
2007 JavaOneSM Conference | Session TS-45170 |

TS-45170

Java™ DB Performance
Olav Sandstå
Senior Staff Engineer
Sun Microsystems
http://developers.sun.com/javadb/

2007 JavaOneSM Conference | Session TS-45170 | 2

Goal of My Talk

Learn how to configure and use
Java™ DB to get the best performance
and the required durability for your data.

2007 JavaOneSM Conference | Session TS-45170 | 3

Agenda
Java DB Introduction
Configuring Java DB for Performance
Programming Tips
Understanding Java DB Performance
Open Source Database Performance

2007 JavaOneSM Conference | Session TS-45170 | 4

Java DB
● Sun’s supported distribution of Apache Derby

● All development done in the Apache Derby community
● Complete relational database engine
● 100% Java technology
● Bundled in Sun Java Development Kit (JDK™) 6

and GlassFish™ Project
● Supported by NetBeans™ Software, Sun Java

Studio Enterprise, Eclipse
● The database for Java applications

2007 JavaOneSM Conference | Session TS-45170 | 5

Java DB Features
● Complete SQL engine including:

● Views, triggers, stored procedures, foreign keys
● Multi-user transaction support:

● All major isolation levels
● ACID properties

● Security:
● Data encryption, client authentication,

GRANT/REVOKE
● Standard based:

● Java DataBase Connectivity (JDBC™) 4.0
and SQL92/99/2003/XML

2007 JavaOneSM Conference | Session TS-45170 | 6

Java DB Architecture: Embedded
● Include derby.jar in your

classpath
● Boot the Java DB engine1)

Class.forName(
“org.apache.derby.jdbc.
EmbeddedDriver”);

● Create a new database
Connection conn =
DriverManager.getConnection(
“jdbc:derby:dbName; “ +
“create=true”);

1) Optional when running with JDK version 6

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

Applicatio
n

JDBC Software

SQL

Access

Storage
Database Buffer

Log and Data

Ja
va

 V
irt

ua
l M

ac
hi

ne
 (J

V
M

™
)

2007 JavaOneSM Conference | Session TS-45170 | 7

Java DB Architecture: Client-
Server

JDBC Software

Application

JDBC

Application

JDBC

Application

Java Virtual Machine

Network Server

JDBC

SQL

Access

Storage
Database Buffer

Log and Data

2007 JavaOneSM Conference | Session TS-45170 | 8

Agenda
Java DB Introduction
Configuring Java DB for Performance
Programming Tips
Understanding Java DB Performance
Open Source Database Performance

2007 JavaOneSM Conference | Session TS-45170 | 9

Performance Tip 1:
Separate Data and Log Devices
Log on separate disk:
● Utilize sequential write

bandwidth on disk
● Configuration:

JDBC driver
connection url:

logDevice=<path>

Performance tip:
Use separate disks for data and log device

JDBC Driver = a driver supporting the JDBC™ API

2007 JavaOneSM Conference | Session TS-45170 | 10

Disk Activity Data and log
on separate

disks

Data and log
on same

disk

Disk head movement
for 5 seconds of
database activity

2007 JavaOneSM Conference | Session TS-45170 | 11

Performance Tip 2:
Tune Database Buffer Size
● Cache of frequently

used data pages in
memory

● Cache-miss leads to
read from disk

● Size:
● default 4 MB
● derby.storage.pageCacheSize

Performance tip:
Increase the size of the database buffer to get

frequently accessed data in memory

2007 JavaOneSM Conference | Session TS-45170 | 12

Performance Tip 3:
Trade Durability for Performance
Log device configuration:
● Disk’s write cache:

● Disabled
● Enabled

● Disable durability:
derby.system.durability=test

● log flushed to disk after
commit

WARNING: Write cache reduces probability of
successful recovery after power failure

