JavaOne

Java'" Persistence API: Best

Practices and Tips
Rima Patel Sriganesh

Marina Vatkina
Mitesh Meswani

Sun Microsystems, Inc.

Session TS-4902

2007 JavaOne®M Conference | Session TS-4902 | java.sun.com/javaone

=%

JavaOne

Goal of This Talk

2007 JavaOne®M Conference | Session TS-4902 | java.sun.com/javaone

JavaOne

Agenda

- Persistence Context
- Entities

- Concurrency

- Query Tips

- Resources and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 3 java.sun.com/javaone

JavaOne

Agenda

. Persistence Context

- Persistence Context Types
- Threading Model Mismatch and Injection
- Persistence Context and Caching

- Entities

- Concurrency

- Query Tips

- Resources and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 4 java.sun.com/javaone

Managed Entity Managers

Guidelines

Container-managed entity manager
Container propagates persistence context

Always look up or inject entity manager in a managed environment
instead of passing entity manager proxy as a variable

Application-managed entity manager

The only option outside of a Java Platform, Enterprise Edition
(Java EE Platform) 5 container

Persistence.createEntityManagerFactory() is the only portable way
to create EMF in a non-Java EE Platform 5 web container

Do not forget to call close() on EntityManager

@ Sun

2007 JavaOneSM Conference | Session TS-4902 | 5 java.sun.com/javaone

~mpxtended vis-a-vis Transactional
Scoped Persistence Context

Guidelines

Transaction-scoped persistence context

Choose it when your business transaction is stateless (spans a
single request from the user)

|deal place of injection/creation—request’s entry and exit points

Extended-scoped persistence context

Choose it when your business transaction spans multiple requests
from the user

|deal place of injection/creation—business transaction’s entry and
exit points (for example—a stateful session bean)
Beware of “propagation” implications of mixing
and matching container-managed transaction-
scoped and extended-scoped persistence
contexts

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 6 java.sun.com/javaone

“Injection and Threading
Model Mismatch

Field injection is only supported for instance variables

Threading model of Java Persistence API
Components

EntityManagerFactory is thread-safe
EntityManager is not thread-safe

Threading model of Java EE Platform components
Servlets are multi-threaded

Session and application scoped JavaServer™ Faces
technology managed beans are multi-threaded

Request scoped JavaServer Faces technology managed
beans are single-threaded

Enterprise JavaBeans™ (EJB™) are single-threaded

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 7 java.sun.com/javaone

~~Injecting EntityManager in Java
EE Platform Components

Guidelines

Never inject EntityManager into your Servlet or
JavaServer Faces application/session scoped
managed beans

Instead, within Servlet or JavaServer Faces
application/session scoped managed bean methods

Lookup EntityManager using Java Naming and Directory Interface™
(J.N.D.I)

OR create EntityManager from EntityManagerFactory

No caution is heeded when injecting Java
Persistence APl components within Enterprise Beans

Consider refactoring your applications to use EJB
technology as a facade to entities

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 8 java.sun.com/javaone

JavaOne

Persistence Context and Caching

Consider this example

@Stateless
public class EmployeeDAO { Do you think employee2.getLastname() will
@PersistenceContext return you an updated last name?

EntityManager em;

public Employee findById(Integer employeelId) {
// Load an instance of Employee in the persistence context
// cache
Employee employeel = em.find(Employee.class,
employeelId) ;

// Imagine that someone changes the last name of this Employee in
// the meantime inside or outside

// Now get an instance of the same Employee again

Employee employee2 = em.find(Employee.class,
employeeld) ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 9 java.sun.com/javaone

JavaOne

@ Sun

Persistence Context and Caching

Consider this example(Continued)

Also, do you think that hitting the database
again through dynamic query will get you an
updated last name for our employee?

