JavaOne

Java'" Persistence 2.0

Linda DeMichiel
Sun Microsystems, Inc.

TS-4945

2007 JavaOne®M Conference | Session TS-4945 | java.sun.com/javaone

«

JavaOne

Goal of This Talk

2007 JavaOne®M Conference | Session TS-4945 | java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
What and Why (including some gotchas)

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 3 java.sun.com/javaone

JavaOne

Java Persistence Today
Background

Java Persistence APl introduced in JSR 220
(Enterprise JavaBeans™ (EJB™) 3.0)
A great start!

Standalone use for Java Platform, Standard Edition
(Java SE platform) environments

Pluggable implementations for Java Platform,
Enterprise Edition (Java EE platform) environments

Strong uptake in the community

However: Still a 1.0 release
Open issues, ambiguities, and a few bugs
Optional functionality left as vendor extensions
Some missing pieces

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 4 java.sun.com/javaone

JavaOne

Java Persistence 2.0

- Purpose of Java Persistence 2.0 is to solidify
the standard
. Clarify open issues
- Reduce non-portability aspects
- Standardize optional functionality
- Address requests from the community for some
needed features

- Will be new Java Specification Request (JSR)
under the Java Community ProcessSM
(JCPSM) program

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 5 java.sun.com/javaone

Proposed Functionality

More flexible modeling capabilities

Expanded object/relational mapping functionality
Additions to the Java Persistence query language
API for criteria queries

Standardization of sets of configuration hints

Standardization of additional contracts
for handling detached entities

Expanded pluggability contracts for container-
managed extended persistence contexts

Support for validation

2007 JavaOne®sM Conference | Session TS-4945 | 6

JavaOne

Agenda

Background

Proposed Functionality
More Flexible Modeling

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 7 java.sun.com/javaone

@ Sun

More Flexible Modeling

Improved support for embeddable classes
Collections of strings and other basic types

Ordered lists

More flexible use of access types

2007 JavaOneSM Conference

Session TS-4945 | 8

JavaOne

Multiple Levels of Embeddables

// Strawman syntax

@Embeddable public class Address ({
protected String street;
protected String city;
protected String state;
@Embedded protected ZipCode zipcode;

}

@Embeddable public class ZipCode ({
@Length (5) protected String zip;
@Length (4) protected String plusFour;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 9 java.sun.com/javaone

«.

jau'ei

“~Multiple Levels o
(Cont.)

@Entity public class Customer ({
@Id protected Integer id;
protected String name;
protected Address address;

}

CUSTOMER

mopcecaagaanics

ID NAME STREET CITY

STATE

ZIP

PLUSFOUR

@ Sun 2007 JavaOneSM Conference | Session TS-4945 |

10 java.sun.com/javaone

~Collections ot Basic Types,
Embeddables, Etc.

// Strawman syntax

@Entity public class Person {
@Id protected String ssn;
protected String name;
protected Address primaryResidence;
@Basic protected Set<String> nickNames = new HashSet() ;

}

@Entity public class WealthyPerson extends Person {
@Embedded

protected Set<Address> vacationHomes = new HashSet();

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 11 java.sun.com/javaone

lauaDnE} 5 I appeg guper(:!asses

for Embeddables

- Mapped superclasses designed to support
factorization of entity state/behavior

. State is applied to inheriting entities
- Don’t define entities themselves

- Extension to embeddables
. State is applied to inheriting embeddable classes

. Don’t define embeddables themselves
. l.e., can’'t be value of field or property

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 12 java.sun.com/javaone

JavaOne

Example

@MappedSuperclass public class Address ({
protected String street;
protected String city;
protected String state;
@Embedded protected ZipCode zipcode;

}

@Embeddable public class BusinessAddress extends Address {
protected String building;
protected String mailStop;

}

@Embeddable public class HomeAddress extends Address {
protected String apartment;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 13 java.sun.com/javaone

JavaOne

What About

@Embeddable public class Address ({
protected String street;
protected String city;
protected String state;
@Embedded protected ZipCode zipcode;

}
@Embeddable public class BusinessAddress extends Address {

protected String building;
protected String mailStop;

}

@Embeddable public class HomeAddress extends Address {
protected String apartment;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 14 java.sun.com/javaone

