
2007 JavaOneSM Conference | Session TS-4945 |

TS-4945

Java™ Persistence 2.0

Linda DeMichiel
Sun Microsystems, Inc.

2007 JavaOneSM Conference | Session TS-4945 | 2

Goal of This Talk

Learn where we are heading with the
Java™ Persistence API—and why.

2007 JavaOneSM Conference | Session TS-4945 | 3

Agenda
Background
Proposed Functionality

What and Why (including some gotchas)
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 4

Background
Java Persistence Today
● Java Persistence API introduced in JSR 220

(Enterprise JavaBeans™ (EJB™) 3.0)
● A great start!
● Standalone use for Java Platform, Standard Edition

(Java SE platform) environments
● Pluggable implementations for Java Platform,

Enterprise Edition (Java EE platform) environments
● Strong uptake in the community

● However: Still a 1.0 release
● Open issues, ambiguities, and a few bugs
● Optional functionality left as vendor extensions
● Some missing pieces

2007 JavaOneSM Conference | Session TS-4945 | 5

Java Persistence 2.0
● Purpose of Java Persistence 2.0 is to solidify

the standard
● Clarify open issues
● Reduce non-portability aspects
● Standardize optional functionality
● Address requests from the community for some

needed features
● Will be new Java Specification Request (JSR)

under the Java Community ProcessSM

(JCPSM) program

2007 JavaOneSM Conference | Session TS-4945 | 6

Proposed Functionality
● More flexible modeling capabilities
● Expanded object/relational mapping functionality
● Additions to the Java Persistence query language
● API for criteria queries
● Standardization of sets of configuration hints
● Standardization of additional contracts

for handling detached entities
● Expanded pluggability contracts for container-

managed extended persistence contexts
● Support for validation

2007 JavaOneSM Conference | Session TS-4945 | 7

Agenda
Background
Proposed Functionality

More Flexible Modeling
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 8

More Flexible Modeling
● Improved support for embeddable classes
● Collections of strings and other basic types
● Ordered lists
● More flexible use of access types

2007 JavaOneSM Conference | Session TS-4945 | 9

Multiple Levels of Embeddables
// Strawman syntax

@Embeddable public class Address {
protected String street;
protected String city;
protected String state;
@Embedded protected ZipCode zipcode;
...

}

@Embeddable public class ZipCode {
@Length(5) protected String zip;
@Length(4) protected String plusFour;

}

2007 JavaOneSM Conference | Session TS-4945 | 10

Multiple Levels of Embeddables
(Cont.)
@Entity public class Customer {
@Id protected Integer id;
protected String name;
protected Address address;
...
}

CUSTOMER

ID NAME STREET CITY STATE ZIP PLUSFOUR

2007 JavaOneSM Conference | Session TS-4945 | 11

Collections of Basic Types,
Embeddables, Etc.
// Strawman syntax

@Entity public class Person {
@Id protected String ssn;
protected String name;
protected Address primaryResidence;
@Basic protected Set<String> nickNames = new HashSet();
...

}

@Entity public class WealthyPerson extends Person {
@Embedded
protected Set<Address> vacationHomes = new HashSet();
...

}

2007 JavaOneSM Conference | Session TS-4945 | 12

Mapped Superclasses
for Embeddables
● Mapped superclasses designed to support

factorization of entity state/behavior
● State is applied to inheriting entities
● Don’t define entities themselves

● Extension to embeddables
● State is applied to inheriting embeddable classes
● Don’t define embeddables themselves
● i.e., can’t be value of field or property

2007 JavaOneSM Conference | Session TS-4945 | 13

Example
@MappedSuperclass public class Address {

protected String street;
protected String city;
protected String state;
@Embedded protected ZipCode zipcode;
...

}

@Embeddable public class BusinessAddress extends Address {
protected String building;
protected String mailStop;
...

}

@Embeddable public class HomeAddress extends Address {
protected String apartment;
...

}

2007 JavaOneSM Conference | Session TS-4945 | 14

What About
@Embeddable public class Address {

protected String street;
protected String city;
protected String state;
@Embedded protected ZipCode zipcode;
...

}

@Embeddable public class BusinessAddress extends Address {
protected String building;
protected String mailStop;
...

