
2007 JavaOneSM Conference | Session TS-5102 |

TS-5102

The JSR 281 IMS Services
API: Time to Deliver

Stefan Svenberg and Niclas Palm

IMS Java Standardisation
Ericsson AB
http://www.ericsson.com

YOUR LOGO
HERE

2007 JavaOneSM Conference | Session TS-5102 | 2

Goal of This Talk

In only three basic steps, you will learn
how to write a Java™ Platform MIDlet
using the Java Specification Request
(JSR) 281 API to start sharing multimedia
content

What you will remember

2007 JavaOneSM Conference | Session TS-5102 | 3

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 4

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 5

Why We Are Here

• Last year at The 2006 JavaOneSM Conference in
session TS-3319 “PoC and Beyond: The JSR 281
IMS Services API”, the speakers claimed (quote):

“It [the JSR 281] also draws a picture of the
cool Java applications becoming possible
with this API and how they can enrich the mobile
Java technology world.”

• In this session, a cool Java platform IMS
application will be described and demonstrated

2007 JavaOneSM Conference | Session TS-5102 | 6

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 7

IMS: The IP Multimedia
Subsystem

• Purpose: Move all voice and multimedia communication
to packed-based technologies, to merge telephony (fixed
and mobile) and Internet

• Architecture: A standardized core IP network
infrastructure that serves as a common foundation
for higher-level services

• Operators: Offer new multimedia services rapidly at
lower cost

• Users: Peer-to-peer multimedia real-time
communications in a highly controlled and
personalized way

What it is

2007 JavaOneSM Conference | Session TS-5102 | 8

Example IMS Use Cases

• Instantly share a camera snapshot with a friend
• “You see what I see”—stream live video to your

friend’s phone or computer
• Multi-media telephony
• Exchange multimedia with whom you are talking

to on a phone
• Networked multi-user gaming
• Multi-user Push-to-talk over Cellular (PoC)
• White-boarding
• And more

Business case easier if made specific

2007 JavaOneSM Conference | Session TS-5102 | 9

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 10

Overview
JSR 281 Role in IMS
• IMS does not standardize applications, or depend on an

application framework
• Java provides a widespread framework where portable

applications can be built and deployed
• The JSR 281 standardizes an API to enable a MIDlet to:

• Act as a client to IMS application servers
• Realize a peer-to-peer service on a mobile device and expose

it to the IMS

• Support for more IMS functionality can be added to the
JSR 281 (future proof)

• A Java platform developer does not have to know IMS

2007 JavaOneSM Conference | Session TS-5102 | 11

Feature Highlights
JSR 281 Overview

• An API to the IMS functionality of a mobile device:
• Core API: To access service independent IMS

primitives; this one is mandatory
• Service API: To access standardized service

enablers; these are all optional
• Targets Java platform profiles based on

CLDC/CDC
• High-level abstraction hides the IMS technology
• Allows low-level access for advanced usage
• Extensible to make it future-proof

2007 JavaOneSM Conference | Session TS-5102 | 12

Package highlights
Core API
• Javax.microedition.ims

• Entry point to IMS functionality
• Select type of services

• Javax.microedition.ims.core
• Create IMS calls (“sessions”) to a remote peer
• Communicate with IMS application servers
• Query capabilities of a remote peer
• Send references

• Javax.microedition.ims.core.media
• Define the media objects that carry content flows
• Set up media players for streaming media
• Quality of service

2007 JavaOneSM Conference | Session TS-5102 | 13

Package highlights—OMA enablers
JSR 281 IMS Services API

• Javax.microedition.ims.poc
• Javax.microedition.ims.presence
• Javax.microedition.ims.xdm

2007 JavaOneSM Conference | Session TS-5102 | 14

JSR 281 Status and Timeline

• EDR (Early Draft Review)—Q4 2006
• PDR (Public Draft Review)—Q2 2007
• PFD (Proposed Final Draft)—Q3 2007
• FR (Final Release)—Q4 2007

2007 JavaOneSM Conference | Session TS-5102 | 15

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 16

Principal steps
JSR 281 Usage

• A JSR 281 IMS application goes through three
generic steps:
• Access the IMS functionality of the device
• Go online to the IMS network using a selected identity
• Connect a call including media flows with a remote

IMS device
• The precise details at any step depends on

the intrinsic application logic, and what type
of service it realizes

2007 JavaOneSM Conference | Session TS-5102 | 17

Getting concrete
Example: A Cool IMS Java Application

• We use an application example to probe further
into the Core API of the JSR

• Basic example: An simple IMS Java platform
chat MIDlet to exchange text and pictures

• Developed and installed to Alice’s and Bob’s
mobile devices

• Alice wants to chat with Bob
• After that, a set of improvements are applied

2007 JavaOneSM Conference | Session TS-5102 | 18

Access the IMS functionality using the ImsManager
JSR 281 Manager

• The Manager object represents the complete
IMS functionality of the local device specifically
for use by the application

• The Manager has:
• A state machine for IMS connection
• Method to get a list of user identities
• A factory function for Service creation (next step)
• A registry that records properties of the application

