
2007 JavaOneSM Conference | Session TS-4902 |

Session TS-4902

Java™ Persistence API: Best
Practices and Tips

Rima Patel Sriganesh
Marina Vatkina
Mitesh Meswani

Sun Microsystems, Inc.

2007 JavaOneSM Conference | Session TS-4902 | 2

Goal of This Talk

Present the Best Practices, Gotchas,
and Tips to help you develop Java™

Persistence API applications!

2007 JavaOneSM Conference | Session TS-4902 | 3

Agenda
● Persistence Context
● Entities
● Concurrency
● Query Tips
● Resources and Q&A

2007 JavaOneSM Conference | Session TS-4902 | 4

Agenda
● Persistence Context

● Persistence Context Types
● Threading Model Mismatch and Injection
● Persistence Context and Caching

● Entities
● Concurrency
● Query Tips
● Resources and Q&A

2007 JavaOneSM Conference | Session TS-4902 | 5

Container vis-a-vis Application
Managed Entity Managers
● Container-managed entity manager

● Container propagates persistence context
● Always look up or inject entity manager in a managed environment

instead of passing entity manager proxy as a variable

● Application-managed entity manager
● The only option outside of a Java Platform, Enterprise Edition

(Java EE Platform) 5 container
● Persistence.createEntityManagerFactory() is the only portable way

to create EMF in a non-Java EE Platform 5 web container
● Do not forget to call close() on EntityManager

Guidelines

2007 JavaOneSM Conference | Session TS-4902 | 6

Extended vis-a-vis Transactional
Scoped Persistence Context
● Transaction-scoped persistence context

● Choose it when your business transaction is stateless (spans a
single request from the user)

● Ideal place of injection/creation—request’s entry and exit points

● Extended-scoped persistence context
● Choose it when your business transaction spans multiple requests

from the user
● Ideal place of injection/creation—business transaction’s entry and

exit points (for example—a stateful session bean)

● Beware of “propagation” implications of mixing
and matching container-managed transaction-
scoped and extended-scoped persistence
contexts

Guidelines

2007 JavaOneSM Conference | Session TS-4902 | 7

Injection and Threading
Model Mismatch
● Field injection is only supported for instance variables
● Threading model of Java Persistence API

Components
● EntityManagerFactory is thread-safe
● EntityManager is not thread-safe

● Threading model of Java EE Platform components
● Servlets are multi-threaded
● Session and application scoped JavaServer™ Faces

technology managed beans are multi-threaded
● Request scoped JavaServer Faces technology managed

beans are single-threaded
● Enterprise JavaBeans™ (EJB™) are single-threaded

2007 JavaOneSM Conference | Session TS-4902 | 8

Injecting EntityManager in Java
EE Platform Components
● Never inject EntityManager into your Servlet or

JavaServer Faces application/session scoped
managed beans

● Instead, within Servlet or JavaServer Faces
application/session scoped managed bean methods

● Lookup EntityManager using Java Naming and Directory Interface™

(J.N.D.I.)
● OR create EntityManager from EntityManagerFactory

● No caution is needed when injecting Java
Persistence API components within Enterprise Beans
● Consider refactoring your applications to use EJB

technology as a facade to entities

Guidelines

2007 JavaOneSM Conference | Session TS-4902 | 9

Persistence Context and Caching
@Stateless
public class EmployeeDAO {

@PersistenceContext
EntityManager em;

public Employee findById(Integer employeeId) {
// Load an instance of Employee in the persistence context
// cache

Employee employee1 = em.find(Employee.class,
employeeId);
...

// Imagine that someone changes the last name of this Employee in
// the meantime inside or outside

...
// Now get an instance of the same Employee again

Employee employee2 = em.find(Employee.class,
employeeId);
...

Do you think employee2.getLastname() will
return you an updated last name?

Consider this example

2007 JavaOneSM Conference | Session TS-4902 | 10

Persistence Context and Caching

...