JavaOne

Ordered Lists

- @OrderBy metadata specifies sort order
when a collection is retrieved

- Doesn’t apply to updating of collection
. Database-centric point of view

- However: Many developers want ordering
to be persistent

@ Sun 2007 JavaOneSM Conference | SessionTS-4945 | 15 java.sun.com/javaone

JavaOne

Example

// Strawman syntax

@Entity public class Employee ({
@Id protected Integer empld;
protected String name;
protected String ssn;

@OneToMany
@Ordered @OrderColumn (name="REVIEW INDEX")

protected List<Review> reviews = new ArraylList();

@ Sun

2007 JavaOneSM Conference | Session TS-4945 | 16 java.sun.com/javaone

JavaOne

Access Type

- Defines whether provider uses fields or properties

- Spec currently states that only a single access
type applies to an entity hierarchy

- Unclear what this really means

- Implementations may (non-portably) support more,
but not defined how

- Issues
- Current lack of portability
- Single access type too inflexible

- Allowing multiple access types to be defined
within a single class is the interesting case

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 17 java.sun.com/javaone

JavaOne

Consider

@Embeddable public class Address {
protected String street;
protected String city;
protected String state;
protected String zip;

public String getStreet() {return street;}
public void setStreet(String street) {
this.street = street;

}

public String getCity () {return city;}
public void setCity(String city) {this.city = city;}

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 18 java.sun.com/javaone

JavaOne

Does This Work?

@Entity public class Customer ({

@Id protected Integer id;

protected String name;

@Embedded protected Address address;

}

@Entity public class SalesRep {
protected Integer id;
protected String name;
protected Address address;

@Id public String getName() {return name;}

@Embedded public Address getAddress () {return address;}

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 19 java.sun.com/javaone

JavaOne

@ Sun

Xamplic. Combpining ACCCSS

@Entity public class Customer {
@Id protected Integer id;
protected String name;
protected Address address;

}

// Strawman syntax

@AccessType (PROPERTY)

@Embeddable public class Address {
protected String street;
protected String city;
protected String state;
protected String zipcode;

public String getStreet() {return street;}
public void setStreet(String street) {this.street = street;}

2007 JavaOneSM Conference | Session TS-4945 | 20 java.sun.com/javaone

JavaOne

@ Sun

Xamplic. Combpining ACCCSS

@Entity public class Employee ({
@Id protected Integer empId;
protected String name;
protected String ssn;

}

@AccessType (PROPERTY)

@Entity public class Contractor extends Employee {
protected Float hourlyRate;
protected String agency;

@Basic public Float getHourlyRate() {return hourlyRate;}
public void setHourlyRate (Float rate) {hourlyRate = rate;}

public String getAgency () {return agency;}
public void setAgency (String agency) {this.agency = agency;}

2007 JavaOneSM Conference | Session TS-4945 | 21 java.sun.com/javaone

JavaOne

@Sun

Xamplic. Combpining ACCCSS

// Not so obvious

@Entity public class Customer {
@Id protected Integer id;
protected String name;
protected Address address;

protected Integer rating;

@AccessType (PROPERTY)
public Integer getCreditRating () ({
return rating;

}
public void setCreditRating(Integer rating) {

this.rating = rating;
}
}

2007 JavaOne®M Conference | Session TS-4945 |

22

java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
Expanded O/R Mapping Functionality

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 23 java.sun.com/javaone

JavaOne

xpanded U
Functionality

viapping

Relationship mappings

- Unidirectional one-to-many relationships using
foreign key mappings currently not supported

. However:

- This is the obvious database modeling strategy

- Shouldn’t have to make one-to-many relationships
bidirectional to use it

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 24 java.sun.com/javaone

Unidirectional One-to-Many

@Entity public class Employee ({
@Id protected Integer empId;

@OneToMany
protected Set<Phones> phones = new HashSet() ;

}

@Entity public class Phone {
@Id protected int phonelId
protected Float currentCharges;

protected String wvendor;

// Don't want phone to have to know about the employee !

