JavaOne

Mike Keith
Oracle Corp.
http://otn.oracle.com/jpa

TS-4568

2007 JavaOne®M Conference | Session TS-4568 | iava.sun.com/iavaone

JavaOne

GoalGoal

2007 JavaOneSM Conference | Session TS-4568 | java.sun.com/javaone

& Sun

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference Session TS-4568

JavaOne

Agenda

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

ﬁﬁ'uu 2007 JavaOneSM Conference Session TS-4568

@D Sun

Background

Unifying POJO persistence technology
into a standard enterprise API

Part of Enterprise JavaBeans™ (EJB™) 3.0
specification, but is separately documented

May be used in either Java Platform, Enterprise
Edition (Java EE platform) or Java Platform,
Standard Edition (Java SE platform)

Superior ease of use within host container
Client API with local transactions in Java SE platform

Service Provider Interface (SPI) for
container/persistence provider pluggability

2007 JavaOne®sM Conference | Session TS-4568 | 5

JavaOne

Primary Features

POJO-based persistence model
- Simple Java class files—not components

Supports traditional O-O modelling concepts
* Inheritance, polymorphism, encapsulation, etc.

Standard abstract relational query language

Standard O/R mapping metadata
+ Using annotations and/or XML

Portability across providers (implementations)

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 6 java.sun.com/javaone

JavaOne

Where Are We Now?

» JPA 1.0 finalized in May 2006

- Released as part of Java EE 5 platform

 All major vendors have implemented
or are working towards offering EJB 3.0
specification/JPA

- Developer interest and adoption proving
to be extremely strong

» 80-90% of useful ORM features specified
- Additional features will be added to JPA 2.0

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 7 java.sun.com/javaone

JavaOne

Implementations

 Persistence provider vendors include:
+ Oracle, Sun/TopLink Essentials (RI)
- Eclipse JPA—EclipselLink Project
- BEA Kodo/Apache OpenJPA
- RedHat/JBoss Hibernate
- SAP JPA

- JPA containers
+ Sun, Oracle, SAP, BEA, JBoss, Spring 2.0

- |IDEs
- Eclipse, NetBeans™ IDE, IntelliJ, JDeveloper

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 8 java.sun.com/javaone

JavaOne

Agenda

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

ﬁﬁ'uu 2007 JavaOneSM Conference Session TS-4568

JavaOne

Forces Acting Upon Us

Portability Features

Simplicity |

D Sun 2007 JavaOneSM Conference | Session TS-4568 | 10 java.sun.com/javaone

JavaOne

Portability vs. Added Value

Innovation Is Good!
Vendors are expected to add features their
customers ask for and need

Popular features will be moved into the JPA spec
Less used features shouldn’t clutter the API

Corollary 1: We will always have to live with the
presence of non-standard features

Corollary 2: If you are ever in the position of
needing a feature that is not in the spec then you
will be glad Corollary 1 is true

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 11 java.sun.com/javaone

JavaOne

Accessing Vendor Features

* Vendor features show up in different forms
 Persistence properties
* Query hints
+ Casting to vendor-specific class
» Customization code
* Vendor-specific annotations
- Additional proprietary XML descriptors

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 12 java.sun.com/javaone

JavaOne

Agenda

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

'o‘ﬁlﬁh’ 2007 JavaOneSM Conference Session TS-4568

Integrating the Proprietary

* Hooks are built into JPA to support vendor-
specific features at two different levels

+ Persistence unit properties
* Query hints

- Unrecognized options must be ignored
by the provider

* Provides source code and compile-time
portability

* Not necessarily semantically portable

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 14 java.sun.com/javaone

JavaOne

D Sun

Persistence Unit Properties

Set of optional key-value properties specified
In persistence.xml file

Apply to the entire persistence unit

May have multiple vendor properties specifying
the same or different things

Property only has meaning to the vendor
that defines and interprets it

2007 JavaOneSM Conference | Session TS-4568 | 15 java.sun.com/javaone

JavaOne

Persistence Unit Properties

<persistence>
<persistence-unit name=“HR">
<properties>
<property
name="toplink.logging. thread”
value="“false” />
<property
name="toplink.cache.shared.default”
value="“false” />
</properties>
</persistence-unit>
</persistence>