// And in the same method, try retrieving Employee by issuing
// a dynamic query

Employee employee3 = (Employee)em.createQuery
(“SELECT e FROM Employee e WHERE e.ID = :ID”)
.setParameter(“ID”, employeeId)
.getSingleResult();

...
}

...
}

Also, do you think that hitting the database
again through dynamic query will get you an
updated last name for our employee?

Consider this example(Continued)

2007 JavaOneSM Conference | Session TS-4902 | 11

Lessons Learned
● The entities managed by persistence context

● Are not refreshed until
● EntityManager.refresh() is explicitly invoked

● Are not synchronized with the database until
● EntityManager.flush() is invoked implicitly or explicitly OR
● The underlying transaction commits

● Remain managed until
● Extended-scoped: EntityManager.clear() is invoked
● Transaction-scoped: the transaction commits or

EntityManager.clear() is invoked

Persistence context as a first-level cache

2007 JavaOneSM Conference | Session TS-4902 | 12

Second-level Cache
● An application might want to share entity state

across various persistence contexts
● This is the domain of second-level (L2) cache
● If caching is enabled, entities not found in persistence

context, will be loaded from L2 cache, if found
● Java Persistence API does not specify support of

a second level cache
● However, most of the persistence providers provide

built-in or integrated support for second-level cache(s)
● Basic support for second level cache in Project

GlassFish™—TopLink Essentials is turned on by default

2007 JavaOneSM Conference | Session TS-4902 | 13

L1 and L2

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ Platform.
Source:http://weblogs.java.net/blog/guruwons/archive/2006/09/understanding_t.html

Putting it all together

Session
Bean

Session
Bean

Session
Bean

Persistence
Context

(EntityManager)

Persistence
Context

(EntityManager)

Persistence
Context

(EntityManager)

L2 Cache
(Shared
Cache)

Entity managers for a specific PersistenceUnit on a given Java Virtual Machine (JVM™)

2007 JavaOneSM Conference | Session TS-4902 | 14

Agenda
● Persistence Context
● Entities

● Access Types
● Generated Primary Keys
● Inheritance Hierarchy
● Relationships

● Concurrency
● Query Tips
● Resources and Q&A

2007 JavaOneSM Conference | Session TS-4902 | 15

Access Types
● Defined by annotations placement or XML overrides
● Field-based

● Separates client view from provider access
● Validation/conversion logic in getters/setters for client only

● Property-based
● CMP migration
● Validation/conversion logic in getter/setter for the provider and the

client
@Entity public class PartTimeEmployee extends Employee {

public void setRate(int newrate) {
if (rate > newrate)

logger.warning(“Lowering rate to “ + newrate);
rate = newrate;

}

2007 JavaOneSM Conference | Session TS-4902 | 16

Generated Primary Keys
● Types of generators

● TABLE—portable across databases and providers
● SEQUENCE
● IDENTITY
● AUTO

● Sequence may not be portable across databases
● For portability across providers, specify generator

to give mapping details
@Id
@GenerateValue(strategy=TABLE, generator=”myGenerator”)
long id;

2007 JavaOneSM Conference | Session TS-4902 | 17

Mapping of Inheritance
Hierarchies
Domain model

Employee

int id
String firstName
String lastName
Department dept

PartTimeEmployee

int rate

FullTimeEmployee

double salary

2007 JavaOneSM Conference | Session TS-4902 | 18

Mapping of Inheritance
Hierarchies

EMPLOYEE

ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK,
RATE int NULL,
SALARY double NULL,
DISCRIM varchar(30)

● Benefits
● Simple
● No joins required

● Drawbacks
● Not normalized
● Requires columns

corresponding to subclasses’
state be nullable

● Table can have too
many columns

Single table per class mapping strategy

2007 JavaOneSM Conference | Session TS-4902 | 19

Mapping of Inheritance
Hierarchies
● Benefits

● Normalized database
● Database view same as

domain model
● Easy to evolve domain model

● Drawbacks
● Poor performance in deep

hierarchies
● Poor performance for

polymorphic queries and
relationships

● Might require discriminator
column

ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK,
DISCRIM varchar(30)

