeItem(Item i) { ... }

@Remove public void checkout(...) {
@Remove public void cancel() { ... }

2007 JavaOne®M Conference | Session TS-4247 |

55

java.sun.com/javaone



JavaOne

Agenda

Overview

Ease of Use Enhancements
New Features

Summary

Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 56 java.sun.com /javaone



Ewﬂnegummary: En%erprlse I! avageans

3.1 Technology

. Part of Java EE platform 6

- Further simplify EJB component development
- Optional Local Business Interfaces
- EJB components in the Web Tier

- Add new features
. Singletons
- Concurrency Options
. Timer Service Enhancements
- Simple Asynchrony
. Stateful Web Service Endpoints

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 57 java.sun.com/javaone



JavaOne

Related Sessions/BOFs

. Java Persistence 2.0
. Linda DeMichiel
- Wednesday, 10:55AM-11:55AM
. 1S-4945

- Java EE Platform: Meet the Experts BOF
- Wednesday night, 7:55PM-9:45PM
- BOF-4641, BOF-4642

@ Sun 2007 JavaOneSM Conference | Session TS-4247 | 58 java.sun.com/javaone



JavaOne

2007 JavaOne®M Conference | Session TS-4247 | 59 java.sun.com/javaone



JavaOne

Enterprise JavaBeans " 3.1
Technology

Kenneth Saks
Senior Staff Engineer
Sun Microsystems

1S-4247

2007 JavaOne®M Conference | Session TS-4247 | java.sun.com/javaone



