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Goal 

How do architectures of Object-Relational 
Mapping (ORM) frameworks affect 
performance?
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Concepts of ORM
● Business Logic

● Persistence aware
● Uses persistence API

● Persist, remove, query

● Domain Objects
● Plain old Java objects
● No persistence code

● Persistence Provider
● Implements persistence API

● Mapping Metadata
● Domain to database

Database
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Persistent Class
● The domain object persisted in database
● Instances might be persistent (or not)
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Persistence Unit
● Singleton pattern for VM (JNDI)
● DataSource definition
● Metadata for mapping to database

● Entity classes
● Rows, columns, primary/foreign keys
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Persistence Context
● Represents a collection of entities managed by

a persistence provider on behalf of a single user
● For each persistent identity, there is a unique 

entity instance in a given persistence context
● For example—Entities managed by

● Java Persistence API (JPA) EntityManager or 
● Java Data Objects (JDO) PersistenceManager
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Query API
● Provides query using domain model artifacts

● Entity classes
● Persistent fields/properties
● Relationships

● Persistence provider translates to SQL
● Or underlying native query language (QL)
● One domain query translates to one native QL
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Second Level Cache
● Managed in persistence unit
● Contains entities used at least once by any 

persistence context in a persistence unit
● For each persistent identity, contains the 

unique entity instance last updated in a 
persistence context

● Cached entities can become stale
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Connection Pooling
● Access to database requires a connection
● Connections are expensive to acquire
● Connection is transactional (or not)
● Connections can be serially reused
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Field vs. Property Persistence
● Persistent fields

● Fields behave according to Java platform access 
modifiers
● Private, protected

● Persistence provider uses reflection or byte code 
Enhancement to access fields

● Persistent properties
● JavaBeans™ architecture style get/set methods

● Both user contract and persistence provider
● No validation

● Violates separation of concerns



2007 JavaOneSM Conference   |   Session TS-4856   | 13

Byte-code Enhancement
● Class byte codes modified for efficiency

● Direct access to fields without reflection
● Automatic change tracking
● Lazy field loading

● Requires changes to deployment
● Dynamic instrumentation via Java technology agent 

[Java Platform, Standard Edition (Java SE platform)]
● Dynamic instrumentation via transformer 

[Java Platform, Enterprise Edition (Java EE platform)]

● Static enhancement provides more options

a.k.a. weaving, transforming
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Major Internal Components
● Persistence unit

● DataSource (Connection Factory)
● Statement cache, query cache
● Persistent class metadata
● Second-level cache

● Persistence context
● Entity maps/lists

● Transactional entities: map<key, entity>
● Modified entities: list<entity>

● SQL generator/resultSet handler



2007 JavaOneSM Conference   |   Session TS-4856   | 16

Internal Architecture
Persistence Unit

Data Access
•SQL Generation

•ResultSet Processing
•Statement Caching
•Connection Pooling
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Lazy Loading/Change Detection
● OpenJPA uses byte code enhancement
● JPOX uses byte code enhancement
● TopLink essentials uses byte code enhancement

● Reflection for change detection
● Hibernate uses reflection for change detection

● Doesn't load lazily with field persistence
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Can we really do that?
Performance Methodology
● Performance is difficult to measure (technically)

● Choose a workload
● Choose a configuration
● Choose products to measure
● Measure, verify, repeat (until exhaustion)

● Performance is difficult to measure (legally)
● Restrictions, covenants, licenses
● Open Source Changes Everything

● Well… almost
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How do we do that?
Performance Methodology
● Theorize—Predict relative performance

● Qualitative understanding of architecture
● Caching, data access, change detection

● Conduct experiments
● Analyze and correlate with measurements
● Modify workload and repeat
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Why should we NOT do that?
Performance Methodology
● “All workloads are different”

● Workloads are composites of atomic use cases
● Typically 5 to 15 use cases
● Find, query, retrieve object graph, update, delete

● Vary mix and correlation
● “eBay is different from amazon”
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Why should we NOT do that?
Performance Methodology
● “Micro benchmarks are trivial”

● Workloads are composites 
● Each individual operation is trivial but in aggregate 

represents real work
● Quantity has a quality all its own
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Why should we NOT do that?
Performance Methodology
● “Why should you trust a vendor?”

● ORM frameworks are open source
● We don’t need to trust vendors
● The community can engage this problem
● Users can modify to suit their requirements
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Measuring Performance
● Workload driver

● Operations (create, read, update, query, navigate)
● Mix (e.g. 10%, 60%, 5%, 20%, 5%)
● Timing requirements (90% percentile within 2 seconds)

● Operations implementation
● Use persistence adapter to do work
● Translate operation to adapter API

● Scale number of parallel threads
● Measure operations per second
● Increase parallelism until metric decreases
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DIY Open Source Project
● Allows users to run their own workloads
● Sample workloads and configurations provided
● URL http://diy.dev.java.net
● Suggestions and contributions encouraged
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Connection Pooling Performance
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TopLink Essentials Field vs. 
Property
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Use Second Level Cache
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Use Byte-code Enhancement
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…And recommendations
Key Findings
● Use second-level cache
● Use connection pooling
● Use byte-code enhancement
● Use field persistence
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Call to Action
● Performance tuning is required

● For all but the most trivial applications
● It’s much too hard to tune persistence
● Performance monitoring should be automatic

● Should have to turn it off if you don’t want it
● Should enable access strategy tuning

● Part of every database access

● Take a look at DIY Project
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http://diy.dev.java.net
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