ID int PK FK,
RATE int NULL

ID int PK FK,
SALARY double NULL

Joined subclass mapping strategy EMPLOYEE

PARTTIMEEMPLOYE
E

FULLTIMEEMPLOYEE

2007 JavaOneSM Conference | Session TS-4902 | 20

Mapping of Inheritance
Hierarchies
● Benefits

● No need for joins if only leaf
classes are entities

● Drawback
● Not normalized
● Poor performance when

querying non-leaf entities -
unions

● Poor support for polymorphic
relationships

● Support for this strategy has
not been mandated by the
current specification

ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK

Table per concrete class strategy

ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK,
SALARY double NULL

ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK,
RATE int NULL

EMPLOYEE

PARTTIMEEMPLOYE
E

FULLTIMEEMPLOYEE

EMPLOYEE

2007 JavaOneSM Conference | Session TS-4902 | 21

Managing Relationships

@Entity public class Employee {
@Id private int id;
private String firstName;
private String lastName;
@ManyToOne
private Department dept;

...
}
@Entity public class Department {

@Id private int id;
private String name;
@OneToMany(mappedBy = "dept")
private Collection<Employee> emps = new ...;

...
}

Domain model

2007 JavaOneSM Conference | Session TS-4902 | 22

Managing Relationships

public int method1(...) {
Employee e = new Employee(...);
Department d = new Department(1, ...);
em.getTransaction().begin();
e.setDepartment(d);

em.persist(e);
em.persist(d);
em.getTransaction().commit();

return d.getEmployees().size();
}

Lost relationships…

2007 JavaOneSM Conference | Session TS-4902 | 23

Managing Relationships

public int method1(...) {
Employee e = new Employee(...);
Department d = new Department(1, ...);
em.getTransaction().begin();
e.setDepartment(d);
d.getEmployees().add(e); //Manage relationships!
em.persist(e);
em.persist(d);
em.getTransaction().commit();

return d.getEmployees().size();
}

Solved the problem!

2007 JavaOneSM Conference | Session TS-4902 | 24

Managing Relationships

@Stateless
public class MyBean implements BeanInf {

...
public void method1(...) {

Employee e = new Employee(...);
Department d = new Department(1, ...);
e.setDepartment(d);
em.persist(e);
em.persist(d);

}

public int method2(...) {
Department d = em.find(Department.class, 1);
return d.getEmployees().size();

}

Another case—the same problem…

2007 JavaOneSM Conference | Session TS-4902 | 25

Managing Relationships

@Stateless
public class MyBean implements BeanInf {

...
public void method1(...) {

Employee e = new Employee(...);
Department d = new Department(1, ...);
e.setDepartment(d);
d.getEmployees().add(e); //Manage relationships!
em.persist(e);
em.persist(d);

}

public int method2(...) {
Department d = em.find(Department.class, 1);
return d.getEmployees().size();

}

Solution is still the same…

2007 JavaOneSM Conference | Session TS-4902 | 26

Managing Relationships

@Stateless
public class MyBean implements BeanInf {

...
public void method1(...) {

Employee e = new Employee(...);
Department d = new Department(1, ...);
e.setDepartment(d);
em.persist(e);
em.persist(d);

}

public int method2(...) {
Department d = em.find(Department.class, 1);
em.refresh(d);
return d.getEmployees().size();

}

Another solution

2007 JavaOneSM Conference | Session TS-4902 | 27

And “orphan” instances…
Managing Relationships
● What should happen to

● an Employee instance if it’s removed from the
collection of Employees?

● a Department instance if all it’s Employees are
deleted?