}

2007 JavaOneSM Conference | Session TS-4945 | 25 java.sun.com/javaone

@Sun

JavaOne

Using Join Table

// Default implementation

EMPLOYEE PHONES

EMPLOYEE_PHONES

-

EMPLOYEE_EMPID PHONES_PHONEID

05'{;.5‘._’ 2007 JavaOne®M Conference | Session TS-4945 | 26 java.sun.com/javaone

JavaOne

Using Foreign Key Mapping

EMPLOYEE

PHONES

PHONEID EMP_ID

’SI_!I.E‘._’ 2007 JavaOne®M Conference | Session TS-4945 | 27 java.sun.com /javaone

JavaOne

Unidirectional One-to-Many

// Using foreign key mapping

@Entity public class Employee
@Id protected Integer empld;

@OneToMany @JoinColumn (name="EMP ID")
protected Set<Phones> phones = new HashSet();

}

@Entity public class Phone {
@Id protected int phoneId
protected Float currentCharges;
protected String wvendor;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 28 java.sun.com/javaone

JavaOne

xpanded U
Functionality

Inheritance mappings

- Two currently supported mapping strategies

- Single table per class hierarchy

- Non-normalized (nulls!)

. Good support for polymorphic queries, relationships
- Joined subclass strategy

. Subclass-specific state stored in separate table(s)
- Normalized

. Performance an issue for moderately deep hierarchies

. Table per concrete class strategy left as optional
- However: legacy databases do model this way

viapping

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 29 java.sun.com/javaone

JavaOne

Example

@Inheritance (TABLE PER CLASS)
@Entity public class Employee ({
@Id protected Integer empId;
protected String name;
protected String ssn;

}

@Entity public class RegularEmployee extends Employee ({
protected Float salary;
@Column (name="VAC_ HRS”) protected Integer vacation;

}

@Entity public class Contractor extends Employee ({
@Column (name="HR RATE”) protected Float hourlyRate;
protected String agency;

}

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 30 java.sun.com/javaone

JavaOne

Using Table Per Class

EMPLOYEE EMPID NAME

ST \VPID NAME SSN SALARY \S/AC_HR
R 25 Joe 123-45- 98000.0 48
e -
58 Ma 234-56- 56000.0 80
X 7551 5
19 Bill 567-89- 125000.0 92
a
coNTRACTO IEURIIAYE SSN HR RATE AGENCY
R 97 Ann 345-67- 100.00 XYZ

8012

82 Rob 456-78- 80.00 ITemps
9123

’SI,‘H 2007 JavaOne®M Conference | Session TS-4945 | 31 java.sun.com/javaone

JavaOne

Table Per Class Strategy

- Each concrete class mapped to separate table

- Pluses

- Normalized
- Good for non-polymorphic queries
- OK for non-polymorphic relationships

- Minuses
- Poor for polymorphic queries
- Very poor for polymorphic relationships

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 32 java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
Expanded Query Capabilities

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 33 java.sun.com/javaone

JavaOne

Java " Persistence Query Language

Some current limitations

. SELECT clause still too constrained
- Only aggregate functions supported in SELECT clause

- Use of additional operators and functions important,
especially for report queries

- Some unnecessary restrictions on
parameter usage

- Queries are always polymorphic

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 34 java.sun.com/javaone

JavaOne

Examples: SELECT Clause

SELECT CONCAT (p.lastname, CONCAT(', ', p.firstname)) AS n
FROM Person p
ORDER BY n

SELECT e.name, e.salary + e.bonus
FROM Employee e
WHERE e.dept.name = 'Engineering'

SELECT d.name, SUM(c.hourlyRate * c.hoursWorked * 52)
FROM Contractor c¢ JOIN c.dept d
GROUP BY d.name

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 35 java.sun.com/javaone

Emgxample: Ees’lirlc%eg

Polymorphism
//Strawman syntax

SELECT e.name
FROM Employee e JOIN e.dept d

WHERE d.name = 'Engineering'
AND CLASS(e) IN ('Contractor', 'PartTime')

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 36 java.sun.com/javaone

Dynamic Queries

Java Persistence dynamic queries currently entail
string construction

@PersistenceContext EntityManager em;

Query q = em.createQuery (
“SELECT c¢” +
“FROM Customer c” +
“WHERE c.status = 'preferred'” +
“AND c.address.city = 'New York'” +
“ORDER BY c.name”