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 16 java.sun.com/javaone

JavaOne

Query Hints

* Vendor directives may be defined statically in
named query metadata (annotations or XML)
- Applied at query execution time

@NamedQuery (name="Trade. findBySymbol”,

query="SELECT t FROM Trade t “ +

“WHERE t.symbol = :sym”,
hints={

@QueryHint (
name="toplink.pessimistic-lock”,
value="“Lock”),

@QueryHint (
name="openjpa.ReadLockLevel”,
value=“write”) })

2007 JavaOneSM Conference | Session TS-4568 | 17 java.sun.com/javaone

D Sun

JavaOne

Query Hints

- May be defined dynamically using the Query API
* More flexible because any Java object
may be passed in as the value
- Lose source-code portability if object is
vendor-specific

Query query = em.createQuery (
“SELECT t FROM Trade t WHERE t.symbol = :sym”) ;

query.setHint (“toplink.pessimistic-lock”, “Lock”) ;
.setHint (“openjpa.ReadlLockLevel” “write”) ;
.setParameter (“sym” , “ORCL")
.getResultList() ;

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 18 java.sun.com/javaone

@D Sun

Pessimistic Transactions

Optimistic concurrency is built into JPA,
but no support for pessimistic locking is specified

Will likely be addressed in a future JPA release

All credible JPA implementations support
pessimistic locks in some way or another

No completely portable way to pessimistically
lock, but many provide query hints like those
shown in previous slides

EntityManager lock() method can be used
with optimistic locking, and error handling

2007 JavaOne®sM Conference | Session TS-4568 | 19

" Java DataBase Connectivity
(JDBC™) Connection Settings

Resource-level JDBC technology settings
are vendors responsibility

Need to specify the four basic JDBC technology
properties to obtain driver connections

Driver class, URL, username, password

The property keys will be different, but the values
for a given JDBC technology data source will be
the same for all vendors

Used when not in a container, or when managed
data sources are not available or not desired

@ Sun 2007 JavaOne®sM Conference | Session TS-4568 | 20

o JDBC Technology Connection

Settings
<properties>
<!-- TopLink -->

<property name="“toplink.jdbc.driver”
value=“oracle. jdbc.Driver” />

<property name="“toplink. jdbc.url”
value="“jdbc:oracle:thin:@localhost:1521:XE" />

<property name="toplink.]jdbc.user
value="“scott”/>

<property name="“toplink. jdbc.password”
value=“tiger” />

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 21 java.sun.com/javaone

s
——

JavaOne

JDBC Technology Connection
Settings

<!-- OpenJPA -->

<property name="openjpa.ConnectionDriverName"
value=“oracle. jdbc.Driver” />

<property name="openjpa.ConnectionURL"
value="jdbc:oracle:thin:@localhost:1521:XE" />

<property name="openjpa.ConnectionUserName"
value="scott"/>

<property name="openjpa.ConnectionPassword"
value=“tiger"/>

</properties>

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 22 java.sun.com/javaone

JavaOne

DDL Generation

- Standard enables it but does not currently dictate
that providers support it

» Mapping metadata specifies how DDL should
be generated

* Vendors may offer differing levels of support,
including:
+ Generating DDL to a file only
+ Generating and executing DDL in DB
+ Dropping existing tables before creating new ones

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 23 java.sun.com/javaone

JavaOne

DDL Generation

<properties>

<!-- TopLink -->

<property
name="toplink.ddl-generation"
value="create-tables"/>

<!-—- OpenJPA -->

<property
name="openjpa. jdbc.SynchronizeMappings"
value=“buildSchema" />

</properties>

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 24 java.sun.com/javaone

JavaOne

Database Platform

> No standard way to define the database platform
being used at the back end

* If provider knows the database then it can:
+ Generate corresponding SQL
- Make use of db-specific features and types
- Make adjustments for db-specific constraints
and limitations

- Implementations usually automatically discover
database platform

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 25 java.sun.com/javaone

JavaOne

Database Platform

<properties>

<!-- TopLink -->

<property
name="toplink. target-database"
value="Derby" />

<!-—- OpenJPA -->

<property
name="openjpa.jdbc.DBDictionary"
value="derby" />

</properties>

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 26 java.sun.com/javaone

JavaOne

Logging

» Users want to control over logging, but vendors
use different logging APIs

» Can usually configure to use one of the well-
known logging APls

* java.util.logging, log4d, etc.

