
2007 JavaOneSM Conference | Session TS-4856 |

TS-4856

Architecture of Popular
Object-Relational Mapping
Providers

Craig Russell
Mitesh Meswani
Larry White

2007 JavaOneSM Conference | Session TS-4856 | 2

Goal

How do architectures of Object-Relational
Mapping (ORM) frameworks affect
performance?

2007 JavaOneSM Conference | Session TS-4856 | 3

Agenda
Concepts of ORM
Major User-Visible Components
Major Internal Components
Performance Methodology
Key Findings/Recommendations
Call to Action

2007 JavaOneSM Conference | Session TS-4856 | 4

Concepts of ORM
● Business Logic

● Persistence aware
● Uses persistence API

● Persist, remove, query

● Domain Objects
● Plain old Java objects
● No persistence code

● Persistence Provider
● Implements persistence API

● Mapping Metadata
● Domain to database

Database

Business
Logic

Domain
Objects

Persistence
Provider

Mapping
Metadata

2007 JavaOneSM Conference | Session TS-4856 | 5

Agenda
Concepts of ORM
Major User-Visible Components
Major Internal Components
Performance Methodology
Key Findings/Recommendations
Call to Action

2007 JavaOneSM Conference | Session TS-4856 | 6

Persistent Class
● The domain object persisted in database
● Instances might be persistent (or not)

2007 JavaOneSM Conference | Session TS-4856 | 7

Persistence Unit
● Singleton pattern for VM (JNDI)
● DataSource definition
● Metadata for mapping to database

● Entity classes
● Rows, columns, primary/foreign keys

2007 JavaOneSM Conference | Session TS-4856 | 8

Persistence Context
● Represents a collection of entities managed by

a persistence provider on behalf of a single user
● For each persistent identity, there is a unique

entity instance in a given persistence context
● For example—Entities managed by

● Java Persistence API (JPA) EntityManager or
● Java Data Objects (JDO) PersistenceManager

2007 JavaOneSM Conference | Session TS-4856 | 9

Query API
● Provides query using domain model artifacts

● Entity classes
● Persistent fields/properties
● Relationships

● Persistence provider translates to SQL
● Or underlying native query language (QL)
● One domain query translates to one native QL

2007 JavaOneSM Conference | Session TS-4856 | 10

Second Level Cache
● Managed in persistence unit
● Contains entities used at least once by any

persistence context in a persistence unit
● For each persistent identity, contains the

unique entity instance last updated in a
persistence context

● Cached entities can become stale

2007 JavaOneSM Conference | Session TS-4856 | 11

Connection Pooling
● Access to database requires a connection
● Connections are expensive to acquire
● Connection is transactional (or not)
● Connections can be serially reused

2007 JavaOneSM Conference | Session TS-4856 | 12

Field vs. Property Persistence
● Persistent fields

● Fields behave according to Java platform access
modifiers
● Private, protected

● Persistence provider uses reflection or byte code
Enhancement to access fields

● Persistent properties
● JavaBeans™ architecture style get/set methods

● Both user contract and persistence provider
● No validation

● Violates separation of concerns

2007 JavaOneSM Conference | Session TS-4856 | 13

Byte-code Enhancement
● Class byte codes modified for efficiency

● Direct access to fields without reflection
● Automatic change tracking
● Lazy field loading

● Requires changes to deployment
● Dynamic instrumentation via Java technology agent

[Java Platform, Standard Edition (Java SE platform)]
● Dynamic instrumentation via transformer

[Java Platform, Enterprise Edition (Java EE platform)]

● Static enhancement provides more options

a.k.a. weaving, transforming

2007 JavaOneSM Conference | Session TS-4856 | 14

Agenda
Concepts of ORM
Major User-Visible Components
Major Internal Components
Performance Methodology
Key Findings/Recommendations
Call to Action

2007 JavaOneSM Conference | Session TS-4856 | 15

Major Internal Components
● Persistence unit

● DataSource (Connection Factory)
● Statement cache, query cache
● Persistent class metadata
● Second-level cache

● Persistence context
● Entity maps/lists

● Transactional entities: map<key, entity>
● Modified entities: list<entity>

● SQL generator/resultSet handler

2007 JavaOneSM Conference | Session TS-4856 | 16

Internal Architecture
Persistence Unit

Data Access
•SQL Generation

•ResultSet Processing
•Statement Caching
•Connection Pooling

Persistence Context

Modified
List

Cache
Manager

Mapping
Metadata

Connection/
Statement

Pool
ID

Map
2nd Level
Cache

Transactional
Cache

2007 JavaOneSM Conference | Session TS-4856 | 17

Lazy Loading/Change Detection
● OpenJPA uses byte code enhancement
● JPOX uses byte code enhancement
● TopLink essentials uses byte code enhancement