}

@Embeddable public class HomeAddress extends Address {
protected String apartment;
...

}

2007 JavaOneSM Conference | Session TS-4945 | 15

Ordered Lists
● @OrderBy metadata specifies sort order

when a collection is retrieved
● Doesn’t apply to updating of collection
● Database-centric point of view

● However: Many developers want ordering
to be persistent

2007 JavaOneSM Conference | Session TS-4945 | 16

Example
// Strawman syntax

@Entity public class Employee {
@Id protected Integer empId;
protected String name;
protected String ssn;
...
@OneToMany
@Ordered @OrderColumn(name=“REVIEW_INDEX”)
protected List<Review> reviews = new ArrayList();
...

}

2007 JavaOneSM Conference | Session TS-4945 | 17

Access Type
● Defines whether provider uses fields or properties
● Spec currently states that only a single access

type applies to an entity hierarchy
● Unclear what this really means

● Implementations may (non-portably) support more,
but not defined how

● Issues
● Current lack of portability
● Single access type too inflexible
● Allowing multiple access types to be defined

within a single class is the interesting case

2007 JavaOneSM Conference | Session TS-4945 | 18

Consider
@Embeddable public class Address {

protected String street;
protected String city;
protected String state;
protected String zip;
...
public String getStreet() {return street;}
public void setStreet(String street) {

this.street = street;
}
...
public String getCity() {return city;}
public void setCity(String city) {this.city = city;}
...

}

2007 JavaOneSM Conference | Session TS-4945 | 19

Does This Work?
@Entity public class Customer {
@Id protected Integer id;
protected String name;
@Embedded protected Address address;
...
}

@Entity public class SalesRep {
protected Integer id;
protected String name;
protected Address address;
...
@Id public String getName() {return name;}
...
@Embedded public Address getAddress() {return address;}
...

}

2007 JavaOneSM Conference | Session TS-4945 | 20

Example: Combining Access
Types
@Entity public class Customer {
@Id protected Integer id;
protected String name;
protected Address address;
...
}

// Strawman syntax
@AccessType(PROPERTY)
@Embeddable public class Address {

protected String street;
protected String city;
protected String state;
protected String zipcode;
...
public String getStreet() {return street;}
public void setStreet(String street) {this.street = street;}
...

}

2007 JavaOneSM Conference | Session TS-4945 | 21

Example: Combining Access
Types
@Entity public class Employee {
@Id protected Integer empId;
protected String name;
protected String ssn;
...
}

@AccessType(PROPERTY)
@Entity public class Contractor extends Employee {

protected Float hourlyRate;
protected String agency;
...
@Basic public Float getHourlyRate() {return hourlyRate;}
public void setHourlyRate(Float rate) {hourlyRate = rate;}

public String getAgency() {return agency;}
public void setAgency(String agency) {this.agency = agency;}

}

2007 JavaOneSM Conference | Session TS-4945 | 22

Example: Combining Access
Types
// Not so obvious

@Entity public class Customer {
@Id protected Integer id;
protected String name;
protected Address address;
...
protected Integer rating;
...
@AccessType(PROPERTY)
public Integer getCreditRating() {

return rating;
}
public void setCreditRating(Integer rating) {

this.rating = rating;
}
}

2007 JavaOneSM Conference | Session TS-4945 | 23

Agenda
Background
Proposed Functionality

Expanded O/R Mapping Functionality
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 24

Expanded O/R Mapping
Functionality
Relationship mappings
● Unidirectional one-to-many relationships using

foreign key mappings currently not supported
● However:

● This is the obvious database modeling strategy
● Shouldn’t have to make one-to-many relationships

bidirectional to use it

2007 JavaOneSM Conference | Session TS-4945 | 25

Unidirectional One-to-Many
@Entity public class Employee {

@Id protected Integer empId;
...
@OneToMany
protected Set<Phones> phones = new HashSet();
...

}

@Entity public class Phone {
@Id protected int phoneId
protected Float currentCharges;
protected String vendor;
...
// Don't want phone to have to know about the employee !

