
2007 JavaOneSM Conference | TS-4588 |

TS-4588

Advanced Enterprise
Debugging

Neal Ford

ThoughtWorker/Meme Wrangler
ThoughtWorks
www.thoughtworks.com

ThoughtWorks

2007 JavaOneSM Conference | TS-4588 | 2

What This Session Covers

• Forensic debugging
• Debugging web applications
• Debugging class loaders
• Groovy enterprise debugging
• Automating common tasks

2007 JavaOneSM Conference | TS-4588 | 3

Effective Debugging

• One of the keys to effective debugging is to not
use brute force
• System.out.println()

• Line breakpoints

• There is always a sense of urgency when
debugging—stop and think!
• I know that you are behind schedule, but you’re just

making it worse!
• Step away from the keyboard
• Don’t ever say: “But that’s impossible!”
• Or, “But it works on my machine!”

2007 JavaOneSM Conference | TS-4588 | 4

Forensic Debugging Using
Loggers

• Loggers are the best way to do forensic
debugging

• Logging setup is well documented just about
everywhere

• Use the levels wisely
• If you do need to get down to the “debug” level,

use tools
• grep will help you find just what you are looking for
• Don’t go scroll blind
• Use ChainSaw

2007 JavaOneSM Conference | TS-4588 | 5

Aspects and Loggers

• One of the best uses of Aspects is to inject
logging code

• Logging tests are cheap, but there is still
overhead

• There’s no overhead if the code isn’t there!
• Aspects allow you to specifically target code

only when you need to

2007 JavaOneSM Conference | TS-4588 | 6

Aspects
aspect Logging {

pointcut populate() :
call(public void OrderDb.setDbPool(DBPool)) ||
call(public void ProductDb.setDbPool(DBPool));

before(): populate() {
log.debug("Setting the DbPool");

}
}

2007 JavaOneSM Conference | TS-4588 | 7

Debugging Web Applications

• Firefox developer’s toolbar
• http://www.chrispederick.com/work/firefox/webdeveloper/

• Bookmarklets
• Bookmarks (generally JavaScript™ technology) that

expose information about the page
• It is sometimes amazing how much you can find out
• Search for Bookmarklets

• www.bookmarklets.com/
• www.squarefree.com/bookmarklets/

2007 JavaOneSM Conference | TS-4588 | 8

Tapestry

• Debugging JavaServer Pages™ (JSP™)
technology is tough

• Mixed HTML, JavaScript technology, JSP
technology custom tags, and JSP technology

• Tapestry has the best debugging aid of any
web framework

• Inspector

2007 JavaOneSM Conference | TS-4588 | 9

2007 JavaOneSM Conference | TS-4588 | 10

Debugging Class Loaders

• One of the bane’s of application servers are class
loader issues

• Class loaders are responsible for loading classes within
the VM

• When you execute a Java™ application, the native Java
platform class loader loads (the bootstrap class loader)

• The Virtual Machine for the Java platform (JVM™

machine) loads 2 other class loaders by default
• Extension class loader
• Application class loader

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | TS-4588 | 11

Class Loaders

Bootstrap Classloader

Application Classloader

Extension Classloader

Core Java Class Files

Extensions (javax.*
and classes from the

ext directory)

Your application

2007 JavaOneSM Conference | TS-4588 | 12

Class Loaders

• Class loaders use the delegation model to
load classes
• Each class loader defers to its parent

• In application servers, each deployed
application generally gets its own class loader
• EAR files get a single class loader for both web

and Enterprise JavaBeans™ (EJB™) architecture
• These class loaders are responsible for

loading and unloading classes

2007 JavaOneSM Conference | TS-4588 | 13

Application Server Class Loaders

Bootstrap Classloader

Application Classloader

Extension Classloader

App 1
Classloader
(loads log4j.jar)

App 2
Classloader

App 3
Classloader

2007 JavaOneSM Conference | TS-4588 | 14

Why Should You Care?