● Reflection for change detection
● Hibernate uses reflection for change detection

● Doesn't load lazily with field persistence

2007 JavaOneSM Conference | Session TS-4856 | 18

Agenda
Concepts of ORM
Major User-Visible Components
Major Internal Components
Performance Methodology
Key Findings/Recommendations
Call to Action

2007 JavaOneSM Conference | Session TS-4856 | 19

Can we really do that?
Performance Methodology
● Performance is difficult to measure (technically)

● Choose a workload
● Choose a configuration
● Choose products to measure
● Measure, verify, repeat (until exhaustion)

● Performance is difficult to measure (legally)
● Restrictions, covenants, licenses
● Open Source Changes Everything

● Well… almost

2007 JavaOneSM Conference | Session TS-4856 | 20

How do we do that?
Performance Methodology
● Theorize—Predict relative performance

● Qualitative understanding of architecture
● Caching, data access, change detection

● Conduct experiments
● Analyze and correlate with measurements
● Modify workload and repeat

2007 JavaOneSM Conference | Session TS-4856 | 21

Why should we NOT do that?
Performance Methodology
● “All workloads are different”

● Workloads are composites of atomic use cases
● Typically 5 to 15 use cases
● Find, query, retrieve object graph, update, delete

● Vary mix and correlation
● “eBay is different from amazon”

2007 JavaOneSM Conference | Session TS-4856 | 22

Why should we NOT do that?
Performance Methodology
● “Micro benchmarks are trivial”

● Workloads are composites
● Each individual operation is trivial but in aggregate

represents real work
● Quantity has a quality all its own

2007 JavaOneSM Conference | Session TS-4856 | 23

Why should we NOT do that?
Performance Methodology
● “Why should you trust a vendor?”

● ORM frameworks are open source
● We don’t need to trust vendors
● The community can engage this problem
● Users can modify to suit their requirements

2007 JavaOneSM Conference | Session TS-4856 | 24

Measuring Performance
● Workload driver

● Operations (create, read, update, query, navigate)
● Mix (e.g. 10%, 60%, 5%, 20%, 5%)
● Timing requirements (90% percentile within 2 seconds)

● Operations implementation
● Use persistence adapter to do work
● Translate operation to adapter API

● Scale number of parallel threads
● Measure operations per second
● Increase parallelism until metric decreases

2007 JavaOneSM Conference | Session TS-4856 | 25

DIY Open Source Project
● Allows users to run their own workloads
● Sample workloads and configurations provided
● URL http://diy.dev.java.net
● Suggestions and contributions encouraged

2007 JavaOneSM Conference | Session TS-4856 | 26

Connection Pooling Performance

40 50 60 70 80 90 100 110 120 130
65
70
75
80
85
90
95

100
105
110
115
120
125
130
135
140

No Pool
Pool

Users

O
pe

ra
tio

ns
 p
er

 s
ec

on
d

Hibernate Connection Pooling

2007 JavaOneSM Conference | Session TS-4856 | 27

TopLink Essentials Field vs.
Property

50 100 150 200 250 300 350
100

125

150

175

200

225

250

275

300

325

350

375

Field
Property

Users

O
ps
 p
er
 s
ec
on

d

Field vs. Property

2007 JavaOneSM Conference | Session TS-4856 | 28

Use Second Level Cache

0 25 50 75 100 125

20

40

60

80

100

120

140

160

180

200

220

No Cache
Cache

Users

O
pe

ra
tio

ns
 p

er
 s
ec

on
d

OpenJPA Second Level Cache

2007 JavaOneSM Conference | Session TS-4856 | 29

Use Byte-code Enhancement

50 100 150 200 250 300 350
150

175

200

225

250

275

300

325

350

375

Enhanced
Not Enhanced

Users

O
pe

ra
tio

ns
 p

er
 s
ec

on
d

TopLink Essentials Enhancement

2007 JavaOneSM Conference | Session TS-4856 | 30

…And recommendations
Key Findings
● Use second-level cache
● Use connection pooling
● Use byte-code enhancement
● Use field persistence

2007 JavaOneSM Conference | Session TS-4856 | 31

Call to Action
● Performance tuning is required

● For all but the most trivial applications
● It’s much too hard to tune persistence
● Performance monitoring should be automatic

● Should have to turn it off if you don’t want it
● Should enable access strategy tuning

● Part of every database access

● Take a look at DIY Project

2007 JavaOneSM Conference | Session TS-4856 | 32

Q&A
Craig Russell
Mitesh Meswani
Larry White

http://diy.dev.java.net

2007 JavaOneSM Conference | Session TS-4856 |

TS-4856

Architecture of Popular
Object-Relational Mapping
Providers

Craig Russell
Mitesh Meswani
Larry White

