
2007 JavaOneSM Conference | Session TS-5109 |

TS-5109

Optimizing Midlets for
Size and Performance

Simon Robinson

Innaworks
www.innaworks.com

2007 JavaOneSM Conference | Session TS-5109 | 2

Goal of This Talk

Pushing the size and performance
of Java™ Platform, Micro Edition
(Java ME platform) applications on
today’s handsets

2007 JavaOneSM Conference | Session TS-5109 | 3

Agenda

Why size and performance matters
Under the bonnet of a Java ME
Platform MIDlet
Optimization strategy
Optimization techniques
Optimizing for Jazelle DBX and
Java HotSpot™ technology
Case study

2007 JavaOneSM Conference | Session TS-5109 | 4

Agenda

Why size and performance matters
Under the bonnet of a Java ME
Platform MIDlet
Optimization strategy
Optimization techniques
Optimizing for Jazelle DBX and
Java HotSpot™ technology
Case study

2007 JavaOneSM Conference | Session TS-5109 | 5

Why Size and Performance Matters

Adoption = Potential market size
× How much fun
× Marketing

2007 JavaOneSM Conference | Session TS-5109 | 6

Why Size and Performance Matters

Adoption = Potential market size
× How much fun
× Marketing

Handset coverage matters

2007 JavaOneSM Conference | Session TS-5109 | 7

Why Size and Performance Matters

Adoption = Potential market size
× How much fun
× Marketing

How fun is your game?
Perceived quality matters

2007 JavaOneSM Conference | Session TS-5109 | 8

Constraints of Consumer
Handsets

1.5 MB30 BDoJa 2.5 (m420i)
512 kB100 kBSharp GX22
512 kB128 kBNokia S40 v2 (6230, etc.)
370 kB64 kBNokia S40 v1 (3300, etc.)
Heap memoryJAR size

15% game sales for handsets < 64 kB Java Archive (JAR) file size
35% game sales for handsets < 128 kB JAR file size

2007 JavaOneSM Conference | Session TS-5109 | 9

Agenda

Why size and performance matters
Under the bonnet of a Java ME
Platform MIDlet
Optimization strategy
Optimization techniques
Optimizing for Jazelle DBX and
Java HotSpot technology
Case study

2007 JavaOneSM Conference | Session TS-5109 | 10

What Is in a MIDlet JAR File?

• 70 bytes JAR file overhead per file
• Compression does not work across files
• Overhead depends on path length

2007 JavaOneSM Conference | Session TS-5109 | 11

Classfile vs. Resource Files
Typical 2D
Game

Typical Business
or Consumer

App

Source: Innaworks’ customer study

2007 JavaOneSM Conference | Session TS-5109 | 12

Classfile Size Breakdown

Source: Innaworks’ customer study

2007 JavaOneSM Conference | Session TS-5109 | 13

Java ME Platform Toolchain

2007 JavaOneSM Conference | Session TS-5109 | 14

Stackmap

• What does the preverifier do?
• Preverifier inserts stackmap

• Assists verification
• Increases classfile size
• Stackmap entries added at:

• Control flow merge point
• Exception handler

2007 JavaOneSM Conference | Session TS-5109 | 15

Stackmap
int speed = 10;
Monster[] monsters = getMonsters();

for (int i = 0; i < monsters.length; i++){
// This is a merge point – stackmap here
// Variable slot 1 = int (speed)
// Variable slot 2 = Monster[] (monster)
// Variable slot 3 = int (i)

doSomethingToMonster(monsters[i]);
}

// This is a merge point – stackmap here
// Variable slot 1 = int (speed)
// Variable slot 2 = Monster[] (monster)

2007 JavaOneSM Conference | Session TS-5109 | 16

Java Compiler

• Designed to work with Java Platform, Standard Edition
(Java SE platform)/Java Platform, Enterprise Edition
(Java EE platform) JVM™ machines
• Generate “clean” code

• Almost no size or performance optimization
• No method inlining
• No redundancy elimination
• No dead class elimination
• No dead code elimination
• No code layout optimization
• Has String and StringBuffer optimization

