
2007 JavaOneSM Conference | Session TS-4568 |

TS-4568

Java™ Persistence API:
Portability Do’s and Don’ts

Mike Keith
Oracle Corp.
http://otn.oracle.com/jpa

2007 JavaOneSM Conference | Session TS-4568 | 2

To learn more about Java™ Persistence
API (JPA), what the portability issues are,
and what you need to know to write more
portable code.

GoalGoal

2007 JavaOneSM Conference | Session TS-4568 | 3

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 4

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 5

Background

• Unifying POJO persistence technology
into a standard enterprise API

• Part of Enterprise JavaBeans™ (EJB™) 3.0
specification, but is separately documented

• May be used in either Java Platform, Enterprise
Edition (Java EE platform) or Java Platform,
Standard Edition (Java SE platform)
• Superior ease of use within host container
• Client API with local transactions in Java SE platform

• Service Provider Interface (SPI) for
container/persistence provider pluggability

2007 JavaOneSM Conference | Session TS-4568 | 6

Primary Features

• POJO-based persistence model
• Simple Java class files—not components

• Supports traditional O-O modelling concepts
• Inheritance, polymorphism, encapsulation, etc.

• Standard abstract relational query language
• Standard O/R mapping metadata

• Using annotations and/or XML
• Portability across providers (implementations)

2007 JavaOneSM Conference | Session TS-4568 | 7

• JPA 1.0 finalized in May 2006
• Released as part of Java EE 5 platform

• All major vendors have implemented
or are working towards offering EJB 3.0
specification/JPA

• Developer interest and adoption proving
to be extremely strong

• 80–90% of useful ORM features specified
• Additional features will be added to JPA 2.0

Where Are We Now?

2007 JavaOneSM Conference | Session TS-4568 | 8

• Persistence provider vendors include:
• Oracle, Sun/TopLink Essentials (RI)
• Eclipse JPA—EclipseLink Project
• BEA Kodo/Apache OpenJPA
• RedHat/JBoss Hibernate
• SAP JPA

• JPA containers
• Sun, Oracle, SAP, BEA, JBoss, Spring 2.0

• IDEs
• Eclipse, NetBeans™ IDE, IntelliJ, JDeveloper

Implementations

2007 JavaOneSM Conference | Session TS-4568 | 9

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 10

Portability Features

Simplicity

Forces Acting Upon Us

2007 JavaOneSM Conference | Session TS-4568 | 11

Innovation Is Good!
• Vendors are expected to add features their

customers ask for and need
• Popular features will be moved into the JPA spec
• Less used features shouldn’t clutter the API

Corollary 1: We will always have to live with the
presence of non-standard features
Corollary 2: If you are ever in the position of
needing a feature that is not in the spec then you
will be glad Corollary 1 is true

Portability vs. Added Value

2007 JavaOneSM Conference | Session TS-4568 | 12

• Vendor features show up in different forms
• Persistence properties
• Query hints
• Casting to vendor-specific class
• Customization code
• Vendor-specific annotations
• Additional proprietary XML descriptors

Accessing Vendor Features

2007 JavaOneSM Conference | Session TS-4568 | 13

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 14

• Hooks are built into JPA to support vendor-
specific features at two different levels
• Persistence unit properties
• Query hints

• Unrecognized options must be ignored
by the provider

• Provides source code and compile-time
portability
• Not necessarily semantically portable

Integrating the Proprietary

2007 JavaOneSM Conference | Session TS-4568 | 15

• Set of optional key-value properties specified
in persistence.xml file

• Apply to the entire persistence unit
• May have multiple vendor properties specifying

the same or different things
• Property only has meaning to the vendor

that defines and interprets it

Persistence Unit Properties

2007 JavaOneSM Conference | Session TS-4568 | 16

<persistence>
<persistence-unit name=“HR”>

<properties>
<property

name=“toplink.logging.thread”
value=“false”/>

<property
name=“toplink.cache.shared.default”
value=“false”/>

</properties>
</persistence-unit>

</persistence>

Persistence Unit Properties

2007 JavaOneSM Conference | Session TS-4568 | 17

• Vendor directives may be defined statically in
named query metadata (annotations or XML)

