
2007 JavaOneSM Conference | Session TS-4249 |

TS-4249

The Top 10 Ways to Botch
Enterprise Java Technology-Based
Application Scalability and
Reliability

Cameron Purdy
CEO

Tangosol
http://www.tangosol.com/

2007 JavaOneSM Conference | Session TS-4249 | 2

Finding Meaning in This
Presentation

It’s never been that funny to watch your
app go down, and thanks to all your users
it’s the slowest site in town

Laugh, cry, or go to sleep… but please turn off your phones

2007 JavaOneSM Conference | Session TS-4249 | 3

Disclaimer

2007 JavaOneSM Conference | Session TS-4249 | 4

Take everything with a grain of salt
Common Sense Trumps Dogma

• There will be real world situations in which the
principles from this presentation will be wrong;
Always use common sense

• Any similarity of material in this presentation to
disasters that you have witnessed, either real or
imagined, is purely coincidental

2007 JavaOneSM Conference | Session TS-4249 | 5

#10
Optimize performance assuming that it
will translate to scalability

Devil and Angel pictures © Duthie Associates, Inc
www.duthielearning.com used by permission.

“The Internet is the most important
single development in the history
of human communication since
the invention of call waiting.”

—Dave Barry

2007 JavaOneSM Conference | Session TS-4249 | 6

Never as simple as it seems…
Performance and Scalability

• Quick definition
• Performance: “Wall Clock” time to completion
• Scalability: The ability to add resources to increase the

capacity of a system
• Goals: Why care?

• Performance: Make the single-user scenario faster
● Eliminate algorithmic inefficiency
● Focus on expensive queries and high-latency operations

• Scalability: Support many users
● Quantify resources required for growth

2007 JavaOneSM Conference | Session TS-4249 | 7

Are you optimizing for two servers, or two hundred?
Raw Performance vs. Scalability

• Optimize performance by 10%
• 10% improvement regardless of the number of servers

• Increase the scaling factor by 10% (0.90 to 0.99)
• 2 servers: 5% improvement
• 4 servers: 15% improvement
• 8 server: 36% improvement
• 16 servers: 82% improvement

• This doesn’t even take system bottlenecks
into consideration
• Potential orders of magnitude improvement!

2007 JavaOneSM Conference | Session TS-4249 | 8

#10
Ignore the potential impact of performance
on scalability (and vice-versa)

“Technological progress has merely
provided us with more efficient
means for going backwards.”

—Aldous Huxley

Devil and Angel pictures © Duthie Associates, Inc
www.duthielearning.com used by permission.

2007 JavaOneSM Conference | Session TS-4249 | 9

Or, “How to rig a benchmark…”
Skewed Access Patterns

• Access patterns are not uniform!
• Most benchmarks tend towards uniform access
• …so products will show linear scalability
• …that your applications will never see

• Skewing creates “Hot Spots”
• Great for read-mostly cache-intensive applications
• Horrible for write-intensive applications

2007 JavaOneSM Conference | Session TS-4249 | 10

It’s all about the Hot Spots!
Impact of Performance on Scalability

• In write-intensive applications, data consistency
requirements result in serial execution

• Serial execution creates data “Hot Spots”
• Due to Hot Spots, high-end scale is limited by

serial performance

2007 JavaOneSM Conference | Session TS-4249 | 11

For those of you who have abandoned the gold standard
Example: Foreign Exchange

• USD-EUR trading is 40% of the market
• Updates to that instrument are inherently serial
• Dedicate an entire server to USD-EUR

• If one server can handle 40% of the market
• …then another 1.5 servers can handle the other 60%

• No theoretical increase in matching capacity is
possible beyond three servers

2007 JavaOneSM Conference | Session TS-4249 | 12

Example: Serial Bottlenecks
Same load on four
servers

Linear scale to
two servers

Load can only grow by
60% before bottlenecking

Beyond three, additional servers add no capacity!

2007 JavaOneSM Conference | Session TS-4249 | 13

Queue Theory, or: “When it rains, it pours…”

Impact of Scalability on
Performance

• Inability to scale sufficiently will kill performance
• Service overloads increase request queue depth
• Even minor overloads can bring massive wait times

• Service queues are just like credit cards
• Paid off regularly: Empty or near empty queues

● When a service keeps pace, the queue never backs up
• In debt: Deep and getting deeper

● If the service loses pace, the queue can
expand indefinitely

2007 JavaOneSM Conference | Session TS-4249 | 14

Does it remind you of online shopping at Christmas?
Example: Response Times

• Client averages 10 requests per second
• Service supports 8, 10 or 12 requests per second

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5

R e q u e s t s
R e s p o n s e T i m e @ 8 / s e c
R e s p o n s e T i m e @ 1 0 / s e c
R e s p o n s e T i m e @ 1 2 / s e c

2007 JavaOneSM Conference | Session TS-4249 | 15

#9
Assume you are smarter than the infrastructure

“I think computer viruses should count
as life. I think it says something about
human nature that the only form of life
we have created so far is purely
destructive. We’ve created life in our
own image.”