}

2007 JavaOneSM Conference | Session TS-4945 | 26

Using Join Table
// Default implementation

PHONES_PHONEID

PHONESEMPLOYEE

PHONEIDEMPID

EMPLOYEE_PHONES

……

EMPLOYEE_EMPID

2007 JavaOneSM Conference | Session TS-4945 | 27

Using Foreign Key Mapping

PHONEID EMP_ID

EMPID …

…

EMPLOYEE

PHONES

2007 JavaOneSM Conference | Session TS-4945 | 28

Unidirectional One-to-Many
// Using foreign key mapping

@Entity public class Employee
@Id protected Integer empId;
...
@OneToMany @JoinColumn(name=”EMP_ID”)
protected Set<Phones> phones = new HashSet();
...

}

@Entity public class Phone {
@Id protected int phoneId
protected Float currentCharges;
protected String vendor;
...

}

2007 JavaOneSM Conference | Session TS-4945 | 29

Expanded O/R Mapping
Functionality
● Two currently supported mapping strategies

● Single table per class hierarchy
● Non-normalized (nulls!)
● Good support for polymorphic queries, relationships

● Joined subclass strategy
● Subclass-specific state stored in separate table(s)
● Normalized
● Performance an issue for moderately deep hierarchies

● Table per concrete class strategy left as optional
● However: legacy databases do model this way

Inheritance mappings

2007 JavaOneSM Conference | Session TS-4945 | 30

Example
@Inheritance(TABLE_PER_CLASS)
@Entity public class Employee {
@Id protected Integer empId;
protected String name;
protected String ssn;
...

}

@Entity public class RegularEmployee extends Employee {
protected Float salary;
@Column(name=”VAC_HRS”) protected Integer vacation;

}

@Entity public class Contractor extends Employee {
@Column(name=”HR_RATE”) protected Float hourlyRate;
protected String agency;

}

2007 JavaOneSM Conference | Session TS-4945 | 31

Using Table Per Class

CONTRACTO
R

REGULA
R

EMPLOYEE

NAME SSN SALARY VAC_HR
S

EMPID

25 Joe 98000.0
0

48

58 Ma
x

56000.0
0

80

19 Bill 125000.0
0

92

123-45-
6789
234-56-
7891
567-89-
1234

NAME SSN HR_RATE AGENCYEMPID

97 Ann 100.00 XYZ

82 Rob 80.00 ITemps

345-67-
8912
456-78-
9123

EMPID NAME SSN

2007 JavaOneSM Conference | Session TS-4945 | 32

Table Per Class Strategy
● Each concrete class mapped to separate table
● Pluses

● Normalized
● Good for non-polymorphic queries
● OK for non-polymorphic relationships

● Minuses
● Poor for polymorphic queries
● Very poor for polymorphic relationships

2007 JavaOneSM Conference | Session TS-4945 | 33

Agenda
Background
Proposed Functionality

Expanded Query Capabilities
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 34

Some current limitations
Java™ Persistence Query Language
● SELECT clause still too constrained

● Only aggregate functions supported in SELECT clause
● Use of additional operators and functions important,

especially for report queries
● Some unnecessary restrictions on

parameter usage
● Queries are always polymorphic

2007 JavaOneSM Conference | Session TS-4945 | 35

Examples: SELECT Clause
SELECT CONCAT(p.lastname, CONCAT(', ', p.firstname)) AS n
FROM Person p
ORDER BY n

SELECT e.name, e.salary + e.bonus
FROM Employee e
WHERE e.dept.name = 'Engineering'

SELECT d.name, SUM(c.hourlyRate * c.hoursWorked * 52)
FROM Contractor c JOIN c.dept d
GROUP BY d.name

2007 JavaOneSM Conference | Session TS-4945 | 36

Example: Restricted
Polymorphism
//Strawman syntax

SELECT e.name
FROM Employee e JOIN e.dept d
WHERE d.name = 'Engineering'
AND CLASS(e) IN ('Contractor', 'PartTime')

2007 JavaOneSM Conference | Session TS-4945 | 37

Dynamic Queries
Java Persistence dynamic queries currently entail

string construction

...
@PersistenceContext EntityManager em;
...