• Applied at query execution time

@NamedQuery(name=“Trade.findBySymbol”,
query=“SELECT t FROM Trade t “ +

“WHERE t.symbol = :sym”,
hints={
@QueryHint(

name=“toplink.pessimistic-lock”,
value=“Lock”),

@QueryHint(
name=“openjpa.ReadLockLevel”,
value=“write”) })

Query Hints

2007 JavaOneSM Conference | Session TS-4568 | 18

Query Hints

• May be defined dynamically using the Query API
• More flexible because any Java object

may be passed in as the value
• Lose source-code portability if object is

vendor-specific

Query query = em.createQuery(
“SELECT t FROM Trade t WHERE t.symbol = :sym”);

query.setHint(“toplink.pessimistic-lock”,“Lock”);
.setHint(“openjpa.ReadLockLevel” “write”);
.setParameter(“sym”,“ORCL”)
.getResultList();

2007 JavaOneSM Conference | Session TS-4568 | 19

• Optimistic concurrency is built into JPA,
but no support for pessimistic locking is specified

• Will likely be addressed in a future JPA release
• All credible JPA implementations support

pessimistic locks in some way or another
• No completely portable way to pessimistically

lock, but many provide query hints like those
shown in previous slides

• EntityManager lock() method can be used
with optimistic locking, and error handling

Pessimistic Transactions

2007 JavaOneSM Conference | Session TS-4568 | 20

Java DataBase Connectivity
(JDBC™) Connection Settings

• Resource-level JDBC technology settings
are vendors responsibility

• Need to specify the four basic JDBC technology
properties to obtain driver connections
• Driver class, URL, username, password

• The property keys will be different, but the values
for a given JDBC technology data source will be
the same for all vendors

• Used when not in a container, or when managed
data sources are not available or not desired

2007 JavaOneSM Conference | Session TS-4568 | 21

<properties>
...
<!–- TopLink -->
<property name=“toplink.jdbc.driver”

value=“oracle.jdbc.Driver”/>
<property name=“toplink.jdbc.url”

value=“jdbc:oracle:thin:@localhost:1521:XE”/>
<property name=“toplink.jdbc.user

value=“scott”/>
<property name=“toplink.jdbc.password”

value=“tiger”/>

JDBC Technology Connection
Settings

2007 JavaOneSM Conference | Session TS-4568 | 22

...
<!–- OpenJPA -->
<property name="openjpa.ConnectionDriverName"

value=“oracle.jdbc.Driver”/>
<property name="openjpa.ConnectionURL"

value="jdbc:oracle:thin:@localhost:1521:XE"/>
<property name="openjpa.ConnectionUserName"

value="scott"/>
<property name="openjpa.ConnectionPassword"

value=“tiger"/>
...

</properties>

JDBC Technology Connection
Settings

2007 JavaOneSM Conference | Session TS-4568 | 23

• Standard enables it but does not currently dictate
that providers support it

• Mapping metadata specifies how DDL should
be generated

• Vendors may offer differing levels of support,
including:
• Generating DDL to a file only
• Generating and executing DDL in DB
• Dropping existing tables before creating new ones

DDL Generation

2007 JavaOneSM Conference | Session TS-4568 | 24

<properties>
...
<!–- TopLink -->
<property

name="toplink.ddl-generation"
value="create-tables"/>

<!–- OpenJPA -->
<property

name="openjpa.jdbc.SynchronizeMappings"
value=“buildSchema"/>

...
</properties>

DDL Generation

2007 JavaOneSM Conference | Session TS-4568 | 25

• No standard way to define the database platform
being used at the back end

• If provider knows the database then it can:
• Generate corresponding SQL
• Make use of db-specific features and types
• Make adjustments for db-specific constraints

and limitations
• Implementations usually automatically discover

database platform

Database Platform

2007 JavaOneSM Conference | Session TS-4568 | 26

<properties>
...
<!–- TopLink -->
<property

name="toplink.target-database"
value="Derby"/>

<!–- OpenJPA -->
<property

name="openjpa.jdbc.DBDictionary"
value="derby"/>

...
</properties>

Database Platform

2007 JavaOneSM Conference | Session TS-4568 | 27

• Users want to control over logging, but vendors
use different logging APIs

• Can usually configure to use one of the well-
known logging APIs
• java.util.logging, log4J, etc.