• Shared libraries
• Logger packages (like Log4J)
• XML parsers

• You have several options:
• Deploy the shared library on the application

server’s class loader
• Move it to the app server’s lib directory
• Can cause problems

2007 JavaOneSM Conference | TS-4588 | 15

Class Loader Recipe

• If the utility class is required only by your
web application, move it to WEB-INF/lib

• If you have a web application and EJB
architecture that don’t share a class loader
• Make an entry in your manifest file for the EJB

architecture
• Specify all the utility classes using the Classpath entry
• Keep this utility Java Archive (JAR) file either in a

shared location where both web and EJB architecture
can see it (but off the app server’s boot classpath)

2007 JavaOneSM Conference | TS-4588 | 16

Debugging Class Loader
Problems

• You usually don’t see a problem when the class loads
(or fails to load)

• The toString() methods of the Java Development Kit
(JDK™) software class loaders don’t provide much information

• What to do when you get the dreaded ClassNotFound
exception
1. Look for the line where your class loader’s loadClass() call

is involved
2. Figure out what class loader is used there
3. Figure out the parent class loaders recursively until you find the

bootstrap class loader
4. Figure out why the class cannot be found by any of these class

loaders

2007 JavaOneSM Conference | TS-4588 | 17

Debugging Class Loader
Problems

• Some causes:
• An archive, directory, or other source for the classes

was not added to the class loader asked to load the
class, or to its parent

• A class loader’s parent is not set correctly
• The wrong class loader is used to load the class

in question

2007 JavaOneSM Conference | TS-4588 | 18

Debugging Class Loader
Problems

• The 3rd option happens very easily
• In Java 2 Platform, Enterprise Edition (J2EE™

platform), an EJB bean is required to use the
thread context class loader
(Thread.currentThread.getContextClas
sLoader()) to load classes

• Some developers use Class.forName() to
load a class without specifying the thread context
class loader as the current class loader

2007 JavaOneSM Conference | TS-4588 | 19

Symbolic-Link Class Not Found

• If a symbolic link cannot be found, a
NoClassDefFoundError occurs
• This means that the code has been successfully

compiled but can’t find the referenced class at runtime

• How to investigate this problem:
1. Find the NoClassDefFoundError and print out its

stack trace
2. Find the topmost line in the stack trace that is not

class-loader-related; This most likely indicates the
class of the symbolic link that was not found

2007 JavaOneSM Conference | TS-4588 | 20

Symbolic-Link Class Not Found

• How to investigate this problem:
3. Figure out the class loader of the class containing

the offending symbolic link
4. List the parent class loaders recursively
5. Figure out why the class is not available to any

of these class loaders
• Potential causes:

• An archive, directory, or other source for the classes was not
added to the class loader asked to load the class, or to its parent

• A class loader’s parent is not set correctly
• Symbolic links in a class are unaccessible by the containing

class’s class loader

2007 JavaOneSM Conference | TS-4588 | 21

Last Resort to Solve CL Issues

• Patch the JDK’s Software Class Loader with
an improved toString() method
1. Take the source of java.lang.ClassLoader,

java.security.SecureClassLoader and
java.net.URLClassLoader and copy them

2. Add the desired toString() method and make sure
that every class loader prints out its own address by
using super.toString() so that you can test if class
loaders from the same class are identical or not

3. JAR them up
4. Add -Xbootclasspath/p:<the archive you just have

created> to your script that starts Java platform

2007 JavaOneSM Conference | TS-4588 | 22

Last Resort

• We need three pieces of information from
the class loader
• An indicator of the instance
• What archives are available to this class loader
• Information about the parent class loader

2007 JavaOneSM Conference | TS-4588 | 23

Sample toString() for
ClassLoader

public String toString() {
if(getParent() != null) {

return "java.net.URLClassLoader:\n"
+ "hashcode: " + hashCode() + "\n"
+ "URLs: " + java.util.Arrays.asList(getURLs())
+ + "\n parent { " + getParent() + " }\n";

} else {
return "java.net.URLClassLoader:\n"

+ "hashcode: " + hashCode() + "\n"
+ "URLs: " + java.util.Arrays.asList(

getURLs()) + "\n";
}

}

2007 JavaOneSM Conference | TS-4588 | 24

Investigating Class Loader Info

• Three solutions
• Use a debugger

• Find the parent(s) right away
• Not persistent

• Re-write the classloader code to
create better toString() method

• Invasive
• Persistent

• Use aspects
• Inject your logging code

• Remove it when done

2007 JavaOneSM Conference | TS-4588 | 25

Dynamic Server-Side Debugging

• Sometimes you need a little snippet of
information from the application server that is
very difficult to get from a debugger without
Herculean effort

• Fiddle
• A servlet that includes Groovy and a way to

dynamically execute Groovy scripts
• Groovy allows you to ferret out all sorts of

server-side information

2007 JavaOneSM Conference | TS-4588 | 26

Fiddle Scripts

• Need to know which XML parser is being loaded?