- Common requirement is to configure the logging
level to show the generated SQL

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 27 java.sun.com/javaone

JavaOne

Logging

<properties>

<!-- TopLink -->

<property
name="toplink.logging.level"
value="FINE" />

<!-- OpendPA -->

<property
name="openjpa.Log"
value="Query=TRACE, SQL=TRACE"/>

</properties>

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 28 java.sun.com/javaone

JavaOne

Agenda

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

'o‘ﬁlﬁh’ 2007 JavaOneSM Conference Session TS-4568

s
——

JavaOne

Casting to Implementation
Artifacts

Cast specification-defined interface to a vendor
Implementation type

public Employee pessimisticReadl (int id) {
Employee emp =
em. find (Employee.class, id);

UnitOfWork uow = (TopLinkEntityManager)
em.getUnitOfWork () ;

uow.refreshAndLockObject (emp, LOCK) ;

return emp;

}

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 30 java.sun.com/javaone

o Casting to Implementation
Artifacts

public Employee pessimisticRead2 (int id) {

Query q = em.createQuery (
“SELECT e FROM Employee e “ +
“WHERE e.id = :e_id”);

q.setParameter (“e id”, id);
((ObjectLevelReadQuery)
((TopLinkQuery) q.getDatabaseQuery()))
.acquirelocks () ;

return g.getSingleResult() ;
}

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 31 java.sun.com/javaone

@D Sun

Customization

Customization opens the door to any amount
of twiddling

Can change or set additional vendor metadata

Customization class has compile-time
dependencies, but limits the scope of them

Convenient place to stash vendor-specific
feature code—if you change providers you know
exactly where to look first

Write “default” code, if possible, so that even
If the vendor code is not present the application
will still work

2007 JavaOne®sM Conference | Session TS-4568 | 32

JavaOne

Customization Using Properties

<properties>

<!-- TopLink -->

<property
name="toplink.session.customizer"
value="acme .MySessionCustomizer" />

<property
name="toplink.descriptor.customizer.Employee"
value="acme.MyDescriptorCustomizer" />

</properties>

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 33 java.sun.com/javaone

JavaOne

Customization Using Properties

public class MySessionCustomizer
implements SessionCustomizer ({

public void customize (Session session) ({
session.setProfiler (new PerformanceProfiler()) ;

}
}

public class MyDescriptorCustomizer
implements DescriptorCustomizer ({

public void customize (ClassDescriptor desc) ({
desc.disableCacheHits () ;

}
}

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 34 java.sun.com/javaone

JavaOne

S Sun

Customizing Queries

May have lots of pre-existing queries in
proprietary vendor query format

May want to access functionality in a custom
or vendor-specific query language

Once they are added to the vendor
EntityManager then they are accessible
as normal JPA named queries

Can migrate them to JPQL or port them
to a different vendor when/as required

2007 JavaOne®sM Conference | Session TS-4568 | 35

S,
=
JEVE]

JavaOne

Customizing a Query

public class MySessionCustomizer
implements SessionCustomizer {

public void customize (Session session) ({
DatabaseQuery query =
session.getQuery (“"Employee.findAll”) ;
StoredProcedureCall call =
new StoredProcedureCall() ;
call.setProcedureName ("Read All Employees") ;
query.setCall (call);

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 36 java.sun.com/javaone

JavaOne

Customizing a Query
In entity code

GEntity

@NamedQuery (name="Employee. findAll",
query="SELECT e FROM Employee e")

public class Employee { ... }

In component code:
return

em.createNamedQuery ("Employee.findAll")
.getResultList () ;

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 37 java.sun.com/javaone

JavaOne

Vendor Annotations

import javax.persistence.Entity;
import oracle.toplink.annotations.Cache;
import org.apache.openjpa.persistence.DataCache;

@Entity

@Cache (disable-hits=TRUE) // TopLink annotation
@DataCache (enabled=false) // OpenJPA annotation
public class Employee {