// And in the same method, try retrieving Employee by issuing
// a dynamic query
Employee employee3 = (Employee)em.createQuery
(“"SELECT e FROM Employee e WHERE e.ID = :ID")
.setParameter (“ID”, employeeId)
.getSingleResult() ;

2007 JavaOneSM Conference | Session TS-4902 | 10 java.sun.com/javaone

JavaOne

[.essons LLearned

Persistence context as a first-level cache
- The entities managed by persistence context
. Are not refreshed until
- EntityManager.refresh() is explicitly invoked

- Are not synchronized with the database until
- EntityManager.flush() is invoked implicitly or explicitly OR
- The underlying transaction commits

- Remain managed until
. Extended-scoped: EntityManager.clear() is invoked

. Transaction-scoped: the transaction commits or
EntityManager.clear() is invoked

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 11 java.sun.com/javaone

JavaOne

Second-level Cache

An application might want to share entity state
across various persistence contexts
This is the domain of second-level (L2) cache
If caching is enabled, entities not found in persistence
context, will be loaded from L2 cache, if found

Java Persistence API does not specify support of
a second level cache

However, most of the persistence providers provide
built-in or integrated support for second-level cache(s)

Basic support for second level cache in Project
GlassFish™—TopLink Essentials is turned on by default

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 12 java.sun.com/javaone

JavaOne

L1 and L2

Putting it all together

Session Session Session
Bean Bean Bean

Persistence Persistence Persistence

Context Context Context

L2 Cache
(Shared

Entity managers for a specific PersistenceUnit on a given Java Virtual Machine (JVM™)

—

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ Platform.
Source:http://weblogs.java.net/blog/guruwons/archive/2006/09/understanding_t.html

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 13 java.sun.com/javaone

JavaOne

Agenda

. Persistence Context

. Entities

- Access Types

. Generated Primary Keys
- Inheritance Hierarchy

- Relationships

- Concurrency
- Query Tips
- Resources and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 14 java.sun.com/javaone

JavaOne

Access Types

- Defined by annotations placement or XML overrides
- Field-based

. Separates client view from provider access
- Validation/conversion logic in getters/setters for client only

. Property-based
- CMP migration
- Validation/conversion logic in getter/setter for the provider and the
client

@Entity public class PartTimeEmployee extends Employee {
public void setRate(int newrate) {
if (rate > newrate)
logger.warning(“Lowering rate to “ + newrate);
rate = newrate,

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 15 java.sun.com/javaone

JavaOne

Generated Primary Keys

. Types of generators

- TABLE—portable across databases and providers
- SEQUENCE

- IDENTITY

. AUTO

. Sequence may not be portable across databases

- For portability across providers, specify generator
to give mapping details

@Id

@GenerateValue (strategy=TABLE, generator="myGenerator”)
long id;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 16 java.sun.com/javaone

% apping 0% Ingerl’liance

Hierarchies

Domain model
Employee

String firstName
String lastName
Department dept

PartTimeEmployee | FullTimeEmployee

int rate double salary

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 17 java.sun.com/javaone

JavaOne

apping of Inheritance
Hierarchies

Single table per class mapping strategy

- Benefits EMPLOYEE
- Simple ID int PK,
. . FIRSTNAME varchar(255),
- No joins required LASTNAME varchar(255),
DEPT_ID int FK,
- Drawbacks RATE int NULL,
_ SALARY double NULL,
- Not normalized DISCRIM varchar(30)
|

- Requires columns
corresponding to subclasses
state be nullable

. Table can have too
many columns

)

@ Sun 2007 JavaOne®M Conference | Session TS-4902 |

18

java.sun.com/javaone

-~ Viapping o1 Inheritance
Hierarchies
Joined subclass mapping strategy
- Benefits

. Normalized database

. Database view same as
domain model

. Easy to evolve domain model

. Drawbacks

- Poor performance in deep
hierarchies

- Poor performance for
polymorphic queries and
relationships

- Might require discriminator
column

EMPLOYEE
ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK,
DISCRIM varchar(30)

e —— e ————

PARTTIMEEMPLOYE
................................... E......................................