● If an instance can’t exist without being
referenced, it’s an “orphan”

● How do I remove “orphan” instances?
● No current spec support for a portable solution
● Must track the changes before calling merge or

remove

2007 JavaOneSM Conference | Session TS-4902 | 28

Navigating Relationships

Query q = em.createQuery(“select d from Department d”);
Collection departments = q.getResultList();
for (Department d : departments) {

System.out.println(d.getEmployees().size());
}

Should I use Fetch Type EAGER or LAZY?

Fetch type dilemma

2007 JavaOneSM Conference | Session TS-4902 | 29

Navigating Relationships
Options…
● EAGER—Too many joins?

SELECT d.id, ..., e.id, ...
FROM Department d left join fetch Employee e
on e.deptid = d.id

● What will it look like if you need to join more
than two tables?

● LAZY—N +1 problem
SELECT d.id, ... FROM Department d // 1 time
SELECT e.id, ... FROM Employee e

WHERE e.deptId = ? // N times
● How many trips to the database will it be if there are

more relationships?

2007 JavaOneSM Conference | Session TS-4902 | 30

Navigating Relationships
● Solution is in the Query string

Query q = em.createQuery(
“select d from Department d
LEFT JOIN FETCH d.employees”);

● Using FETCH JOIN
● Puts you in charge
● Needs careful consideration when to use

● No similar solution for non-relationship fields or
properties (BLOB, CLOB)

The solution

2007 JavaOneSM Conference | Session TS-4902 | 31

And detached entities…
Navigating Relationships
● Accessing a LAZY relationship from a

detached entity is not portable!
● Can get an exception
● Can get null
● Can get a previously cached value—another

problem
● Is there a portable solution?

● Use JOIN FETCH for queries or fetch type EAGER
● Access the collection before the entity is detached

d.getEmployees().size();
● Not flexible
● Can return too many instances

2007 JavaOneSM Conference | Session TS-4902 | 32

What else should I know about fetch type LAZY?
Navigating Relationships
● Only a HINT

● Not required to be supported
● Is the DEFAULT for @…ToMany relationship
● MUST be specified to be used for @…ToOne
● Choose wisely! (Think performance)

2007 JavaOneSM Conference | Session TS-4902 | 33

Why weaving?
Relationships and Weaving
● Weaving is a solution, not a requirement

● Proxy or subclassing
● Bytecode manipulation (weaving or enhancement)

@OneToMany Collection<Employee> emps;
@ManyToOne Department dept;

● Advantages
● Lazy fetching
● More efficient dirty detection

2007 JavaOneSM Conference | Session TS-4902 | 34

What options are there?
Weaving
● Dynamic weaving

● In a Java EE platform container (PU loading)
● With a -javaagent option (Java Platform client)

● Static weaving
● In a non-Java EE Platform container (no requirement to

be supported)
● To be able to deserialize a weaved entity on the

client side
● Requires use of provider-specific tools
● Makes classes non portable

2007 JavaOneSM Conference | Session TS-4902 | 35

Agenda
● Persistence Context
● Entities
● Concurrency

● Locking Mechanisms in Java Persistence API
● Concurrency and Bulk Operations

● Query Tips
● Resources and Q&A

2007 JavaOneSM Conference | Session TS-4902 | 36

Concurrency Options
● “Overly optimistic” concurrency

● No parallel updates expected or detected
● Optimistic concurrency

● Parallel updates detected
● Pessimistic concurrency

● Parallel updates prevented

2007 JavaOneSM Conference | Session TS-4902 | 37

Parallel Updates to Same Object

tx1.begin();
//Joe's employee id is 5
e1 = findPartTimeEmp(5);

//Joe's current rate is $9
e1.raiseByTwoDollar();

tx1.commit();
//Joe's rate will be $11

tx2.begin();
//Joe's employee id is 5
e1 = findPartTimeEmp(5);

...

...

