
2007 JavaOneSM Conference | Session TS-43350 |

TS-43350

Harnessing the Power of
Java™ Platform, Enterprise
Edition (Java™ EE) With
Spring

Mike Keith
Oracle
http://otn.oracle.com/oc4j

Colin Sampaleanu
Interface21
http://www.interface21.com
http://www.springframework.org

2007 JavaOneSM Conference | Session TS-43350 | 2

To learn more about how applications can
use Spring to leverage Java Platform,
Enterprise Edition (Java EE Platform)
architectures and features, and how Spring
can enhance the Java EE platform
development experience.

GoalGoal

2007 JavaOneSM Conference | Session TS-43350 | 3

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration with Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 4

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration with Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 5

What Is Spring?

• Spring is an “Application Framework”
• A software layer that sits between the application

and the runtime environment
• A suite of services that applications can selectively

choose from according to their needs
• An open source project with integrated support for

most popular Java platform projects in common use
• An enabling technology that promotes good object-

oriented design principles
• Apache 2.0 licensed and free

2007 JavaOneSM Conference | Session TS-43350 | 6

What Does Spring Do?

• Provides configuration, wiring, and life cycle
management of application components

• Offers abstraction layer of common subsystems
like transactions and data sources

• Hosts and provides simplified access to standard
persistence services such as Java DataBase Connectivity
(JDBC™) API and Java Persistence API (JPA)

• Normalization of data access exceptions from
heterogeneous database platforms

• Weaves aspect-oriented advice into application code
(when AOP advice is supplied)

2007 JavaOneSM Conference | Session TS-43350 | 7

What Is Spring Not?

• Application Server
• Spring does not implement system services like thread pools

or transactions, but relies instead upon the services of the server
in which it is deployed

• Java EE Platform Container
• Spring typically runs within a Java EE platform or web container

• Dependent upon Java EE platform
• Spring can be configured to run in any hosted Java Platform,

Standard Edition (Java SE) or Java EE application environment—
including older versions

• Anti-standards
• Spring leverages and prefers to use existing standards

2007 JavaOneSM Conference | Session TS-43350 | 8

Enabling Technologies
De

pe
nd

en
cy

 In
jec

tio
n

AOP

Portable Service Abstractions

Simple
Object

2007 JavaOneSM Conference | Session TS-43350 | 9

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 10

Dependency Injection and
Inversion
of Control

• Allows a software component to express what it
depends on to work
• Without hard-coding

• A third party, called an assembler, is responsible for
“plugging in” an implementation

2007 JavaOneSM Conference | Session TS-43350 | 11

The Assembler

The “assembler” often called a “container” or “factory”

2007 JavaOneSM Conference | Session TS-43350 | 12

Spring Beans

• Basic unit of state, logic, and configurability
• May have zero or more dependencies on other

beans, or may be a dependency of zero or more
other beans

• Beans and their dependencies are defined
individually and collectively in XML file

• Bean dependencies are satisfied by Spring at
runtime through the use of injection

• Grouped together and accessible from a Spring
application context

2007 JavaOneSM Conference | Session TS-43350 | 13

The Spring
Bean FactoryConfiguration

Instructions

Your Application Classes (POJOs)

Fully Configured System
Ready for Use

produces

Work Happens
Here

The Bean FactoryThe Bean Factory

2007 JavaOneSM Conference | Session TS-43350 | 14

Example—Service Interface

public interface RewardService {
public int rewardPoints(

int accountNumber,
PurchaseEvent purchase);

}

2007 JavaOneSM Conference | Session TS-43350 | 15

Example—Service Implementation
public class SimpleRewardService implements RewardService {

public AccountRepository accountRepository;

public void setAccountRepository(AccountRepository repo) {
this.accountRepository = repo;

}

public int rewardPoints(…) {
Account account = accountRepository.loadAccount(accountNumber);
int points = calculatePointsFor(purchase);
account.addPoints(points);
accountRepository.updateAccount(account);
return points;

}
}

2007 JavaOneSM Conference | Session TS-43350 | 16

Example—Configuration

<beans>

<bean id=“rewardService” autowire=“byType”
class=“org.acme.SimpleRewardService”/>

<bean id=“accountRepository”
class=“org.acme.JdbcRepository”/>

<property name=“dataSource” ref=“dataSource”/>
</bean>

<jee:jndi-lookup id=“dataSource“
jndi-name=“jdbc/accountDataSource"/>

</beans>

2007 JavaOneSM Conference | Session TS-43350 | 17

Example—Getting the First Bean
…
RewardService rewardService;
…
private void initialize() {

ApplicationContext appCtx;
appCtx = new ClassPathXmlApplicationContext(

"META-INF/app-context.xml");
rewardService = (RewardService) appCtx.getBean(“rewardService");

}
OR…

…
@Resource
RewardService rewardService;
…

2007 JavaOneSM Conference | Session TS-43350 | 18

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 19

Spring AOP—What’s the Point?