ID int PK FK,
RATE int NULL

FULLTIMEEMPLOYEE

ID int PK FK,
SALARY double NULL

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 19 java.sun.com/javaone

% apping 0% Ingerl’liance

Hierarchies

Table per concrete class strategy

. Benefits
- No need for joins if only leaf
classes are entities
. Drawback
. Not normalized

- Poor performance when
querying non-leaf entities -
unions

- Poor support for polymorphic
relationships

- Support for this strategy has
not been mandated by the
current specification

@ Sun 2007 JavaOne®M Conference | Session TS-4902 |

EMPLOYEE
ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK
PARTTIMEEMPLOYE

................................... E
ID int PK,
FIRSTNAME varchar(255),
LASTNAME varchar(255),
DEPT_ID int FK,

RATE int NULL

ID
FIRSTNAME
LASTNAME
DEPT_ID
SALARY

FULLTIMEEMPLOYEE

20

int PK,
varchar(255),
varchar(255),
int FK,
double NULL

java.sun.com/javaone

JavaOne

Managing Relationships

Domain model

@Entity public class Employee ({
@Id private int id;
private String firstName;
private String lastName;
@ManyToOne
private Department dept;

}
@Entity public class Department {

@Id private int id;

private String name;

@OneToMany (mappedBy = '"dept")

private Collection<Employee> emps = new ...;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 21 java.sun.com/javaone

JavaOne

Managing Relationships

Lost relationships...

public int methodl(...) {
Employee e = new Employee(...);
Department d = new Department(l, ...);
em.getTransaction () .begin () ;
e.setDepartment (d) ;

em.persist (e);
em.persist (d) ;

em.getTransaction () .commit () ;

return d.getEmployees () .size () ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 22 java.sun.com/javaone

JavaOne

Managing Relationships

Solved the problem!

public int methodl(...) {
Employee e = new Employee(...);
Department d = new Department(l, ...);
em.getTransaction () .begin () ;
e.setDepartment (d) ;
d.getEmployees () .add(e) ; //Manage relationships!
em.persist (e) ;
em.persist (d) ;
em.getTransaction () .commit () ;

return d.getEmployees () .size() ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 23 java.sun.com/javaone

JavaOne

Managing Relationships

Another case—the same problem...

@Stateless
public class MyBean implements BeanInf (

public void methodl (...) {
Employee e = new Employee(...);
Department d = new Department(l, ...);
e.setDepartment (d) ;
em.persist (e) ;
em.persist (d) ;

}

public int method2(...) {
Department d = em.find(Department.class, 1)
return d.getEmployees () .size() ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 24 java.sun.com/javaone

JavaOne

Managing Relationships

Solution is still the same...

@Stateless
public class MyBean implements BeanInf (

public void methodl (...) {
Employee e = new Employee(...);
Department d = new Department(l, ...);
e.setDepartment (d) ;
d.getEmployees () .add(e); //Manage relationships!
em.persist (e) ;
em.persist (d) ;

}

public int method2(...) {
Department d = em.find(Department.class, 1);
return d.getEmployees () .size () ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 25 java.sun.com/javaone

JavaOne

Managing Relationships

Another solution

@Stateless
public class MyBean implements BeanInf (

public void methodl (...) {
Employee e = new Employee(...);
Department d = new Department(l, ...);
e.setDepartment (d) ;
em.persist (e) ;
em.persist (d) ;

}

public int method2(...) {
Department d = em.find (Department.class, 1);
em.refresh(d) ;
return d.getEmployees () .size() ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 26 java.sun.com/javaone

JavaOne

Managing Relationships
And “orphan” instances...
What should happen to

an Employee instance if it’s removed from the
collection of Employees?

a Department instance if all it’s Employees are
deleted?