//Joe's current rate is $9
if(e1.getRate() < 10)
e1.raiseByFiveDollar();

...

tx2.commit();
//Joe's rate will be $14

No parallel updates expected or detected

2007 JavaOneSM Conference | Session TS-4902 | 38

How to Guard Against
Parallel Updates?
● Use Optimistic concurrency

● Introduce Version attribute to Employee
public class Employee {

@ID int id;
...
@Version int version;
...

}

● Results in following SQL
“UPDATE Employee SET ..., version = version + 1

WHERE id = ? AND version = readVersion”
● OptimisticLockException if mismatch

2007 JavaOneSM Conference | Session TS-4902 | 39

Parallel Updates to Same Object

tx1.begin();
//Joe's employee id is 5
//e1.version == 1
e1 = findPartTimeEmp(5);

e1.raiseByTwoDollar();

tx1.commit();
//e1.version == 2 in db

tx2.begin();
//Joe's employee id is 5
//e1.version == 1
e1 = findPartTimeEmp(5);

...

...

//Joe's current rate is $9
if(e1.getRate() < 10)
e1.raiseByFiveDollar();

...
//e1.version == 1 in db?
tx2.commit();
//Joe's rate will be $14
//OptimisticLockException

@Version attribute enables detection of parallel updates

2007 JavaOneSM Conference | Session TS-4902 | 40

@Version does not help here…
Using Stale Data for Computation

tx1.begin();
d1 = findDepartment(dId);

//d1's original name is
//”Engrg”
d1.setName(“MarketEngrg”);

//Check d1.version in db
tx1.commit();

tx2.begin();

e1 = findEmp(eId);
d1 = e1.getDepartment();
if(d1's name is “Engrg”)

e1.raiseByTenPercent();

//Check e1.version in db
tx2.commit();
//e1 gets the raise he does
//not deserve

2007 JavaOneSM Conference | Session TS-4902 | 41

Using Stale Data for Computation

tx1.begin();
d1 = findDepartment(dId);

//d1's original name is
//”Engrg”
d1.setName(“MarketEngrg”);

tx1.commit();

tx2.begin();

e1 = findEmp(eId);
d1 = e1.getDepartment();
em.lock(d1, READ);
if(d1's name is “Engrg”)

e1.raiseByTenPercent();

//Check d1.version in db
tx2.commit();
//e1 gets the raise he does
//not deserve
//Transaction rolls back

Read lock ensures non-stable data at commit

2007 JavaOneSM Conference | Session TS-4902 | 42

Write lock prevents parallel updates
Using Stale Data for Computation

tx1.begin();
e1 = findDepartment(dId);

//d1's original name is
//”Engrg”
d1.setName(“MarketEngrg”);

tx1.commit();
//tx rolls back

tx2.begin();

e1 = findEmp(eId);
d1 = e1.getDepartment();
em.lock(d1, WRITE);
em.flush(); //version++ for d1
if(d1's name is “Engrg”)

e1.raiseByTenPercent();

tx2.commit();

2007 JavaOneSM Conference | Session TS-4902 | 43

Optimistic versus Pessimistic
Concurrency
● Pessimistic Concurrency

● Lock the row when data is read in
● Issue “SELECT ... FOR UPDATE” SQL to read data
● Use different connection isolation level

● Pros—Simpler application code
● Cons—Database locks

● No portable support in this version of spec
● Suitable when application has many parallel updates

● Optimistic Concurrency
● Pros—No database locks held
● Cons—Requires a version attribute in schema

Databases are not optimized for rollback
Retries complicate application logic

● Suitable when application has few parallel updates

2007 JavaOneSM Conference | Session TS-4902 | 44

Bulk Updates

tx.begin();
int id = 5; //Joe's employee id is 5
e1 = findPartTimeEmp(id); //Joe's current rate is $9

//Give Big raise
em.createQuery(

“Update Employee set rate = rate * 2”).
executeUpdate();

//Joe's rate is still $9 in this persistence context
if(e1.getRate() < 10)
e1.raiseByFiveDollar();

tx.commit();
//Joe's salary will be $14

Executed directly against database
Data in current persistence context not updated

2007 JavaOneSM Conference | Session TS-4902 | 45

Bulk Updates and Concurrency
tx1.begin();

//”Update Employee set
// rate = rate * 2”
giveBigRaise();

//Version not updated in db
tx1.commit();

tx2.begin();
//Joe's employee id is 5
e1 = findPartTimeEmp(5);

...