• Look at this requirement

• “Perform a role-based security check
before every application method”

A sign this requirement is a cross-cutting concern

2007 JavaOneSM Conference | Session TS-43350 | 20

Spring AOP—What’s the Point?

• Allows a cross-cutting requirement to be
implemented as a single module

• Don’t Repeat Yourself (DRY) principle
• Using AOP avoids scattering—Code is no longer repeated

• Separation of Concerns (SOC) principle
• Using AOP avoids tangling—Each piece of code is focused

on one clear task

2007 JavaOneSM Conference | Session TS-43350 | 21

Spring AOP

• Use AspectJ pointcut expressions or annotations
to indicate the join points in the application where
“something” needs to happen

• Write code to implement the “something”; this is
called advice

• Weaving of advice into the application happens at
runtime so no pre-compile step is needed

• Advice may be applied temporally or conditionally
relative to the join points
• Before, after, around, on exception, on success, etc.

• The AOP advice often leverages abstractions over
Java Platform APIs (e.g., transactions)

2007 JavaOneSM Conference | Session TS-43350 | 22

AOP Example—Apply via
Annotations

@Secured({"IS_AUTHENTICATED_REMEMBERED"})
public interface Clinic {

...

@Secured({"ROLE_SUPERVISOR"})
void storeVisit(Visit visit) throws ...;

}

2007 JavaOneSM Conference | Session TS-43350 | 23

@Aspect
public class SaveTracker {

private Logger logger = Logger.getLogger(getClass());

@Before(“execution(void org.acme..*Dao.save*(*))”)
public void trackSave() {

logger.info(“Data being written…”);
}

}

public class UserDao {

public void save() {
…

}
}

AOP Example—Apply via Pointcut

2007 JavaOneSM Conference | Session TS-43350 | 24

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 25

Portable Service Abstractions

• Software abstractions for specific enterprise services
• Enable pluggability of implementations
• Reduce boilerplate
• Single configuration and API for common features

• Examples
• PlatformTransactionManager
• Data access templates (JPA/JDBC API and ORM)
• Java Message Service operations
• Java Management Extensions (JMX™) service

exporting and access

2007 JavaOneSM Conference | Session TS-43350 | 26

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 27

Transactions

• Two principal transaction handling strategies in
Java EE platform
• JTA: Allows access to container’s Transaction

Manager, including possible participation in distributed
transactions

• JDBC API transaction used directly, on the Connection,
or via wrapper layer in persistence framework

2007 JavaOneSM Conference | Session TS-43350 | 28

Spring Transaction Integration

• Two main choices for transaction handling
strategy in Java EE Platform Spring-based
applications
• Container-managed transactions via Enterprise

JavaBeans™ (EJB™) architecture session beans

• Spring demarcated transactions
• Using JTA transaction manager
• Using local (JDBC API) transactions

2007 JavaOneSM Conference | Session TS-43350 | 29

Container-Managed Transactions

• EJB beans are marked as transactional
through the use of annotations or XML

• EJB beans hand off to Spring-managed
beans to do some of the work

• Implies JTA and relies upon the container
Transaction Manager

• Spring able to bind DataSources and other
resources to the JTA transaction, for re-use
and sharing

2007 JavaOneSM Conference | Session TS-43350 | 30

Spring Transaction Demarcation

• Abstract Spring transaction layer allows application
to choose the most appropriate infrastructure for the
need at hand
• Can easily switch implementations later
• Can work declaratively or programmatically

• Declaratively—Annotations or XML
• Programmatically—TransactionTemplate

• Including legacy Java SE application environments and
Java EE application environments

• In the Java EE platform container, JTA strategy
typically plugged in
• Delegating to container’s transaction manager