• A listener for changes in IMS connection state

2007 JavaOneSM Conference | Session TS-5102 | 19

Manager state machine
JSR 281 Manager

Off On

cbConnect

cbDisconnect

Legend:
• Arc label in italics is an IMS state listener call back when IMS connection state is changed
• State label in bold and solid circle is a steady state

2007 JavaOneSM Conference | Session TS-5102 | 20

Manager Pseudo Code
{

// Application gets the manager under its name
mgr = Manager.getManager(“com.j1.chatMidlet”);
// Get the list of IMS provisioned user id’s
if (mgr.getState() == IMS_STATE_ON)
{

userIds = mgr.getUserIdentities();
// app may present these to the user to select one
userId = selectId(userIds);

}
}

// next: create service

2007 JavaOneSM Conference | Session TS-5102 | 21

Go online using the Service object
JSR 281 Service

• The application creates a Service object when
it is prepared to handle calls

• The Service interface is service-independent,
and has
• A state machine
• Some methods to trigger state transitions

• Extensions of the Service interface represent
services for core and the supported enablers

• A listener on Service for state events

2007 JavaOneSM Conference | Session TS-5102 | 22

Service object state machine (simplified)
JSR 281 Service

Legend:
• Arc label in bold face is a Service interface method that cause state change
• Arc label in italics is a listener call back when the state machine has changed state due to some IMS event
• State label in bold and solid circle is a steady state
• State label in italics and dashed circle is a temporary state expecting an event
• Arc label with xxx is a placeholder for service-specific methods and callbacks in that state

Opening Open

cbReady

Closing

cbClosed
closeInit

open

xxx

xxx

Closed

xxx

cbClosed

2007 JavaOneSM Conference | Session TS-5102 | 23

Go online using the Service object
JSR 281 Core Service

• The Core service is used to represent the core
functionality (media sharing)

• The state machine semantics
• Init state: The service is not yet online; the user

identity is set here
• Open state: The service is online and functional;

sessions can be created here, both incoming and
outgoing

• Closed state: The service has been de-activated
• Core service listener for Core-specific

service events

2007 JavaOneSM Conference | Session TS-5102 | 24

Service Pseudo Code
{

// Core Service creation
srv = (CoreService)mgr.createService(“CoreService”);
// srv is now in the init state.
// Downcasted, we are allowed to set the user id.
srv.setUserId(userId);
// Go online!
srv.open();

}
// call back generated when network accepts
// or rejects
// next: create the session

2007 JavaOneSM Conference | Session TS-5102 | 25

Make IMS calls
JSR 281 Session

• The Session object represents a call between
the end points

• The remote end point is addressed via the
remote user id

• The session object has:
• A state machine
• Media objects

• A listener on session events

2007 JavaOneSM Conference | Session TS-5102 | 26

State machine
JSR 281 Session

• The session state machine:
• Init state: the caller adds media to the session
• Proceeding state: the callee receives the session
• Established state: the IMS call has been accepted

at the remote, quality of service is set, and media
content starts flowing

• Terminating state: the IMS call has ended

2007 JavaOneSM Conference | Session TS-5102 | 27

Session object state machine (simplified)
Session

Proceeding Established

cbStarted

Terminating

cbTerminated
terminateInit

start

addMedia

update

Terminated

cbTerminated

Legend:
• Arc label in bold face is a Session interface method that cause state change
• Arc label in italics is a listener call back when the machine has changed state due to some IMS event
• State label in bold and solid circle is a steady state
• State label in italics and dashed circle is a temporary state expecting an IMS event

2007 JavaOneSM Conference | Session TS-5102 | 28

Session Pseudo-Code for Alice
{

// Alice to select the remote user id of Bob’s
remoteUserId = selectRemoteUserId();
ses = srv.createSession(remoteUserId);
// Set the content types and bi-directional session
String[] acceptedTypes =

new String[] {"text/plain", "image/jpeg"};
med = ses.createFramedMedia(acceptedTypes, SEND_RECV);
ses.start();
...
// after Bob’s accept, Alice texts him
msgId = med.sendBytes("Hello Bob!", "text/plain");
...

}
// next: Alice shares a camera snapshot instantly

2007 JavaOneSM Conference | Session TS-5102 | 29

Picture Send Pseudo-Code for Alice
{

// Alice to use the JSR 135 for camera
Player p = Manager.createPlayer("capture://video");
p.realize();
VideoControl vc = p.getControl("VideoControl");
vc.initDisplayMode(USE_DIRECT_VIDEO, canvas);
vc.setVisible(true);
p.start();
// Take a snapshot as jpg and send it
byte[] buf = vc.getSnapshot("image/jpeg");
msgId = myMedia.sendBytes(buf, "image/jpeg);

}
// next: Bob to receive messages

2007 JavaOneSM Conference | Session TS-5102 | 30

Session Pseudo-Code for Bob
{

// Bob to accept session invite
ses.accept();
...
// Bob receives picture and text
if ("image/jpeg".equals(contentType)) {

media.receiveFile(messageId, "image.jpeg");
// Display

}
else if ("text/plain".equals(contentType)) {

messText = media.receiveBytes(messageId);
// print the text

}
}

2007 JavaOneSM Conference | Session TS-5102 | 31

DEMO
Running the chat MIDlet

2007 JavaOneSM Conference | Session TS-5102 | 32

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 33

Call With a Ring Signal

• A ring signal consists (here) of:
• A picture
• A ring tone

• The caller sets this when making the call;
the callee renders when it is alerting

• The application-specific solution uses an
interface to the underlying SIP protocol

• Demonstrates advanced low-level access to
SIP headers and body of the INVITE message

• Caution: Interoperability!