—Stephen Hawking

2007 JavaOneSM Conference | Session TS-4249 | 16

Pet Shop Inventory
public class PetShopInventory {

public synchronized boolean trade(Pet oldPet, Pet newPet) {
if (m_inv.contains(newPet)) {

m_inv.remove(newPet);
m_inv.add(oldPet);
return true;

}
return false;

}

public boolean buy(Pet pet) {
return m_inv.remove(pet);

}

private final List m_inv =
Collections.synchronizedList(new ArrayList());

}

Inspired by http://www.javaconcurrencyinpractice.com/listings/ListHelpers.java (Brian Goetz and Tim Peierls)

Fish are friends, not food

2007 JavaOneSM Conference | Session TS-4249 | 17

Shared Mutable State
Threading Violations

• Who hasn’t done this?
• Singletons—e.g. product inventory
• Hashtable caches

• Potential Problems
• Multi-threaded programming is hard… to do well
• Both data corruption and visibility problems can occur
• Thread pool depletion from blocking operations
• Opportunity for thread-level deadlock

• The container may be able to help
• Java™ Specification Request (JSR) 236/237: Timer and Work

Manager APIs

2007 JavaOneSM Conference | Session TS-4249 | 18

Keep your hands where I can see them
Resource Violations

• File systems
• Putting a Java Cryptography Architecture

(JCA) adapter on a File1 does not make it a
transactional resource!

• XA “impostors”
• Implement the interface… but not the behaviour!

• Managing your own sockets

1. Inspired by http://www.theserverside.com/news/thread.tss?thread_id=33341

2007 JavaOneSM Conference | Session TS-4249 | 19

Other ways to be smarter than the infrastructure
Reinvent the Wheel

• Replace built-in functionality
• “We had to build our own connection pool…”
• “Java Message Service (JMS) is too heavy-weight,

so we…”
• Reinvent available frameworks and libraries

• “Anyone can build a better web framework than Struts”
• “Hibernate just didn’t support our domain model…”
• “I built my own Dependency Injection framework

because Spring is too bloated”

2007 JavaOneSM Conference | Session TS-4249 | 20

#9
Follow the rules blindly

“Everybody gets so much
information all day long that they
lose their common sense.”

—Gertrude Stein

2007 JavaOneSM Conference | Session TS-4249 | 21

When it’s your application running in your environment

An Application Server Is Not
Magic

• The implications of breaking the rules
• Working against the application server, e.g. security
• Additional responsibilities may not be obvious

• The benefits of being able to break the rules
• Some impossible things become possible
• Some difficult things become simple

• Example: FTP
• FTP is still in common use for application integration
• Sending files via FTP can require socket I/O
• Receiving FTP’d files can require file I/O

2007 JavaOneSM Conference | Session TS-4249 | 22

#8
Abuse the database

“Men have become the tools of
their tools.”

—Henry David Thoreau

2007 JavaOneSM Conference | Session TS-4249 | 23

When the only tool you have is a hammer…
Abuse the Database

• Pro: Information consistency and durability
• Con: Scale-out is limited and costly
• Avoid high volume, low value tasks

• Request State, Logging
• Conversational State (HTTP sessions, etc)
• “File system” responsibilities, non-transactional state

• Rule of Thumb: Persistent and Transactional

2007 JavaOneSM Conference | Session TS-4249 | 24

#8
Avoid the database

“Getting information off the
Internet is like taking a drink
from a fire hydrant.”

—Mitchell Kapor

2007 JavaOneSM Conference | Session TS-4249 | 25

Darling, I don’t know why I go to extremes
Avoiding the Database Altogether

• Sessions, Stateful Session Beans are insufficient
• Can provide scalability and availability
• Limited options for durability
• Lacks information management and reporting

• Java object model
• Does not support composable transactions
• Persistence tends to be inefficient and brittle
• Lacks information management and reporting

• Persistent transactional state: Use a database!

2007 JavaOneSM Conference | Session TS-4249 | 26

#7
Introduce Single Points of Bottleneck

“I must have a prodigious quantity
of mind; it takes me as much as a
week sometimes to make it up.”