• Common requirement is to configure the logging
level to show the generated SQL

Logging

2007 JavaOneSM Conference | Session TS-4568 | 28

<properties>
...
<!–- TopLink -->
<property

name="toplink.logging.level"
value="FINE"/>

<!–- OpenJPA -->
<property

name="openjpa.Log"
value=“Query=TRACE, SQL=TRACE"/>

...
</properties>

Logging

2007 JavaOneSM Conference | Session TS-4568 | 29

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 30

• Cast specification-defined interface to a vendor
implementation type

public Employee pessimisticRead1(int id) {
Employee emp =

em.find(Employee.class, id);

UnitOfWork uow = (TopLinkEntityManager)
em.getUnitOfWork();

uow.refreshAndLockObject(emp, LOCK);

return emp;
}

Casting to Implementation
Artifacts

2007 JavaOneSM Conference | Session TS-4568 | 31

public Employee pessimisticRead2(int id) {

Query q = em.createQuery(
“SELECT e FROM Employee e “ +
“WHERE e.id = :e_id”);

q.setParameter(“e_id”, id);
((ObjectLevelReadQuery)
((TopLinkQuery)q.getDatabaseQuery()))

.acquireLocks();

return q.getSingleResult();
}

Casting to Implementation
Artifacts

2007 JavaOneSM Conference | Session TS-4568 | 32

• Customization opens the door to any amount
of twiddling

• Can change or set additional vendor metadata
• Customization class has compile-time

dependencies, but limits the scope of them
• Convenient place to stash vendor-specific

feature code—if you change providers you know
exactly where to look first

• Write “default” code, if possible, so that even
if the vendor code is not present the application
will still work

Customization

2007 JavaOneSM Conference | Session TS-4568 | 33

<properties>
...
<!–- TopLink -->
<property

name="toplink.session.customizer"
value="acme.MySessionCustomizer"/>

<property
name="toplink.descriptor.customizer.Employee"
value="acme.MyDescriptorCustomizer"/>

...
</properties>

Customization Using Properties

2007 JavaOneSM Conference | Session TS-4568 | 34

public class MySessionCustomizer
implements SessionCustomizer {

public void customize(Session session) {
session.setProfiler(new PerformanceProfiler());
}

}

public class MyDescriptorCustomizer
implements DescriptorCustomizer {

public void customize(ClassDescriptor desc) {
desc.disableCacheHits();

}
}

Customization Using Properties

2007 JavaOneSM Conference | Session TS-4568 | 35

• May have lots of pre-existing queries in
proprietary vendor query format

• May want to access functionality in a custom
or vendor-specific query language

• Once they are added to the vendor
EntityManager then they are accessible
as normal JPA named queries

• Can migrate them to JPQL or port them
to a different vendor when/as required

Customizing Queries

2007 JavaOneSM Conference | Session TS-4568 | 36

public class MySessionCustomizer
implements SessionCustomizer {

public void customize(Session session) {
DatabaseQuery query =

session.getQuery(“Employee.findAll”);
StoredProcedureCall call =

new StoredProcedureCall();
call.setProcedureName("Read_All_Employees");
query.setCall(call);

}
}

Customizing a Query

2007 JavaOneSM Conference | Session TS-4568 | 37

@Entity
@NamedQuery(name="Employee.findAll",

query="SELECT e FROM Employee e")
public class Employee { ... }

In component code:
...

return
em.createNamedQuery("Employee.findAll")

.getResultList();
...