2007 JavaOneSM Conference | Session TS-5109 | 17

Java ME Platform Virtual
Machines

Constant folding
Constant peeling
Loop peeling

Optimizations

Adaptive
Single-pass compiler

InterpreterBytecode execution
1 MB256 kBMemory footprint
CLDC “Hotspot Monty”KVM

Targeted to handset constraints

Source: Sun Microsystems

2007 JavaOneSM Conference | Session TS-5109 | 18

Performance Bottleneck

• Virtual Machine for the Java platform
(JVM™ machine) performance

• I/O
• Network
• File

• UI
• Graphics

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-5109 | 19

Agenda

Why size and performance matters
Under the bonnet of a Java ME
Platform MIDlet
Optimization strategy
Optimization techniques
Optimizing for Jazelle DBX and
Java HotSpot technology
Case study

2007 JavaOneSM Conference | Session TS-5109 | 20

What Are the Key Technical Problems?

JAR file size

Heap memory

Performance

Handset bugs and quirks

2007 JavaOneSM Conference | Session TS-5109 | 21

Optimization Tradeoffs

Please pick any two

Optimality

Low EffortMaintainability

2007 JavaOneSM Conference | Session TS-5109 | 22

Basic Optimization Rules

Be absolutely clear what your objectives are

Rule #1

2007 JavaOneSM Conference | Session TS-5109 | 23

Basic Optimization Rules

80%–20% rule
Measure, measure, and measure

Rule #2

2007 JavaOneSM Conference | Session TS-5109 | 24

Basic Optimization Rules

Don’t do it

or

Automate the mechanical optimizations

Rule #3

2007 JavaOneSM Conference | Session TS-5109 | 25

Size Optimization

• Most optimizations are mechanical and can
be “automated”

• Complete the coding and testing, then
apply recipes

• Affects maintainability

2007 JavaOneSM Conference | Session TS-5109 | 26

Performance Optimization

• Focus on the architecture or framework
• Need to understand the characteristics of

target handsets
• Much harder to fix later

2007 JavaOneSM Conference | Session TS-5109 | 27

Available Tools—Obfuscator

• Rename class,
methods, and
fields

• Reduces the size
and number of
constant pool
entries

• Example:
Proguard

[1] UTF8: innaworks.ClassA
[2] UTF8: m
[3] Class: [1]
[4] NameAndType: void [2](int);
[5] MethodRef: [1].[4]

▼

[1] UTF8: a
[2] Class:[1]
[3] NameAndType: void [1](int);
[4] MethodRef: [1].[3]

2007 JavaOneSM Conference | Session TS-5109 | 28

Available Tools—PNG Optimizer

• Removes unnecessary information in PNG file
• Makes PNG data more compressible
• Example: PngCrush, AdvOpt

2007 JavaOneSM Conference | Session TS-5109 | 29

Available Tools—ZIP Compressor

• Standard JAR file uses ZLIB deflate engine;
up to 10% improvements with advance ZIP
compressors

• Look out for operator restrictions
• Example: 7Zip, mBoosterZip

2007 JavaOneSM Conference | Session TS-5109 | 30

Agenda

Why size and performance matters
Under the bonnet of a Java ME
Platform MIDlet
Optimization strategy
Optimization techniques
Optimizing for Jazelle DBX and
Java HotSpot technology
Case study

2007 JavaOneSM Conference | Session TS-5109 | 31

Where Should We Focus?

Source: Innaworks’ customer study

Typical
Business or
Consumer App

2007 JavaOneSM Conference | Session TS-5109 | 32

Merging Classes

• Takes two classes and combine them

• Reduces the ZIP overhead
• Removes Java class file overhead
• Reduces signature constant entries
• Shares app constant entries
• Increases opportunities for method inlining

2007 JavaOneSM Conference | Session TS-5109 | 33

Merging Abstract Class With
Concrete Class

Original:

abstract class AbstractSoundPlayer {
String play(String soundFile) {...};

}

// Only class to extend AbstractSoundPlayer
class SamsungSoundPlayer extends AbstractSoundPlayer {

void play(String soundFile) {
...

};
}

2007 JavaOneSM Conference | Session TS-5109 | 34

Merging Abstract Class With
Concrete Class

Optimized:

class SamsungSoundPlayer {
void play(String soundFile) {
...