) ;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 37 java.sun.com/javaone

JavaOne

Criteria Queries

Criteria APls allow “node-wise™ query construction

@PersistenceContext EntityManager em;

// Strawman syntax

CriteriaQuery cq = em.createCriteria (Customer.class)
.add (Restrictions.eq(“status”, “preferred”))
.add (Restrictions.eq(“address.city”, “New York”))
.addOrder (Order.asc (“name”)) ;

*.Ti,‘ﬂ 2007 JavaOneSM Conference | Session TS-4945 | 38 java.sun.com/javaone

JavaOne

Criteria Queries

- Considerable set of criteria APIs and expression
APls already in existence for us to learn from

- Hibernate
. OJB

. Cayenne
- TopLink

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 39 java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
Configuration Hints

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 40 java.sun.com/javaone

JavaOne

Standardized Hints and Properties

- Hints and properties used in configuration of:
- Entity manager factory
- Entity manager/persistence context
- Queries

- Many candidates for standardization
- JDBC driver, user, password, connection pool
Caching, cache size
Timeouts
Logging
DDL handling
- Etc., etc.

JDBC driver = a driver supporting the JDBC™ API (JDBC driver)
@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 41 java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
Better Contracts for Handling Detached Objects

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 42 java.sun.com/javaone

E_a—\.

JavaOne

@ Sun

Unfetched State

Detached entities often have unfetched state
and/or relationships

What is fetched is determined by fetch elements,
defaults, queries, and access

Should consider fetch plans for greater flexibility

Unfetched state access issue left as part
of application contract

e.g., ‘don’t access x, y, zZ”

What happens on access to unfetched state
Is currently undefined

Implementations place different burdens on clients

2007 JavaOneSM Conference | Session TS-4945 | 43 java.sun.com/javaone

JavaOne

Example: Detached Access

@NamedQuery (

name="findBySSN”,

query="SELECT e FROM Employee e WHERE e.ssn = :ssn”
)
@Entity public class Employee ({

@Id protected Integer empld;

protected String name;

protected String ssn;

@ManyToOne (fetch=LAZY)
protected Department dept;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 44 java.sun.com/javaone

JavaOne

Example: Detached Access (Cont.)

@Stateless (@Remote
public class HRInfoBean implements HRInfoService ({

@PersistenceContext EntityManager em;
public Employee findEmployeeBySSN(String ssn) {
return em.createNamedQuery (“findBySSN")

.setParameter (“ssn”, ssn)
.getSingleResult() ;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 45 java.sun.com/javaone

JavaOne

Example: Detached Access (Cont.)

// In client
@EJB HRInfoService HRInfo;
Employee e = HRInfo.findEmployeeBySSN (“123-45-6789") ;

Department d = e.getDepartment() ;

Questions:
What do you have to do to deploy this client?

What happens when you access the unfetched department?

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 46 java.sun.com/javaone

JavaOne

Extended Persistence Contexts

- Application-managed persistence contexts
are always extended
- Application manages their lifecycle
. Persistence context exists until closed

- Application manages transaction association
- Requirements for joinTransaction() a source of bugs

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 47 java.sun.com/javaone

JavaOne

& Sun

Example: (buggy)

public class BookBuyerServlet extends HttpServlet ({
@PersistenceUnit EntityManagerFactory emf;
@Resource UserTransaction utx;
protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws ... {
Integer custId = Integer.parselnt (req.getParameter (“customerId”)) ;
String bookName = req.getParameter (“bookName”) ;
EntityManager em = emf.createEntityManager() ;
utx.begin() ;
Customer ¢ = em.find(Customer.class, custId);
Book b = em.find(Book.class, bookName) ;
Order o = new Order(b);
c.addOrder (o) ;
em.persist (o) ;
utx.commit () ;

em.close () ;

2007 JavaOne®M Conference | Session TS-4945 | 48

java.sun.com/javaone

JavaOne

& Sun

Example: (fixed)

public class BookBuyerServlet extends HttpServlet ({
@PersistenceUnit EntityManagerFactory emf;
@Resource UserTransaction utx;
protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws ... {
Integer custId = Integer.parselnt (req.getParameter (“customerId”)) ;
String bookName = req.getParameter (“bookName”) ;
utx.begin() ;
EntityManager em = emf.createEntityManager() ;
Customer ¢ = em.find(Customer.class, custId);
Book b = em.find(Book.class, bookName) ;
Order o = new Order(b);
c.addOrder (o) ;
em.persist (o) ;
utx.commit () ;

em.close () ;