If an instance can’t exist without being
referenced, it’s an “orphan”
How do | remove “orphan” instances?

No current spec support for a portable solution

Must track the changes before calling merge or
remove

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 27 java.sun.com/javaone

JavaOne

Navigating Relationships

Fetch type dilemma

Query g = em.createQuery(“select d from Department 4”) ;

Collection departments = g.getResultList() ;

for (Department d : departments) ({
System.out.println(d.getEmployees () .size()) ;

}

Should | use Fetch Type EAGER or LAZY?

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 28 java.sun.com/javaone

JavaOne

Navigating Relationships

Options...

- EAGER—To00 many joins?

SELECT d.id, ..., e.id, ...
FROM Department d left join fetch Employee e
on e.deptid = d.id

- What will it look like if you need to join more
than two tables?

- LAZY—N +1 problem

SELECT d.id, ... FROM Department d // 1 time

SELECT e.id, ... FROM Employee e
WHERE e.deptld = ? // N times

- How many trips to the database will it be if there are
more relationships?

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 29 java.sun.com/javaone

JavaOne

Navigating Relationships

The solution

- Solution is in the Query string

Query q = em.createQuery(
“select d from Department d
LEFT JOIN FETCH d.employees”);

- Using FETCH JOIN
- Puts you in charge
. Needs careful consideration when to use

- No similar solution for non-relationship fields or
properties (BLOB, CLOB)

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 30 java.sun.com/javaone

JavaOne

Navigating Relationships

And detached entities...

Accessing a LAZY relationship from a
detached entity is not portable!
Can get an exception
Can get null
Can get a previously cached value—another
problem
Is there a portable solution?

Use JOIN FETCH for queries or fetch type EAGER
Access the collection before the entity is detached

d.getEmployees().size();
Not flexible

'@-\:’i’” Can return togom%yCo!a§eta£!&con¢S- 902 | 31 java.sun.com/javaone

JavaOne

Navigating Relationships

What else should | know about fetch type LAZY?
- Only a HINT

- Not required to be supported
- Is the DEFAULT for @...ToMany relationship

- MUST be specified to be used for @...ToOne
- Choose wisely! (Think performance)

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 32 java.sun.com/javaone

JavaOne

Relationships and Weaving

Why weaving?

- Weaving is a solution, not a requirement
- Proxy or subclassing

- Bytecode manipulation (weaving or enhancement)
@OneToMany Collection<Employee> emps;
@ManyToOne Department dept;

- Advantages
. Lazy fetching
- More efficient dirty detection

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 33 java.sun.com/javaone

JavaOne

@ Sun

Weaving

What options are there?

- Dynamic weaving
- In a Java EE platform container (PU loading)
- With a -javaagent option (Java Platform client)

. Static weaving

- In a non-Java EE Platform container (no requirement to
be supported)

- To be able to deserialize a weaved entity on the
client side

- Requires use of provider-specific tools
- Makes classes non portable

2007 JavaOneSM Conference | Session TS-4902 | 34 java.sun.com/javaone

JavaOne

Agenda

. Persistence Context
. Entities

- Concurrency

- Locking Mechanisms in Java Persistence API
. Concurrency and Bulk Operations

- Query Tips
. Resources and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 35 java.sun.com/javaone

JavaOne

Concurrency Options

- "Overly optimistic” concurrency
- No parallel updates expected or detected

- Optimistic concurrency
- Parallel updates detected

- Pessimistic concurrency
- Parallel updates prevented

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 36 java.sun.com/javaone

JavaOne

Parallel Updates to Same Object

No parallel updates expected or detected

tx1l .begin() ; tx2 .begin() ;
//Joe's employee id is 5 //Joe's employee id is 5

el = findPartTimeEmp (5) ; el = findPartTimeEmp (5) ;

//Joe's current rate is $9
el.raiseByTwoDollar () ; //Joe's current rate is $9

if (el.getRate() < 10)
el.raiseByFiveDollar() ;

txl.commit () ;

//Joe's rate will be $11 tx2.commit () ;

//Joe's rate will be $14

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 37 java.sun.com/javaone

% OW %0 Euarg % gams%

Parallel Updates?