...

//Joe's current rate is $9
if(e1.getRate() < 10)
e1.raiseByFiveDollar();

.
//Check e1.version in db
tx2.commit();
//Poor Joe, his rate
//will be $14

Version column not updated

2007 JavaOneSM Conference | Session TS-4902 | 46

Bulk Updates and Concurrency
tx1.begin();

//”Update Employee set
// rate = rate * 2
// version = version + 1”
giveBigRaiseCorrectly();

//Version not updated
//Version updated in db
tx1.commit();

//Joe's rate will be $18

tx2.begin();
//Joe's employee id is 5
e1 = findPartTimeEmp(5);

...

...

//Joe's current rate is $9
if(e1.getRate() < 10)
e1.raiseByFiveDollar();

...

//Check e1.version in db
tx2.commit();
//Poor Joe, his rate
//will be $14
//OptimisticLockException

Explicitly update version column

2007 JavaOneSM Conference | Session TS-4902 | 47

Agenda
● Persistence Context
● OR Mapping
● Concurrency
● Query Tips

● Named Queries
● Dynamic Queries
● Native Queries

● Resources and Q&A

2007 JavaOneSM Conference | Session TS-4902 | 48

Named Queries
● Query compilation cached by providers

@NamedQuery(name ="findByName",
query="SELECT e FROM Employee e WHERE

e.firstName LIKE :name")
...

emps = em.createNamedQuery(“findByName”).
setParameter(“name”, “John%”).getResultList();

● Can be easily externalized into orm.xml
● Refactoring friendly
● Can be easily overridden

● Shares same name space
● Use qualified name—“Employee.findByName”

2007 JavaOneSM Conference | Session TS-4902 | 49

Dynamic Queries
● Not the best practice
● Possible to inject malicious/incorrect query

em.createQuery(“SELECT e FROM Employee e WHERE
e.firstName LIKE '” + userInput + “'”);

● Use parameter markers
em.createQuery(“select e from Employee e where

e.name LIKE :name“);

● The compiled form of dynamic queries might not
be cached

● Might need to use dynamic query for variable
number of parameters
// The IN clause is created in a loop from user
// parameters
em.createQuery(“select e from Employee e where

e.name IN (?1, ?2,...., ?n)“);

userInput = “foo' OR
e.salary > 100000 OR

e.firstName = 'bar”

2007 JavaOneSM Conference | Session TS-4902 | 50

Native Queries
● Use native queries in situations where

● Native database querying facilities are needed OR
● Support for SQL features such as Stored Procedures

is needed
● Carefully evaluate the usage of native queries

because it
● Ties your queries to database schema
● Mostly, persistence provider will do a better job of

writing SQL than us
● Reduces cross-database portability

2007 JavaOneSM Conference | Session TS-4902 | 51

Agenda
● Persistence Context
● Entities
● Concurrency
● Query Tips
● Resources and Q&A

2007 JavaOneSM Conference | Session TS-4902 | 52

For More Information
● Project GlassFish Forum

http://forums.java.net/jive/forum.jspa?forumID=56

● Email
persistence@glassfish.dev.java.net

● java.sun.com/persistence
● Blogs

●blogs.sun.com/marina
●weblogs.java.net/rimapatel
●blogs.sun.com/GlassFishPersistence