• Interested in a particular Java Naming and
Directory Interface™ (J.N.D.I.) API resource?

import javax.xml.parsers.DocumentBuilderFactory as dbf
clazz = dbf.newInstance().newDocumentBuilder().class
clazz.protectionDomain.codeSource.location

import javax.naming.*
ctx = new InitialContext()
ctx.lookup("java:/DefaultDS")

2007 JavaOneSM Conference | TS-4588 | 27

Fiddle Scripts

• You can use JavaScript technology as well
• Need to get a loader path?

importPackage(net.java.dev.fiddle);

clazz = new FiddleServlet().getClass();
clazz.getProtectionDomain().getCodeSource().getLocation();

2007 JavaOneSM Conference | TS-4588 | 28

Fiddle Scripts

• Using JavaScript technology to get session info
output = "";

keys = session.getAttributeNames();

while(keys.hasMoreElements()) {
key = keys .nextElement();
output = output + key + "=" + session.getAttribute(key) + "
";

}

output;

2007 JavaOneSM Conference | TS-4588 | 29

Fiddle Scripts

• Want to see all session variables?
output = ""
sessionVars = [:]
for (n in session.attributeNames) {
sessionVars[n] = session.getAttribute(n)

}
sessionVars.each { s |
output = output + "${s.key} = ${s.value}
"

}
output

2007 JavaOneSM Conference | TS-4588 | 30

Automating Debugging Tasks

• How many times have you walked the same path
through a web application to get to the point that
you want to debug?

• Stop working so hard for your computer!
• Set up jWebUnit to “walk through” the application

for you to a certain point
• jWebUnit is designed for unit testing but it has

great automation for driving web applications
• While you are there, go ahead and write

a unit test!

2007 JavaOneSM Conference | TS-4588 | 31

Automating Debugging Tasks

• What if you need to interact with the application
once you’ve gotten to the critical point?

• Selenium
• A testing tool for web applications
• Selenium uses JavaScript technology and IFrames to

embed a test automation engine in your browser
• This technique works with any JavaScript

technology-enabled browser
• Developed by ThoughtWorks for internal use
• It was so useful that we’ve open-sourced it
• Version 1.0

2007 JavaOneSM Conference | TS-4588 | 32

How Does Selenium Work?

332007 JavaOneSM Conference | Session XXXX |

DEMO
Selenium

2007 JavaOneSM Conference | TS-4588 | 34

Selenium as a Debugging Aid

• Test cases are trivial to write
• Use Selenium to “walk” your web application

to the point where you want to debug it
• Either:

• Take over by hand
• Use Selenium’s step behavior to check

individual behavior
• Selenium now has an IDE to record tests

2007 JavaOneSM Conference | TS-4588 | 35

Words of Debugging Wisdom

• From The Pragmatic Programmer:
• “Embrace the fact that debugging is just problem solving,

and attack it as such”
• Tip #24: Fix the problem, not the blame
• Tip #25: Don’t Panic

• The Pragmatic Programmer has lots of information
about the debugging mindset

• Don’t use brute force!
• Work the problem
• Apply as much ingenuity to debugging as to the

design that got you here

362007 JavaOneSM Conference | Session XXXX |

Questions?
Samples and Slides at
www.nealford.com
Neal Ford
www.nealford.com
nford@thoughtworks.com
memeagora.blogspot.com

This work is licensed under a Creative Commons Attribution-ShareAlike 2.5 License:
http://creativecommons.org/licenses/by-sa/2.5/

2007 JavaOneSM Conference | TS-4588 |

TS-4588

Advanced Enterprise
Debugging

Neal Ford

ThoughtWorker/Meme Wrangler
ThoughtWorks
www.thoughtworks.com

ThoughtWorks