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 38 java.sun.com/javaone

JavaOne

Agenda

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

ﬁﬁ'uu 2007 JavaOneSM Conference Session TS-4568

JavaOne

PK With Relationship

+ Sometimes in the data model the primary key
Includes one or more foreign key columns

* In the object model this means the identifier
includes the identifier of a related entity

- Relationship must exist when the entity
s first created

- Relationship may not change over the lifetime
of the entity

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 40

JavaOne

PK With Relationship

- Each department may have many projects,
but they must all have different names

- Many projects may have the same name,
but only if they belong to different departments

PROJECT

DEPT

PK ID H O< PK NAME

PK,FK| DEPT_ID

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 41 java.sun.com/javaone

JavaOne

PK With Relationship

/* Compound PK class */
public class ProjectId implements Serializable ({

int deptId;
String name;

public ProjectId() ({}
public ProjectId(int deptId, String name) ({

this.deptId = deptId;
this.name = name;

@ Sun 2007 JavaOneSM Conference | Session TS-4568 | 42 java.sun.com/javaone

JavaOne

}

& Sun

PK With Relationship

/* PK class (cont’d) */
public int getDeptId() { return deptlId; }
public String getName () { return name; }

public boolean equals (Object o) {
return ((o instanceof ProjectId) &&
name .equals (((ProjectId)o) .getName()) &&
deptId == ((ProjectId)o) .getDeptId())
}
public int hashCode () {
return name.hashCode () + deptId;

2007 JavaOneSM Conference | Session TS-4568 | 43 java.sun.com/javaone

JavaOne

& Sun

PK With Relationship

/* The Project entity class */
@Entity @IdClass (ProjectId.class) h
public class Project {

@Column (name="DEPT ID", Do we make the Id

insertable="false" ,_ mapping (@Column) read-
updatable="false") only or the relationship
QId private int deptId; (@JoinColumn) mapping?

@Id private String name; 1

@ManyToOne @JoinColumn (name="DEPT ID")
private Department department;

2007 JavaOneSM Conference | Session TS-4568 | 44 java.sun.com/javaone

S Sun

PK With Relationship

Depends on:
The vendor
How you use the entity

Some vendors support one or the other, or both

If you set the relationship when creating a Project
and persist it without filling in the dept id then you
might make the dept id read-only

If you set the dept id and then persist the Project
then you might make the relationship read-only

2007 JavaOneSM Conference | Session TS-4568 | 45

JavaOne

Agenda

Background and Status

The Portability Struggle

Built-in Strategies

Other Strategies

Voice of Warning (A Case Study)
Review and Summary

'o‘ﬁlﬁh’ 2007 JavaOneSM Conference Session TS-4568

JavaOne

Review

Persistence properties and query hints normally
offer compile-time and runtime portability

Class casts introduce compile time and runtime
dependencies

Vendor annotations introduce compile-time
dependencies

Customization provides a “pluggable”
dependency that can be easily removed

All of these may and often will result in subtle
runtime dependencies

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 47 java.sun.com/javaone

|avaOne

Summary

No spec can or ever will offer everything
to everyone

JPA must (and does) provide ways for vendors
to add value and support features for their users

Vendors may also use other approaches to make
features available

Developers should be aware of non-portable
features, and consequences of using them

Spec is well-positioned to add new features
as requested by the community

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 48 java.sun.com/javaone

JavaOne

For More Information

* Technical Sessions

+ TS-4902: Java Persistence API: Best Practices & Tips
Friday, 10:50AM

* Resources
* http://otn.oracle.com/jpa

- Books -
(?"q

- Pro EJB 3: Java Persistence APl s

Java Persistence API

Mike Keith & Merrick Schincariol
(Foreword by Rod Johnson)

@Sun 2007 JavaOneSM Conference | Session TS-4568 | 49 java.sun.com/javaone

JavaOne

2007 JavaOne®M Conference | Session TS-4568 | 50 iaua.sun.com/iauaone

JavaOne

Mike Keith
Oracle Corp.
http://otn.oracle.com/jpa

TS-4568

2007 JavaOne®M Conference | Session TS-4568 | iava.sun.com/iavaone