- Use Optimistic concurrency

- Introduce Version attribute to Employee
public class Employee ({
@ID int id;

é&érsion int version;
}
- Results in following SQL

“UPDATE Employee SET ..., version = version + 1
WHERE id = ? AND version = readVersion”

- OptimisticLockException if mismatch

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 38 java.sun.com/javaone

JavaOne

Parallel Updates to Same Object

@Version attribute enables detection of parallel updates

txl .begin() ; tx2 .begin() ;
//Joe's employee id is 5 //Joe's employee id is 5
//el.version == //el.version ==

el = findPartTimeEmp (5) ; el = findPartTimeEmp (5) ;

el.raiseByTwoDollar () ;

//Joe's current rate is $9
if (el.getRate() < 10)
txl.commit () ; el .raiseByFiveDollar() ;
//el.version 2 in db //el.version == 1 in db?
tx2.commit () ;

//Joe's rate will be $14
//OptimisticLockException

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 39 java.sun.com/javaone

JavaOne

Using Stale Data for Computation

@Version does not help here...

txl.begin() ; tx2.begin() ;
dl = findDepartment (dId) ;
el = findEmp (eId) ;

//dl's original name is dl = el.getDepartment () ;
//”"Engrg” if(dl's name is “Engrg”)
dl. setName (“MarketEngrg”) ; el.raiseByTenPercent() ;

//Check dl.version in db
txl.commit () ; //Check el.version in db
tx2.commit () ;

//el gets the raise he does
//not deserve

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 40 java.sun.com/javaone

JavaOne

Using Stale Data for Computation

Read lock ensures non-stable data at commit

txl.begin() ; tx2.begin() ;
dl = findDepartment (dId) ;

el = findEmp (eId) ;

//dl's original name is dl = el.getDepartment () ;
//”Engrg” em.lock (dl, READ) ;
dl.setName (“"MarketEngrg”) ; if(dl's name is “Engrg”)

el .raiseByTenPercent() ;
txl.commit () ;

//Check dl.version in db
tx2.commit () ;

//el gets the raise he does
//not deserve

//Transaction rolls back

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 41 java.sun.com/javaone

JavaOne

Using Stale Data for Computation

Write lock prevents parallel updates

txl.begin() ; tx2.begin() ;
el = findDepartment (dId) ;

el = findEmp (eId) ;

//dl's original name is dl = el.getDepartment() ;
//”Engrg” em.lock (dl, WRITE);
dl. setName (“MarketEngrg”) ; em.flush(); //version++ for dil
if(dl's name is “Engrg”)
txl.commit () ; el.raiseByTenPercent() ;

//tx rolls back

tx2.commit () ;

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 42 java.sun.com/javaone

~Optimistic versus Pessimistic
Concurrency

Pessimistic Concurrency

Lock the row when data is read in
Issue “SELECT ... FOR UPDATE” SQL to read data
Use different connection isolation level

Pros—Simpler application code

Cons—Database locks
No portable support in this version of spec

Suitable when application has many parallel updates

Optimistic Concurrency
Pros—No database locks held

Cons—Requires a version attribute in schema
Databases are not optimized for rollback
Retries complicate application logic

Suitable when application has few parallel updates

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 43 java.sun.com/javaone

JavaOne

Bulk Updates

Executed directly against database
Data in current persistence context not updated

tx.begin() ;
int id = 5; //Joe's employee id is 5
el = findPartTimeEmp (id); //Joe's current rate is $9

//Give Big raise

em.createQuery (
“Update Employee set rate = rate * 27).
executeUpdate () ;