2007 JavaOneSM Conference | Session TS-4902 | 53

GlassFish Community

Blog about Project GlassFish for a chance to Win a 52-inch LCD HD TV
Go to java.sun.com/javaee and click “Fish for TV” button on the right

Free to download, deploy and distribute

Simplify development with Java EE
Platform 5
EJB 3.0, JavaServer Faces 1.2, JSP 2.1,
Servlet 2.5, JAX-WS 2.1.1 and JAXB 2.1

Vibrant Ecosystem with over 26 Projects

Over 6900 members and 2.5M downloads

Support: java.sun.com/javaee/support

Adoption: blogs.sun.com/stories

News: blogs.sun.com/theaquarium

JSP = JavaServer Pages™ | JAX-WS = Java APIs for XML Web Services | JAXB = Java Architecture for XML Binding

http://glassfish.java.net/
GlassFish V2 Beta—Available Now!
Production-ready Java EE 5 Platform
Application Server
●Clustering, high availability, load balancing
●Improved performance
●WSIT (Web Services Interoperability Tech)
●Ajax, Scripting and REST-based services
●Comet – enables event-driven Web Apps

GlassFish V3 Themes
Web 2.0 Application Server
●Open, modular, extensible Platform
●Multi-Language: RoR, PHP, JavaScript™
programming language
●Ease-of -use features

2007 JavaOneSM Conference | Session TS-4902 | 54

Q&A

2007 JavaOneSM Conference | Session TS-4902 | 55

Backup Slides

2007 JavaOneSM Conference | Session TS-4902 | 56

How do I get a hold of it?
Container Managed EM
● Injected

@Stateless
public class MyBean implements MyInterface {

@PersistenceContext(unitName = “MyPU”)
private EntityManager em;

}

● Looked up from J.N.D.I. API
@PersistenceContext(name="xyz", unitName="MyPU")
public class MyServlet extends HttpServelet {

public void doGet(...) {
InitialContext ic = new InitialContext();
EntityManager em = (EntityManager)

ic.lookup("java:comp/env/xyz");
}

2007 JavaOneSM Conference | Session TS-4902 | 57

How do I get a hold of it?
Application Managed EM
● Always created from EntityMangerFactory

public class MyServlet extends HttpServlet {

@PersistenceUnit(unitName="MyPU")
private EntityManagerFactory emf;

public void doGet(...) {
EntityManager em = emf.createEntityManager();
....
em.close();

}
}

2007 JavaOneSM Conference | Session TS-4902 | 58

How do I get a hold of an EntityManagerFactory?
Application Managed EM
● Java EE Platform 5 Container

● Injected
@PersistenceUnit EntiyManagerFactory emf;

● Looked up from J.N.D.I. API

● Java Platform, Standard Edition (Java SE
Platform) or non-Java EE Platform 5 Container
EntityManagerFactory emf =

Persistence.createEntityManagerFactory(“MyPU”);
.....
emf.close();

2007 JavaOneSM Conference | Session TS-4902 | 59

Which components support injection?

Application or Container Managed
EM
● Servlet

● Servlets, servlet filters, event listeners
● JavaServer Pages™ (JSP page)

● Tag handlers, tag library event listeners
● JavaServer Faces technology

● Scoped managed beans
● EJB technology

● Beans, interceptors
● Application Client Container

● Main class (static only)

Source:Java EE platform 5 spec, Table EE.5-1Component classes supporting injection

2007 JavaOneSM Conference | Session TS-4902 | 60

Stored Procedures
● Not specified by Java Persistence API
● Three ways to do this

● Can use persistence provider specific support
● Can use the underlying Java DataBase Connectivity

(JDBC™) Connection object, if provider allows it, and
create a CallableStatement

● Can specify User-Defined Functions (UDF) and wrap
SQL Procedures in them
● You can call UDFs through SQL SELECT statements, and

hence, use native queries in Java Persistence API

● Options 1 and 2 locks into the provider whereas
Option 3 is a persistence provider agnostic way

How to invoke them