2007 JavaOneSM Conference | Session TS-45170 | 13

Log Device Configuration:
Effect on Durability

Durability tip:
Disable the disk’s write cache on the log device

durability
= test

Write
cache

No write
cache

durability
= test

Write
cache

No write
cache

0

1

2

3

4

5

6

7

8

9

10
Process Crash Power Failure

Te
st Loss of updates

Successful
Recovery

2007 JavaOneSM Conference | Session TS-45170 | 14

Performance Tip 4:
Use Embedded Java DB
Performance advantages:
● Saves inter-process or

server communication
● Reduces CPU usage
● Reduces hardware cost
Potential issues:
● Scalability (one machine)
● JVM software configuration

Application

JDBC Software

Java DB

2007 JavaOneSM Conference | Session TS-45170 | 15

GlassFish Project and Java DB:
Client-Server vs. Embedded:
Example

Client-Server Embedded
0

10
20
30
40
50
60
70
80
90

100
110
120
130

Throughput

Client-Server Embedded
0

2.5
5

7.5
10

12.5
15

17.5
20

22.5
25

27.5
30

32.5
35

37.5

CPU Usage (ms)

Java DB Glassfish

GlassFish
JDBC Software

GlassFish

JDBC Software

Java DB

Java DB

2007 JavaOneSM Conference | Session TS-45170 | 16

Agenda
Java DB Introduction
Configuring Java DB for Performance
Programming Tips
Understanding Java DB Performance
Open Source Database Performance

2007 JavaOneSM Conference | Session TS-45170 | 17

Performance Tip 5:
Use Prepared Statements
● Compilation of SQL statements is expensive:
Statement s = c.createStatement();
while (...) {

s.executeQuery(“SELECT * FROM t WHERE a = “ + id);
}

● generates Java bytecode and loads generated classes
● Prepared statements eliminate this cost:
PreparedStatement s =

c.prepareStatement(“SELECT * FROM t WHERE a = ?”);
while (...) {

s.setInt(1, id);
s.executeQuery();

}
● generated Java bytecode can be JIT compiled

2007 JavaOneSM Conference | Session TS-45170 | 18

Use Prepared Statements: Example

Pre-
pared-

Statement
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

System time
User time

C
PU

 u
sa

ge
 (m

s/
tx

)

Throughput

Performance tip:
USE prepared statements—and REUSE them

CPU Usage

2007 JavaOneSM Conference | Session TS-45170 | 19

Performance Tip 6:
Help the Database to Perform
● Use indexes to optimize frequently used

access paths:
CREATE INDEX indexName ON tableName (column)

● Table scan: reads the entire table
● Index: finds the data by reading a few blocks

● Close JDBC software objects after in use
● Connections, Statements, ResultSets, Streams

● Use transactions—do not rely on auto-commit
● Particularly for insert/update/delete operations

2007 JavaOneSM Conference | Session TS-45170 | 20

Agenda
Java DB Introduction
Configuring Java DB for Performance
Programming Tips
Understanding Java DB Performance
Open Source Database Performance

2007 JavaOneSM Conference | Session TS-45170 | 21

Performance Tip 7:
Know the Load
● Know the load on the database:

● derby.language.logStatementText=true
● All executed queries written to derby.log

● Know how the queries are executed:
● derby.language.logQueryPlan=true

● Use OS and Java tools to find resource usage:
● CPU, memory, disk IO for log and data device

Performance tip:
Use the available tools to understand what the

database is doing and where resources are spent

2007 JavaOneSM Conference | Session TS-45170 | 22

Performance Tip 8:
Query Plan and Run-time Statistics
● Enable/disable tracing of query plan:

● SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1)
● SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(0)

● Enable/disable timing information in query plan:
● SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1)
● SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(0)

● Retrieve query plan for individual queries:
● SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS()

2007 JavaOneSM Conference | Session TS-45170 | 23

Example:
Query Plan and Run-time Statistics

// enable run-time statistics
Statement s = c.createStatement();
s.executeUpdate("CALL SYSCS_UTIL.SYSCS_SET_RUNTIMESTATISTICS(1)");
s.executeUpdate("CALL SYSCS_UTIL.SYSCS_SET_STATISTICS_TIMING(1)");