2007 JavaOne®M Conference | Session TS-4945 | 49

java.sun.com/javaone

JavaOne

& Sun

Example: (fixed)

public class BookBuyerServlet extends HttpServlet ({
@PersistenceUnit EntityManagerFactory emf;
@Resource UserTransaction utx;
protected void doPost (HttpServletRequest req,
HttpServletResponse res) throws ... {
Integer custId = Integer.parselnt (req.getParameter (“customerId”)) ;
String bookName = req.getParameter (“bookName”) ;
EntityManager em = emf.createEntityManager() ;
utx.begin() ;
em. joinTransaction() ;
Customer ¢ = em.find(Customer.class, custId);
Book b = em.find(Book.class, bookName) ;
Order o = new Order (b) ;
c.addOrder (o) ;
em.persist (o) ;
utx.commit () ;

em.close(); }

2007 JavaOne®M Conference | Session TS-4945 | 50

java.sun.com/javaone

“-Container-Managed Extended
Persistence Contexts

Provide ease-of-use in Java EE application
environments

Stateful session bean is perfect fit for management
Automatic coupling of lifecycles

Becoming increasingly important to support
“‘conversations”

Stateful web services (EJB 3.1 specification)
First-class conversational scopes (Web Beans)

Issue: stateful session bean “passivation”
Needed for scaling, failover/replication

Spec needs to further define pluggability contracts

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 51 java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
Validation

Summary and Roadmap
Where to Learn More

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 52 java.sun.com/javaone

JavaOne

Validation

- JSR 303 (Bean Validation)

. Goal is to define metadata model and API
for validation

. For general use in Java SE and Java EE
platforms

- Would like to leverage this for Java
Persistence

- Whether this is possible depends on rate
of progress of JSR 303

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 53 java.sun.com/javaone

JavaOne

Validation Example

// Strawman syntax

@Entity public class Employee ({
@Id @GeneratedValue protected Integer empId;

@Required protected String name;
@Length (max=5) protected String locationCode;
@Max (240) protected Integer vacationAccrued;

@AdequatelyCompensated protected Float salary;

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 54 java.sun.com/javaone

JavaOne

Agenda

Background

Proposed Functionality
Summary and Roadmap
Where to Learn More

’SE,‘H 2007 JavaOne®M Conference | Session TS-4945 | 55 java.sun.com /javaone

JavaOne

Summary

Java Persistence 2.0
- Proposed functionality to support

- More flexible modeling
Expanded O/R mapping functionality
Query language extension
Greater portability across implementations
- Alignment with emerging JSRs

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 56 java.sun.com/javaone

JavaOne

Roadmap

- Java Persistence 2.0 JSR to be posted shortly
- Expert Group formation in June

- Goal is completion in Java EE platform v.6
time-frame

. Desirable to complete Maintenance Release (1.1)
as first phase

- Input alias

. persistenceNoSpam-feature-requests@sun.com
- Will go to Expert Group (once formed)
- WIll be reincarnated when too much spam

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 57 java.sun.com/javaone

JavaOne

For More Information
Related Sessions and BOFs

- 1S-4856: Architecture of Popular Object/Relational
Mapping Providers (Today)

. 1S-4568: Java Persistence API: Portability Do’s
and Don’ts (Thursday)

. 1S-4902: Java Persistence API: Best Practices
and Tips (Friday)

. 1S5-4112: EJB 3.0 and JSR 303 Beans Validation
(Friday)

- BOFs 4641, 4612: Java EE 6 Meet the Experts
(Tonight)

@ Sun 2007 JavaOneSM Conference | Session TS-4945 | 58 java.sun.com/javaone

JavaOne

2007 JavaOne®M Conference | Session TS-4945 | 59 java.sun.com/javaone

JavaOne

Java'" Persistence 2.0

Linda DeMichiel
Sun Microsystems, Inc.

TS-4945

2007 JavaOne®M Conference | Session TS-4945 | java.sun.com/javaone