—Mark Twain

2007 JavaOneSM Conference | Session TS-4249 | 27

Single Points of Bottleneck

• A Single Points Of
Bottleneck (SPOB) is any
server, service, etc. that all
(or many) requests have to
go through, and that has
any load-associated latency

• The simplest way to create
a SPOB is to depend on a
shared resource, such as
a database

2007 JavaOneSM Conference | Session TS-4249 | 28

Single Points of Bottleneck

• Internal bottlenecks include
connection pools, singletons,
mutable state shared
across threads

• External bottlenecks include
databases, message queues,
web services, mainframes,
and other enterprise
applications

2007 JavaOneSM Conference | Session TS-4249 | 29

#7
Introduce Single Points of Failure

“If builders built buildings the way
programmers wrote programs,
the first woodpecker that came
along would destroy civilization.”

—Anonymous

2007 JavaOneSM Conference | Session TS-4249 | 30

Single Points of Failure

• A Single Point Of Failure (SPOF)
is any single device, server,
process, etc. that must be
available in order for the
application to operate

• Designing for high availability
involves eliminating (by
redundancy, etc.) as many Single
Points Of Failure as possible

2007 JavaOneSM Conference | Session TS-4249 | 31

Single Points of Failure

• Enterprise Java Technology-
Based Applications can
eliminate most middle-tier
SPOFs with a combination
of application server features
and careful design
• Use the “cookie cutter”

responsibility model

2007 JavaOneSM Conference | Session TS-4249 | 32

#6
Abuse abstractions

“There’s no problem that
can’t be solved with yet
another level of indirection.”

—Unknown

2007 JavaOneSM Conference | Session TS-4249 | 33

Blinded by elegance

Not Everything Needs
to Be Abstracted

• Abstraction can hide real costs
• I/O: ORMs and the N+1 problem
• Memory: ORMs and large sets
• UI: Component rendering
• Conversational State: Sessions

• Abstraction can make simple things impossible
• ORMs that don’t support stored procedures
• Web frameworks that don’t support all HTML options
• Try building a legal Enterprise Java

technology-based “singleton”

2007 JavaOneSM Conference | Session TS-4249 | 34

#6
Avoid abstractions

“Real programmers can write
assembly code in any language.”

—Larry Wall, inventor of Perl

2007 JavaOneSM Conference | Session TS-4249 | 35

Wisely chosen, most abstractions cost almost nothing
Abstractions Are a Valuable Tool

• Runtime cost of programming abstractions is
close to zero
• Inheritance and method invocation

• Abstractions layer applications, allowing for
orthogonal concerns to be introduced
• Intelligent caching
• Security, auditing

• Simplify both programming and maintenance

2007 JavaOneSM Conference | Session TS-4249 | 36

#5
Assume DR can be added when it
becomes necessary

“It is only when they go wrong
that machines remind you how
powerful they are.”

—Clive James

2007 JavaOneSM Conference | Session TS-4249 | 37

Why WAN?

• Usually for Disaster Recovery (DR)
• Inherent compromises

• Globally distributed applications
• Multiple Data Centers, one global application
• Generally regional division of information

• Multi-site access to “real time” data
• Pull (on demand)
• Push (on subscription)
• Hierarchical distributed caching
• Continuous Query

Because having to manage one site isn’t enough

2007 JavaOneSM Conference | Session TS-4249 | 38

Disaster Recovery

• Requirements
• No measurable impact on performance
• All data centers should be active (“hot-hot”)
• Processing continues uninterrupted if the WAN fails
• Consistent information without any update conflicts

• Reality
• MAN connections can be high bandwidth and fast
• Legal requirements push DR out further
• WAN roundtrips can be up to 1 second
• Interruption of connectivity is terribly disruptive

Job security is # 1

2007 JavaOneSM Conference | Session TS-4249 | 39

How the backup is maintained

Information Availability
and Consistency

• Synchronous updates are considered “safe”
• May add seconds per transaction

• Asynchronous updates are fast
• No real latency penalty
• May allow update conflicts in hot/hot scenarios
• Window for data loss from site failure

● Actual loss may not be measurable or determinable

• Log shipping
• Transactional logs for recoverability on DR site

2007 JavaOneSM Conference | Session TS-4249 | 40

How the backup is maintained

Common DR for
HA Databases, Queues

• Log synchronization
• Network bandwidth must be greater than the log

generation rate
• Log shipping

• Transactional logs are maintained on a shared file
system for recoverability on DR site

• Database or Storage Replication

2007 JavaOneSM Conference | Session TS-4249 | 41

#4
Use a one-size-fits-all architecture

“One machine can do the
work of fifty ordinary men.
No machine can do the work
of one extraordinary man.”