//Joe's rate is still $9 in this persistence context
if (el.getRate() < 10)
el.raiseByFiveDollar () ;

tx.commit () ;
//Joe's salary will be $14

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 44 java.sun.com/javaone

JavaOne

Bulk Updates and Concurrency

Version column not updated

txl .begin() ; tx2 .begin() ;

//Joe's employee id is 5
//”Update Employee set el = findPartTimeEmp (5) ;
// rate = rate * 2” ..

giveBigRaise () ;

//Version not updated in db //Joe's current rate is $9

txl.commit () ; if (el.getRate() < 10)
el.raiseByFiveDollar () ;

//Check el.version in db
tx2.commit () ;

//Poor Joe, his rate
//will be $14

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 45 java.sun.com/javaone

JavaOne

Bulk Updates and Concurrency

Explicitly update version column

txl.begin() ; tx2 .begin () ;
//Joe's employee id is 5

//”Update Employee set el = findPartTimeEmp (5) ;
// rate = rate * 2 ..

// version = version + 1”
giveBigRaiseCorrectly () ;
//Joe's current rate is $9
//Version not updated if (el.getRate() < 10)
//Version updated in db el.raiseByFiveDollar () ;
txl.commit () ; R

//Check el.version in db
tx2.commit () ;

//Poor Joe, his rate
//will be $14
//OptimisticLockException
//Joe's rate will be $18

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 46 java.sun.com/javaone

JavaOne

Agenda

- Persistence Context
- OR Mapping

- Concurrency

- Query Tips

. Named Queries
- Dynamic Queries
. Native Queries

. Resources and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 47 java.sun.com/javaone

JavaOne

Named Queries

- Query compilation cached by providers

@NamedQuery (name ="findByName",
query="SELECT e FROM Employee e WHERE
e.firstName LIKE :name")

emps = em.createNamedQuery (“findByName”) .
setParameter (“name”, “John%”) .getResultList() ;

- Can be easily externalized into orm.xml
- Refactoring friendly
- Can be easily overridden

- Shares same name space
- Use qualified name—"Employee.findByName”

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 48 java.sun.com/javaone

JavaOne

. » userInput = “foo' OR
Dynamlc Querles e.salary > 100000 OR
e.firstName = 'bar”

- Not the best practice

- Possible to inject malicious/incorrect query

em.createQuery (“"SELECT e FROM Employee e WHERE
e.firstName LIKE '” + userInput + “'”);

. Use parameter markers |
em.createQuery (“select e from Employee e where
e.name LIKE :name“) ;

- The compiled form of dynamic queries might not
be cached

- Might need to use dynamic query for variable
number of parameters

// The IN clause is created in a loop from user

// parameters

em.createQuery (“"select e from Employee e where
e.name IN (?1, ?22,...., ?n)%);

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 49 java.sun.com/javaone

JavaOne

Native Queries

- Use native queries in situations where
- Native database querying facilities are needed OR
- Support for SQL features such as Stored Procedures
IS needed

. Carefully evaluate the usage of native queries
because it

- Ties your queries to database schema

- Mostly, persistence provider will do a better job of
writing SQL than us

- Reduces cross-database portability

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 50 java.sun.com/javaone

JavaOne

Agenda

- Persistence Context
- Entities

- Concurrency

- Query Tips

- Resources and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 51 java.sun.com/javaone

JavaOne

For More Information

- Project GlassFish Forum
http://forums.java.net/jive/forum.jspa?forumID=56
- Emall
persistence@glassfish.dev.java.net

» java.sun.com/persistence
- Blogs

.blogs.sun.com/marina
-weblogs.java.net/rimapatel
.blogs.sun.com/GlassFishPersistence

05'!;.?._’ 2007 JavaOneSM Conference | Session TS-4902 | 52 java.sun.com/javaone

JavaOne

GlassFish Community &l
http://glassfish.java.net/

GlassFish V2 Beta—Auvailable Now! Simplify development with Java EE

Production-ready Java EE 5 Platform Platform 5
Application Server EJB 3.0, JavaServer Faces 1.2, JSP 2.1,