2007 JavaOneSM Conference | Session TS-43350 | 31

@Transactional
public class RiskServiceImpl implements RiskService {

@Transactional(isolation=Isolation.REPEATABLE_READ,
timeout=60)

public RiskConfirmation calculateRisk(RiskCriteria r) {
// atomic unit-of-work

}

@Transactional(readOnly=true)
public List<Policies> listPoliciesFrom(Date d) {

// atomic unit-of-work
}

}

Declarative Transactions:
Annotations

overriding attributes at
the method level

can also specify at
class/interface level

2007 JavaOneSM Conference | Session TS-43350 | 32

Data Sources

• Normally managed by the container, maintain
connection pools, and are JTA-bound

• Abstract Spring data source layer permits
application to be loosely coupled to the container

• Can inject different types of data sources
depending upon what is available/desired
• Container-managed JTA data source
• Vanilla JDBC API data source
• Pooled non-managed data source
• Custom or test data source

2007 JavaOneSM Conference | Session TS-43350 | 33

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 34

Web Tier Integration

• Can use light integration to combine Spring with
any web framework, or no framework at all

• Register a Spring ServletContextListener to
cause an application context to be bound to
ServletContext on web app startup
• Optionally configure resource path to application

context configuration file(s)
• Loading application context causes Spring to

start managing the defined beans
• Can access usual Spring features through normal

techniques

2007 JavaOneSM Conference | Session TS-43350 | 35

<web-app>
<context-param>

<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/app-context.xml</param-value>

</context-param>
…
<listener>

<listener-class>
org.springframework.web.context.ContextLoaderListener

</listener-class>
</listener>
…

</web-app>

Example web.xml

2007 JavaOneSM Conference | Session TS-43350 | 36

Spring MVC

• Flexible lower-level HTTP dispatcher infrastructure, as
used in parts of Spring Remoting

or…
• Complete action-oriented Model-View-Controller (MVC)

framework for web applications
• DispatcherServlet front end uses strategies to dispatch

requests to registered handlers, controllers, and views
• Each servlet may also have its own web application

context
• Handler interceptors allow interception of handler

and request processing

2007 JavaOneSM Conference | Session TS-43350 | 37

Spring MVC—The Big Picture

DispatcherServlet

HandlerInterceptors

Controller

Handlers

View ResolverWebApplicationContext

2007 JavaOneSM Conference | Session TS-43350 | 38

Spring Web Flow

• Used on top of JavaServer™ Faces technology or
other UI-focused web frameworks such as Spring
MVC, Struts, etc.

• Capture a logical flow of your web application as
a self-contained module, at a higher level
• In a declarative fashion
• Essentially a black box, including sub flows
• Representing a user conversation
• Introduces new scope: Flow Scope
• Highly manageable

• Part of Spring’s web stack—A full subproject

2007 JavaOneSM Conference | Session TS-43350 | 39

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 40

Integration With JPA

• Java Persistence API is portable persistence API that
works in both Java EE platform and Java SE platform

• Exists a Service Provider Interface (SPI) for a host
container to invoke a JPA implementation
• Provides standardized injection facility
• Automatic detection of persistent entities
• Initialization and management of entity managers
• Persistence context propagation across components
• Extra support for provider entity weaving
• Cleaner integration story (more opportunities for

optimization)

2007 JavaOneSM Conference | Session TS-43350 | 41

Integration With JPA

• Spring acts as a host container for JPA and
implements the SPI

• Spring transaction layer with JPA supports additional
transaction combinations

• Common configuration to access extended features
supported by major JPA providers

• Increased testability
• Can be used in conjunction with other Spring

features, like AOP

2007 JavaOneSM Conference | Session TS-43350 | 42

Spring JPA Configuration
<bean id="entityManagerFactory"

class="org.spring...LocalContainerEntityManagerFactoryBean">
<property name="dataSource" ref="dataSource"/>
<property name="loadTimeWeaver">

<bean class="org.spring…ReflectiveLoadTimeWeaver"/>
</property>
<property name="jpaVendorAdapter">

<bean class="org.spring…TopLinkJpaVendorAdapter"/>
</property>

</bean>
<bean id="transactionManager"

class="org.spring...JpaTransactionManager">
<property name="entityManagerFactory“ ref="entityManagerFactory"/>

</bean>

2007 JavaOneSM Conference | Session TS-43350 | 43

Spring Bean Using JPA

public class JpaAccountRepository implements AccountRepository {

@PersistenceContext
EntityManager em;

public Account loadAccount(int accountNumber) {
return em.find(accountNumber);

}

public void updateAccount(Account account) {
em.merge(account);