Query q = em.createQuery(
“SELECT c” +
“FROM Customer c” +
“WHERE c.status = 'preferred'” +
“AND c.address.city = 'New York'” +
“ORDER BY c.name”
);
...

2007 JavaOneSM Conference | Session TS-4945 | 38

Criteria Queries
Criteria APIs allow “node-wise” query construction

...
@PersistenceContext EntityManager em;
...

// Strawman syntax
CriteriaQuery cq = em.createCriteria(Customer.class)
.add(Restrictions.eq(“status”, “preferred”))
.add(Restrictions.eq(“address.city”, “New York”))
.addOrder(Order.asc(“name”));

...

2007 JavaOneSM Conference | Session TS-4945 | 39

Criteria Queries
● Considerable set of criteria APIs and expression

APIs already in existence for us to learn from
● Hibernate
● OJB
● Cayenne
● TopLink
● …

2007 JavaOneSM Conference | Session TS-4945 | 40

Agenda
Background
Proposed Functionality

Configuration Hints
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 41

Standardized Hints and Properties
● Hints and properties used in configuration of:

● Entity manager factory
● Entity manager/persistence context
● Queries

● Many candidates for standardization
● JDBC driver, user, password, connection pool
● Caching, cache size
● Timeouts
● Logging
● DDL handling
● Etc., etc.

JDBC driver = a driver supporting the JDBC™ API (JDBC driver)

2007 JavaOneSM Conference | Session TS-4945 | 42

Agenda
Background
Proposed Functionality

Better Contracts for Handling Detached Objects
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 43

Unfetched State
● Detached entities often have unfetched state

and/or relationships
● What is fetched is determined by fetch elements,

defaults, queries, and access
● Should consider fetch plans for greater flexibility

● Unfetched state access issue left as part
of application contract
● e.g., “don’t access x, y, z”

● What happens on access to unfetched state
is currently undefined
● Implementations place different burdens on clients

2007 JavaOneSM Conference | Session TS-4945 | 44

Example: Detached Access
@NamedQuery(

name=”findBySSN”,
query=”SELECT e FROM Employee e WHERE e.ssn = :ssn”

)
@Entity public class Employee {

@Id protected Integer empId;
protected String name;
protected String ssn;
...
@ManyToOne(fetch=LAZY)
protected Department dept;
...

}

2007 JavaOneSM Conference | Session TS-4945 | 45

Example: Detached Access (Cont.)
@Stateless @Remote
public class HRInfoBean implements HRInfoService {
...
@PersistenceContext EntityManager em;

public Employee findEmployeeBySSN(String ssn) {
return em.createNamedQuery(“findBySSN”)
.setParameter(“ssn”, ssn)
.getSingleResult();

}
...

}

2007 JavaOneSM Conference | Session TS-4945 | 46

Example: Detached Access (Cont.)
// In client

@EJB HRInfoService HRInfo;
...
Employee e = HRInfo.findEmployeeBySSN(“123-45-6789”);
...
Department d = e.getDepartment();

Questions:

What do you have to do to deploy this client?

What happens when you access the unfetched department?

2007 JavaOneSM Conference | Session TS-4945 | 47

Extended Persistence Contexts
● Application-managed persistence contexts

are always extended
● Application manages their lifecycle

● Persistence context exists until closed
● Application manages transaction association

● Requirements for joinTransaction() a source of bugs

2007 JavaOneSM Conference | Session TS-4945 | 48

Example: (buggy)
public class BookBuyerServlet extends HttpServlet {

@PersistenceUnit EntityManagerFactory emf;

@Resource UserTransaction utx;

protected void doPost(HttpServletRequest req,

HttpServletResponse res) throws ... {

Integer custId = Integer.parseInt(req.getParameter(“customerId”));

String bookName = req.getParameter(“bookName”);

EntityManager em = emf.createEntityManager();

utx.begin();

Customer c = em.find(Customer.class, custId);

Book b = em.find(Book.class, bookName);

Order o = new Order(b);

c.addOrder(o);

em.persist(o);

utx.commit();

em.close();

}

}

2007 JavaOneSM Conference | Session TS-4945 | 49

Example: (fixed)
public class BookBuyerServlet extends HttpServlet {

@PersistenceUnit EntityManagerFactory emf;