Servlet 2.5, JAX-WS 2.1.1 and JAXB 2.1

.Clustering, high availability, load balancing
«Improved performance
JWSIT (Web Services Interoperability Tech)

-Ajax, Scripting and REST-based services Over 6900 members and 2.5M downloads
.Comet — enables event-driven Web Apps

_———————— Free to download, deploy and distribute

Vibrant Ecosystem with over 26 Projects

GlassFish V3 Themes Support: java.sun.com/javaee/support
Web 2.0 Application Server

«Open, modular, extensible Platform Adoption: blogs.sun.com/stories
«Multi-Language: RoR, PHP, JavaScript™

programming language News: blogs.sun.com/theaquarium

«Ease-of -use features

—
Blog about Project GlassFish for a chance to Win a 52-inch LCD HD TV

Go to java.sun.com/javaee and click “Fish for TV” button on the right

JSP = JavaServer Pages™ | JAX-WS = Java APlIs for XML Web Services | JAXB = Java Architecture for XML Binding
@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 53 java.sun.com/javaone

JavaOne

2007 JavaOne®M Conference | Session TS-4902 | 54 java.sun.com/javaone

JavaOne

Backup Slides

2007 JavaOne®M Conference | Session TS-4902 | 55 java.sun.com/javaone

JavaOne

Container Managed EM
How do | get a hold of it?

- Injected

@sStateless

public class MyBean implements Mylinterface {
@PersistenceContext(unitName = “MyPU”)
private EntityManager em;

}
- Looked up from J.N.D.l. API

@PersistenceContext(name="xyz", unitName="MyPU")
public class MyServiet extends HttpServelet {
public void doGet(...) {
InitialContext ic = new InitialContext();
EntityManager em = (EntityManager)
ic.lookup(“java:compl/env/xyz");

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 56 java.sun.com/javaone

JavaOne

Application Managed EM
How do | get a hold of it?

- Always created from EntityMangerFactory
public class MyServiet extends HttpServlet {

@PersistenceUnit(unitName="MyPU")
private EntityManagerFactory emf;

public void doGet(...) {
EntityManager em = emf.createEntityManager();

em.close();

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 57 java.sun.com/javaone

JavaOne

Application Managed EM
How do | get a hold of an EntityManagerFactory?
- Java EE Platform 5 Container

- Injected
@PersistenceUnit EntiyManagerFactory emf;

- Looked up from J.N.D.l. API

- Java Platform, Standard Edition (Java SE

Platform) or non-Java EE Platform 5 Container

EntityManagerFactory emf =
Persistence.createEntityManagerFactory(“MyPU”);

emf.close();

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 58 java.sun.com/javaone

,a%e%ppilcaglon or gon%amer !5}anageg

EM

Which components support injection?
. Servlet
. Servlets, serviet filters, event listeners

. JavaServer Pages™ (JSP page)
- Tag handlers, tag library event listeners

JavaServer Faces technology
- Scoped managed beans

EJB technology
- Beans, interceptors

Application Client Container
- Main class (static only)

Source:Java EE platform 5 spec, Table EE.5-1Component classes supporting injection

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 59 java.sun.com/javaone

JavaOne

Stored Procedures

How to invoke them
Not specified by Java Persistence API

Three ways to do this
Can use persistence provider specific support

Can use the underlying Java DataBase Connectivity
(JDBC™) Connection object, if provider allows it, and
create a CallableStatement

Can specify User-Defined Functions (UDF) and wrap
SQL Procedures in them

You can call UDFs through SQL SELECT statements, and
hence, use native queries in Java Persistence API

Options 1 and 2 locks into the provider whereas
Option 3 is a persistence provider agnostic way

@ Sun 2007 JavaOneSM Conference | Session TS-4902 | 60 java.sun.com/javaone