// execute query
ResultSet rs = s.executeQuery("SELECT T1.c2 from T1, T2

where T1.c2 = T2.c2 and T1.c2 < 800");
while (rs.next()) {}
rs.close();

// retrieve query plan and run-time statistics
rs = s.executeQuery("VALUES

SYSCS_UTIL.SYSCS_GET_RUNTIMESTATISTICS()");
rs.next();
String str = rs.getString(1);
System.out.println("Query Plan: " + str);

2007 JavaOneSM Conference | Session TS-45170 | 24

T2

Proj

T1

Join

Understanding the Query Plan (1)
CodeStatement Text:

SELECT T1.c2 from T1, T2
where T1.c2 = T2.c2 and T1.c2 < 800

Parse Time: 1
Bind Time: 5
Optimize Time: 16
Generate Time: 3
Compile Time: 25
Execute Time: 52

Project-Restrict ResultSet (4):
Number of opens = 1
Rows seen = 800
Rows filtered = 0

optimizer estimated row count: 753.00
optimizer estimated cost: 349.01

2007 JavaOneSM Conference | Session TS-45170 | 25

Understanding the Query Plan (2)
Source result set:

Hash Exists Join ResultSet:
Number of opens = 1
Rows seen from the left = 800
Rows seen from the right = 800
Rows filtered = 0
Rows returned = 800

constructor time (milliseconds) = 0
open time (milliseconds) = 31
next time (milliseconds) = 21
close time (milliseconds) = 0

optimizer estimated row count: 753.00
optimizer estimated cost: 349.01

T2

Proj

T1

Join

2007 JavaOneSM Conference | Session TS-45170 | 26

T2

Proj

Understanding the Query Plan (3)
Right result set:

Hash Scan ResultSet for T1 using index T1_i2 at read
committed isolation level using instantaneous share row
locking:

Number of opens = 800
Hash table size = 800
Rows seen = 800
scan information:

Number of columns fetched=1
Number of pages visited=6
Number of rows qualified=800
Number of rows visited=801
Scan type=btree
start position: None
stop position: >= on first 1 column(s)

optimizer estimated row count: 753.00
optimizer estimated cost: 186.27

T1

Join

2007 JavaOneSM Conference | Session TS-45170 | 27

Proj

Join

Understanding the Query Plan (4)
Left result set:

Index Scan ResultSet for T2 using index T2_i2 at read
committed isolation level using instantaneous share row
locking chosen by the optimizer

Number of opens = 1
Rows seen = 800
Rows filtered = 0
scan information:

Number of columns fetched=1
Number of pages visited=6
Number of rows qualified=800
Number of rows visited=801
Scan type=btree
start position: None
stop position: >= on first 1 column(s)

optimizer estimated row count: 753.00
optimizer estimated cost: 162.74

T1 T2

2007 JavaOneSM Conference | Session TS-45170 | 28

Performance Tip 9:
Optimizer Overrides
● Override execution strategy selected by optimizer
● Force use of specific index:

SELECT * FROM t1 --DERBY-PROPERTIES index=t1_c1
WHERE c1=1

● Force use of constraint:
SELECT * FROM t1 --DERBY-PROPERTIES constraint=c
WHERE c1=1 and c2=3

● Force specific JOIN order and JOIN strategy:
SELECT * FROM –-DERBY-PROPERTIES joinOrder=FIXED
t1,t2 –-DERBY-PROPERTIES joinStrategy=NESTEDLOOP
WHERE t1.c1=t2.c1

● Join strategies: HASH and NESTEDLOOP

2007 JavaOneSM Conference | Session TS-45170 | 29

Optimizer Overrides Example
● SELECT t1.c2 FROM –-DERBY-PROPERTIES joinOrder=FIXED

t1, t2 –-DERBY-PROPERTIES joinStrategy=NESTEDLOOP
WHERE t1.c2 = t2.c2

Estimated cost
None 2311 12.0

2505 12.0
3404 14.7

FIXED and NESTEDLOOP 3404 14.4

Optimizer overide CPU (ms)

joinOrder=FIXED
joinStrategy=NESTEDLOOP

Performance tip:
Use optimizer overrides—but only when needed

2007 JavaOneSM Conference | Session TS-45170 | 30

Performance Tip 10:
Understand Locking Issues
● Lock-based concurrency control
● Isolation level:

● Reducing isolation level increases concurrency
● Lock escalation:

● Default: escalation from row locks to table locks
when 5000 locks are set on the table

● derby.locks.escalationThreshold=100
● LOCK TABLE t1 IN {SHARE|EXCLUSIVE} MODE

● Deadlock tracing:
● derby.locks.monitor=true
● derby.locks.deadlockTrace=true

2007 JavaOneSM Conference | Session TS-45170 | 31

Understand Locking Issues
Retrieve lock information:

SELECT * FROM SYSCS_DIAG.LOCK_TABLE
XID |TYPE |MODE|TABLENAME |LOCKNAME |STATE|INDEXNAME
--
186 |ROW |X |T2 |(1,9) |GRANT|
184 |ROW |S |T2 |(1,9) |WAIT |
188 |ROW |X |T1 |(1,11) |GRANT|
186 |ROW |S |T1 |(1,11) |WAIT |
186 |ROW |S |T1 |(1,1) |GRANT|SQL070425023
188 |ROW |S |T1 |(1,1) |GRANT|SQL070425023
184 |ROW |X |T1 |(1,7) |GRANT|
188 |ROW |S |T1 |(1,7) |WAIT |
186 |TABLE|IX |T2 |Tablelock |GRANT|
184 |TABLE|IS |T2 |Tablelock |GRANT|

2007 JavaOneSM Conference | Session TS-45170 | 32

Agenda
Java DB Introduction
Configuring Java DB for Performance
Programming Tips
Understanding Java DB Performance
Open Source Database Performance

2007 JavaOneSM Conference | Session TS-45170 | 33

Performance Improvements
● Embedded:

● Reduced synchronization and context switches
● Reduced CPU usage
● Reduced number of disk updates to log device
● Concurrent read/writes on data device

● Client-server:
● Improved streaming of LOBs

● SQL Optimizer:
● Improved optimization

Java DB 10.3

30–150%
increased

throughput on
simple
queries

2007 JavaOneSM Conference | Session TS-45170 | 34

Upgrading to Sun JDK version 6 and Java DB 10.3 alpha

Performance Improvement:
Example

Java DB embedded:

Load: Select one record in a table

Java DB client-server:

2007 JavaOneSM Conference | Session TS-45170 | 35

Comparing Performance
Databases:
● Java DB 10.3 alpha

● Embedded
● Client-server

● PostgreSQL 8.1.8
● MySQL 5.0.33

● With InnoDB

Load clients:
1. Select load:

1 single-record select

2. Update load:
3 updates, 1 insert, 1 select

Test Configuration:
● “Out of the box”
● 50 MB database buffer
● Log and data on separate

disks

Open-Source Databases

2007 JavaOneSM Conference | Session TS-45170 | 36

Throughput: Single-record Select
Main-memory database (10 MB): Disk-based database (10 GB):

2007 JavaOneSM Conference | Session TS-45170 | 37

Throughput: Update Load
Main-memory database (10 MB): Disk-based database (10 GB):

2007 JavaOneSM Conference | Session TS-45170 | 38

Summary

Java DB Performs!—Comparable to competition

● Trade-offs between durability and performance
● Know your requirements and select carefully

● Know what influences performance
● Java DB configuration
● User application

● Tips and tools to find and solve performance
bottlenecks

2007 JavaOneSM Conference | Session TS-45170 | 39

For More Information
● Java DB: http://developers.sun.com/javadb/
● Apache Derby: http://db.apache.org/derby/
● derby-user@apache.org

● Discuss experiences, get help, give feedback
● derby-dev@apache.org

● Discuss developer issues

2007 JavaOneSM Conference | Session TS-4517 | 40

Q&A

2007 JavaOneSM Conference | Session TS-45170 |

TS-45170

Java™ DB Performance
Olav Sandstå
Senior Staff Engineer
Sun Microsystems
http://developers.sun.com/javadb/