}
}

2007 JavaOneSM Conference | Session TS-43350 | 44

Spring JDBC API in a Nutshell

• Acquisition of the connection
• Participation in the transaction
• Execution of the statement
• Processing of the result set
• Handling any exceptions
• Release of the connection

int count = jdbcTemplate.queryForInt(
“SELECT COUNT(*) FROM CUSTOMER”);

All handled by
the template

2007 JavaOneSM Conference | Session TS-43350 | 45

Spring JDBC API in a Nutshell:

Querying for Objects

List<Person> results = jdbcTemplate.query(“select * from …”,
new ParameterizedRowMapper<Person>() {

public Person mapRow(ResultSet rs, int row) {
// map the current row to a Person
return new Person(…);

}
});

2007 JavaOneSM Conference | Session TS-43350 | 46

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 47

Testing

• The Problem: It’s usually hard to unit test Java EE
application environment logic

• The Reason: Java EE application environments
tend to have dependencies on Java EE platform
resources which are not available outside the
container

• The Solution: Let Spring inject resources that fulfill
the same contract as Java EE platform so the
application can function outside the container

2007 JavaOneSM Conference | Session TS-43350 | 48

Testing

• All of the examples that we have shown can
run both inside and outside a Java EE platform
container
• Can do both unit and integration testing outside

the container
• No source code needs to be changed in order to

run in Java SE platform
• Can create JUnit tests with little or no additional

framework or setup code
• Configuration is externalized in XML files so multiple test

configurations do not require multiple code bases

2007 JavaOneSM Conference | Session TS-43350 | 49

Example—Testing JPA
Applications

Without Spring:
• Running JPA in Java SE platform has a different

transaction model than in Java EE platform
• Container-managed persistence contexts use JTA
• Bootstrapped entity managers use resource-local

transactions

• Typically use @PersistenceContext annotation to
inject entity manager
• Recognized by the container only, not the provider
• Object must be managed in order to inject resources into it

2007 JavaOneSM Conference | Session TS-43350 | 50

Example—Testing JPA
Applications

With Spring:
• Spring acts as a JPA host container
• Use container-managed persistence contexts in code

• Can run the same code in Java SE platform or
Java EE platform

• Use @PersistenceContext annotation to inject
EntityManagers

• Can configure a Spring data source for use in
Java SE platform

• Inject the transaction manager according to the
environment

2007 JavaOneSM Conference | Session TS-43350 | 51

Agenda

Introduction to Spring
Dependency Injection and IoC
Spring AOP
Portable Service Abstractions

Integration With Java EE Platform
Web Tier
Persistence Tier

Testing Enterprise Applications
Summary

2007 JavaOneSM Conference | Session TS-43350 | 52

Summary

Java EE platform containers provide valuable core
services for server-side applications

Spring adds additional services that can be used in
Java EE application environments

Spring helps to make applications more portable across
Java EE platforms

Spring can make testing Java EE application
environments outside a Java EE platform container
much easier

Containers can provide additional Spring features to
achieve a completely seamless integration

2007 JavaOneSM Conference | Session TS-43350 | 53

For More Information

Technical Sessions
• Many Spring-related sessions at 2007

JavaOneSM Conference, including:
• TS-7755: Advanced Spring Framework
• TS-6821: Spring Web Flow: A Next-Generation

Web Application Controller Technology
• TS-7082: Building JavaServer Faces Applications

With Spring and Hibernate
• TS-4948: Unleashing the Power of JAX-WS RI:

Spring, Stateful Web Services, SMTP, and More

2007 JavaOneSM Conference | Session TS-43350 | 54

For More Information

Resources
• “Using the Java Persistence API With Spring 2.0”

Mike Keith, Rod Johnson
Java Developers Journal—May, 2007

Books
• Professional Java Development With the Spring

Framework
Rod Johnson, Juergen Hoeller, Alef Arendsen, Thomas Risberg, Colin
Sampaleanu
Wrox 2005

• Pro EJB 3: Java Persistence API
Mike Keith, Merrick Schincariol
Apress 2006

2007 JavaOneSM Conference | Session TS-43350 |

TS-43350

Harnessing the Power of
Java™ Platform,
Enterprise Edition
(Java™ EE) Technology
With Spring

Mike Keith
Oracle
http://otn.oracle.com/oc4j

Colin Sampaleanu
Interface21
http://www.interface21.com
http://www.springframework.org