—Elbert Hubbard

2007 JavaOneSM Conference | Session TS-4249 | 42

When dogma defeats logic
One Size Fits All

• Availability menu
• Business hours
• 24x7 “five nines”
• Continuous Availability

• Reliability menu
• Yesterday’s data
• Best effort
• Real Time

• Scalability menu
• One server is plenty
• Small cluster
• Make it like Google

• Performance menu
• Whenever
• 7 seconds (or they leave)
• 99% under 1 second

2007 JavaOneSM Conference | Session TS-4249 | 43

#3
Use big JVM™ machine heaps

“Computers shouldn’t be unusable.
You don’t need to know how to work a
telephone switch to make a phone call,
or how to use the Hoover Dam to take a
shower, or how to work a nuclear-power
plant to turn on the lights.”

—Scott McNealy

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-4249 | 44

In theory, there is no difference between theory and practice
Big JVM Machine Heap = Big Pause

• In the lab
• Full GC of 10GB JVM machine heap takes

a few seconds
• In production

• Full GC of 1GB JVM machine heap takes 30 seconds
• Why?

• Not all customers are running on JDK™ 1.6
• Differing complexities of object graphs
• Use a finalizer? It can’t be young-generation collected
• To be honest, we don’t always know

2007 JavaOneSM Conference | Session TS-4249 | 45

#2
Assume the network works

“If builders built buildings the way
programmers wrote programs, the
first woodpecker that came along
would destroy civilization.”

—Anonymous

2007 JavaOneSM Conference | Session TS-4249 | 46

The failure modes are unpredictable
Network Infrastructure

• First fallacy of distributed computing
“The network is reliable”

• Distributed environments are no more reliable
than their weakest links
• Redundant switches, cabling and NICs
• HA load-balancers, DNS, databases, message servers

2007 JavaOneSM Conference | Session TS-4249 | 47

When gigabit isn’t gigabit…
The Bottleneck Isn’t Where You Think

• When two two-lane highways merge into one, the
net result (with heavy traffic) is that the two-lane
highways are no better than one

• Servers using a shared bus face an equivalent
challenge: Each server can only use a portion of
its full theoretical bandwidth

2007 JavaOneSM Conference | Session TS-4249 | 48

When gigabit isn’t gigabit…
The Bottleneck Isn’t Where You Think

• If a highway connects two cities, one hopes that
the residents don’t commute each to the other

• Blade frames face a similar challenge
• Fully switched-fabric gigabit backplanes
• Higher bandwidth frame-to-frame, e.g. 4-gigabit
• Effective max bandwidth across frames: 0.25 gigabit

2007 JavaOneSM Conference | Session TS-4249 | 49

When gigabit isn’t gigabit…
The Bottleneck Isn’t Where You Think

• Everyone gets off at the
shopping mall exit

• Shared resource connected
by a single pipe

• Database connections
• Server farms
• Enterprise Java Technology-

Based Application clusters
• Compute Grids

2007 JavaOneSM Conference | Session TS-4249 | 50

#1
Avoid proprietary features

“I think complexity is mostly sort
of crummy stuff that is there
because it’s too expensive to
change the interface.”

—Jaron Lanier

2007 JavaOneSM Conference | Session TS-4249 | 51

Competitive Advantage or Lock-In?
Proprietary Features

• Database
• “Non-Standard” Frameworks
• Standards

• Choice
• Portability

• Proprietary
• Best of Breed
• “Get it Done”

2007 JavaOneSM Conference | Session TS-4249 | 52

#1
Believe product claims

“The most important and urgent
problems of the technology of
today are [..] the reparations of
the evils and damages by the
technology of yesterday.”

—Dennis Gabor

2007 JavaOneSM Conference | Session TS-4249 | 53

What Products Don’t Do Everything?

• Linearly Scalable
• …if you re-write your application from scratch

• Fault Tolerant
• …minus a timeout period and a bit of data corruption

• Transactional
• …as long as nothing fails

• Test anything that really matters to you!

2007 JavaOneSM Conference | Session TS-4249 | 54

Summary

2007 JavaOneSM Conference | Session TS-4249 | 55

I sat through the whole thing and all I got was this stupid slide
Conclusions

• Achieving success is often the result of making
informed engineering trade-offs
• Understand the actual requirements early

• Use common sense
• Don’t do good things just because you think they are

good things
• Don’t do bad things unless they happen to be good

things in your environment

2007 JavaOneSM Conference | Session TS-4249 | 56

Q&A

2007 JavaOneSM Conference | Session TS-4249 | 57

More Information
www.tangosol.com

2007 JavaOneSM Conference | Session TS-4249 |

TS-4249

The Top 10 Ways to Botch
Enterprise Java Technology-Based
Application Scalability and
Reliability
Cameron Purdy
CEO

Tangosol
http://www.tangosol.com/