@Resource UserTransaction utx;

protected void doPost(HttpServletRequest req,

HttpServletResponse res) throws ... {

Integer custId = Integer.parseInt(req.getParameter(“customerId”));

String bookName = req.getParameter(“bookName”);

utx.begin();

EntityManager em = emf.createEntityManager();

Customer c = em.find(Customer.class, custId);

Book b = em.find(Book.class, bookName);

Order o = new Order(b);

c.addOrder(o);

em.persist(o);

utx.commit();

em.close();

}

}

2007 JavaOneSM Conference | Session TS-4945 | 50

Example: (fixed)
public class BookBuyerServlet extends HttpServlet {

@PersistenceUnit EntityManagerFactory emf;

@Resource UserTransaction utx;

protected void doPost(HttpServletRequest req,

HttpServletResponse res) throws ... {

Integer custId = Integer.parseInt(req.getParameter(“customerId”));

String bookName = req.getParameter(“bookName”);

EntityManager em = emf.createEntityManager();

utx.begin();

em.joinTransaction();

Customer c = em.find(Customer.class, custId);

Book b = em.find(Book.class, bookName);

Order o = new Order(b);

c.addOrder(o);

em.persist(o);

utx.commit();

em.close(); }

}

2007 JavaOneSM Conference | Session TS-4945 | 51

Container-Managed Extended
Persistence Contexts
● Provide ease-of-use in Java EE application

environments
● Stateful session bean is perfect fit for management
● Automatic coupling of lifecycles

● Becoming increasingly important to support
“conversations”
● Stateful web services (EJB 3.1 specification)
● First-class conversational scopes (Web Beans)

● Issue: stateful session bean “passivation”
● Needed for scaling, failover/replication

● Spec needs to further define pluggability contracts

2007 JavaOneSM Conference | Session TS-4945 | 52

Agenda
Background
Proposed Functionality

Validation
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 53

Validation
● JSR 303 (Bean Validation)

● Goal is to define metadata model and API
for validation

● For general use in Java SE and Java EE
platforms

● Would like to leverage this for Java
Persistence
● Whether this is possible depends on rate

of progress of JSR 303

2007 JavaOneSM Conference | Session TS-4945 | 54

Validation Example
// Strawman syntax

@Entity public class Employee {
@Id @GeneratedValue protected Integer empId;

@Required protected String name;

@Length(max=5) protected String locationCode;

@Max(240) protected Integer vacationAccrued;

@AdequatelyCompensated protected Float salary;

...
}

2007 JavaOneSM Conference | Session TS-4945 | 55

Agenda
Background
Proposed Functionality
Summary and Roadmap
Where to Learn More

2007 JavaOneSM Conference | Session TS-4945 | 56

Summary
● Proposed functionality to support

● More flexible modeling
● Expanded O/R mapping functionality
● Query language extension
● Greater portability across implementations
● Alignment with emerging JSRs

Java Persistence 2.0

2007 JavaOneSM Conference | Session TS-4945 | 57

Roadmap
● Java Persistence 2.0 JSR to be posted shortly
● Expert Group formation in June
● Goal is completion in Java EE platform v.6

time-frame
● Desirable to complete Maintenance Release (1.1)

as first phase
● Input alias

● persistenceNoSpam-feature-requests@sun.com
● Will go to Expert Group (once formed)
● Will be reincarnated when too much spam

2007 JavaOneSM Conference | Session TS-4945 | 58

For More Information
● TS-4856: Architecture of Popular Object/Relational

Mapping Providers (Today)
● TS-4568: Java Persistence API: Portability Do’s

and Don’ts (Thursday)
● TS-4902: Java Persistence API: Best Practices

and Tips (Friday)
● TS-4112: EJB 3.0 and JSR 303 Beans Validation

(Friday)
● BOFs 4641, 4612: Java EE 6 Meet the Experts

(Tonight)

Related Sessions and BOFs

2007 JavaOneSM Conference | Session TS-4945 | 59

Q&A

2007 JavaOneSM Conference | Session TS-4945 |

TS-4945

Java™ Persistence 2.0

Linda DeMichiel
Sun Microsystems, Inc.