2007 JavaOneSM Conference | Session TS-5102 | 34

Send Ring Signal for Alice
{

// Alice created her session object as before
ses.addHeader("P-ImageIncl", "yes");
MessageBodyPart imgPart = ses.createBodyPart();
imgPart.setType("image/jpeg");
imgPart.setContent(imageData);

ses.addHeader("P-RingtoneIncl", "yes");
MessageBodyPart melPart = ses.createBodyPart();
melPart.setType("audio/midi");
melPart.setContent(ringtoneData);

ses.start();
}
// next: Bob to receive

2007 JavaOneSM Conference | Session TS-5102 | 35

Receive Ring Signal for Bob
{

// Bob accepts, and gets the image and ring tone
Message mess = ses.getRequest(METHOD_INVITE);
if ("yes".equals(mess.getHeader("P-ImageIncl"))) {

// [code to loop through headers omitted]
if ("image/jpeg".equals(parts[i].getType())) {

imageData = parts[i].getContent();
// Bob displays it

}
}
if ("yes".equals(mess.getHeader("P-RingtoneIncl"))) {

// [code to loop through body parts omitted]
if ("audio/midi".equals(parts[i].getType())) {

ringtoneData = parts[i].getContent();
// Bob plays it

}
}

}

2007 JavaOneSM Conference | Session TS-5102 | 36

DEMO
Ring Signals

2007 JavaOneSM Conference | Session TS-5102 | 37

Agenda

Why we are here
IP Multimedia Subsystem (IMS)
IMS and JSR 281 IMS Services API
Develop a chat MIDlet for text and pictures
Improve with sending a custom ring signal
Improve with video

2007 JavaOneSM Conference | Session TS-5102 | 38

Include Streaming Video

• IMS end to end is often illustrated with sharing
of live streaming video

• Knowing Bob likes surfing, Alice wants to stream
live video of the waves to her friend while chatting
at the beach

• This example shows adding a streaming media
object to the session with playback

2007 JavaOneSM Conference | Session TS-5102 | 39

Send Video for Alice
{

// Session created as before
StreamMedia myMedia = ses.createStreamMedia(“video",

"myClip.3gp");
mySession.start();

// Alice can see the outgoing video
ImsPlayer p = myMedia.getSendingPlayer();
p.start();

}

2007 JavaOneSM Conference | Session TS-5102 | 40

Receive Video for Bob
{

// Session created as before
Vector media = session.getMedia();
StreamMedia myMedia = media.firstElement();
ImsPlayer p = myMedia.getReceivingPlayer();
p.start();

}

2007 JavaOneSM Conference | Session TS-5102 | 41

DEMO
Video

2007 JavaOneSM Conference | Session TS-5102 | 42

More Functionality in the Core API

• Audio streaming of speech or music
• Application-specific media
• Query capability of the remote
• Use of application servers on the network
• Session updates
• Listener methods
• Media control
• Java Application Descriptor (JAD) file properties

2007 JavaOneSM Conference | Session TS-5102 | 43

Summary

• Uses for the JSR 281 IMS Services API
• Role of Manager, Service, and Session objects
• Chat text MIDlet developed
• Improving for picture attachments
• Added real-time streaming video
• No detailed IMS knowledge needed

2007 JavaOneSM Conference | Session TS-5102 | 44

For More Information

See also:
• Session TS-3319— “PoC and Beyond: The JSR 281

IMS Services API” (The JavaOneSM 2006 Conference
technical session)

• http://www.jcp.org/en/jsr/detail?id=281
• 3GPP TS 23.228, 3GPP TS 24.229
• IETF RFC 3261 SIP, IETF RFC 2327 SDP
• OMA: http://www.openmobilealliance.org
• The 3G IP Multimedia Subsystem, 2nd edition,

G. Camarillo and M. Garcia-Martin, Wiley, 2006
• The IMS IP Multimedia Concepts and Services,

2nd edition, M. Poikselkä and Co., Wiley, 2006
• Booth 1118—Mobility Village

2007 JavaOneSM Conference | Session TS-5102 | 45

Q&A
Stefan Svenberg
Niclas Palm

2007 JavaOneSM Conference | Session TS-5102 |

TS-5102

The JSR 281 IMS Services
API: Time to Deliver

Stefan Svenberg and Niclas Palm

IMS Java Standardisation
Ericsson AB
http://www.ericsson.com

YOUR LOGO
HERE