Customizing a Query
In entity code

2007 JavaOneSM Conference | Session TS-4568 | 38

import javax.persistence.Entity;
import oracle.toplink.annotations.Cache;
import org.apache.openjpa.persistence.DataCache;

@Entity
@Cache(disable-hits=TRUE) // TopLink annotation
@DataCache(enabled=false) // OpenJPA annotation
public class Employee {

...
}

Vendor Annotations

2007 JavaOneSM Conference | Session TS-4568 | 39

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 40

• Sometimes in the data model the primary key
includes one or more foreign key columns

• In the object model this means the identifier
includes the identifier of a related entity

• Relationship must exist when the entity
is first created

• Relationship may not change over the lifetime
of the entity

PK With Relationship

2007 JavaOneSM Conference | Session TS-4568 | 41

PK With Relationship

• Each department may have many projects,
but they must all have different names

• Many projects may have the same name,
but only if they belong to different departments

PROJECT
PK
PK,FK

NAME
DEPT_ID

DEPT
PK ID

2007 JavaOneSM Conference | Session TS-4568 | 42

/* Compound PK class */
public class ProjectId implements Serializable {

int deptId;
String name;

public ProjectId() {}

public ProjectId(int deptId, String name) {
this.deptId = deptId;
this.name = name;

}

PK With Relationship

2007 JavaOneSM Conference | Session TS-4568 | 43

PK With Relationship
/* PK class (cont’d) */
public int getDeptId() { return deptId; }
public String getName() { return name; }

public boolean equals(Object o) {
return ((o instanceof ProjectId) &&

name.equals(((ProjectId)o).getName()) &&
deptId == ((ProjectId)o).getDeptId());

}
public int hashCode() {

return name.hashCode() + deptId;
}

}

2007 JavaOneSM Conference | Session TS-4568 | 44

/* The Project entity class */
@Entity @IdClass(ProjectId.class)
public class Project {

@Column(name="DEPT_ID",
insertable="false",
updatable="false")

@Id private int deptId;
@Id private String name;

@ManyToOne @JoinColumn(name="DEPT_ID")
private Department department;
...

}

Do we make the Id
mapping (@Column) read-
only or the relationship
(@JoinColumn) mapping?

PK With Relationship

2007 JavaOneSM Conference | Session TS-4568 | 45

• Depends on:
• The vendor
• How you use the entity

• Some vendors support one or the other, or both
• If you set the relationship when creating a Project

and persist it without filling in the dept id then you
might make the dept id read-only

• If you set the dept id and then persist the Project
then you might make the relationship read-only

PK With Relationship

2007 JavaOneSM Conference | Session TS-4568 | 46

Agenda

Background and Status
The Portability Struggle
Built-in Strategies
Other Strategies
Voice of Warning (A Case Study)
Review and Summary

2007 JavaOneSM Conference | Session TS-4568 | 47

Review

• Persistence properties and query hints normally
offer compile-time and runtime portability

• Class casts introduce compile time and runtime
dependencies

• Vendor annotations introduce compile-time
dependencies

• Customization provides a “pluggable”
dependency that can be easily removed

• All of these may and often will result in subtle
runtime dependencies

2007 JavaOneSM Conference | Session TS-4568 | 48

Summary

• No spec can or ever will offer everything
to everyone

• JPA must (and does) provide ways for vendors
to add value and support features for their users

• Vendors may also use other approaches to make
features available

• Developers should be aware of non-portable
features, and consequences of using them

• Spec is well-positioned to add new features
as requested by the community

2007 JavaOneSM Conference | Session TS-4568 | 49

For More Information

• Technical Sessions
• TS-4902: Java Persistence API: Best Practices & Tips

Friday, 10:50AM
• Resources

• http://otn.oracle.com/jpa
• Books

• Pro EJB 3: Java Persistence API

Mike Keith & Merrick Schincariol
(Foreword by Rod Johnson)

2007 JavaOneSM Conference | Session TS-4568 | 50

Q&A

2007 JavaOneSM Conference | Session TS-4568 |

TS-4568

Java™ Persistence API:
Portability Do’s and Don’ts
Mike Keith
Oracle Corp.
http://otn.oracle.com/jpa