};
}

2007 JavaOneSM Conference | Session TS-5109 | 35

Merging Interface With Implementer

Original:

interface SoundPlayer {
String play(String soundFile) {...};

}

// Only class to implement SoundPlayer
class SamsungSoundPlayer implements SoundPlayer {

void play(String soundFile) {
...

};
}

2007 JavaOneSM Conference | Session TS-5109 | 36

Merging Interface With Implementer

Optimized:

class SamsungSoundPlayer {
void play(String soundFile) {
...

};
}

2007 JavaOneSM Conference | Session TS-5109 | 37

Merging Sibling Classes
Original:

abstract class AbstractMonster {
abstract void doAction();
void runAway() {...};
void drinkMore() {...};

}

class TimidMonster extends AbstractMonster {
void doAction() {runAway();}

}

class DrunkMonster extends AbstractMonster {
void doAction() {drinkMore();}

}

2007 JavaOneSM Conference | Session TS-5109 | 38

Merging Sibling Classes
Optimized:

// Combined the TimidMonster and
// DrunkMonster into one class
class CombinedMonster extends AbstractMonster {

int monsterType; // 0=TimidMonster,
// 1=DrunkMonster

void doAction() {
switch (monsterType) {

case 0: runAway(); break;
case 1: drinkMore(); break;

}
}

}

2007 JavaOneSM Conference | Session TS-5109 | 39

Merging Classes

Very powerful and dangerous

Look out for traps
• Instanceof and casting
• Arrays
• Reflection
• Class initialization order
Can increase heap usage
Maintainability and extensibility

2007 JavaOneSM Conference | Session TS-5109 | 40

Eliminating Local Variables

• Combine two local variables into one, and
eliminate temporary local variables

• Reduces the size of stack map entries
• Less computation

2007 JavaOneSM Conference | Session TS-5109 | 41

Eliminating Temporary Variables

Original:
Pos myPos = getMyPos();

Pos monsterPos = getMonsterPos();

int dist = getDistance(myPos, monsterPos);

Smaller and faster:
dist = getDistance(getMyPos(),

getMonsterPos());

2007 JavaOneSM Conference | Session TS-5109 | 42

Original:
void someMethod() {
int location = ...
doSomeCalculation(location);
// location is not used from here onwards

int damage = ...
if (damage > 10) { ... }

}

Coalescing Local Variables

2007 JavaOneSM Conference | Session TS-5109 | 43

Coalescing Local Variables

Optimized:
void someMethod() {

int mergedVar = ...

doSomeCalculation(mergedVar);

mergedVar = ...

if (mergedVar > 10) { ... }

}

2007 JavaOneSM Conference | Session TS-5109 | 44

Method Inlining

• Combine two methods into one

• Increases opportunities for intraprocedural
optimizations

• Increases opportunities for eliminating local
variables

2007 JavaOneSM Conference | Session TS-5109 | 45

Method Inlining

• From how many places is the method
called from?

• Is the call site a polymorphic call site?
• How big is the method?
• Is it called from the same class?

2007 JavaOneSM Conference | Session TS-5109 | 46

Method Inlining

• Powerful, and works well with Class Merging

• Some JVM machines (e.g., Java HotSpot
technology-based JVM machines) impose limits
on method size to compile to native code

2007 JavaOneSM Conference | Session TS-5109 | 47

Flattening 2D Arrays

• Convert 2D arrays to 1D arrays

• Less array bounds checks
• Less dereferencing
• Less array.length

2007 JavaOneSM Conference | Session TS-5109 | 48

Flattening 2D Arrays
Original:

boolean[][] enemyMap = new boolean[5][12];

// Check for any enemy next to us
// Assumes wrap around
if (enemyMap[myX+1][myY+1] ||

enemyMap[myX-1][myY+1] ||
enemyMap[myX+1][myY-1] ||
enemyMap[myX-1][myY-1] } {
. . .

}

2007 JavaOneSM Conference | Session TS-5109 | 49

Flattening 2D Arrays
Optimized:

boolean[] enemyMap = new boolean[5*12];

// Check for any enemy next to us
// Assumes wrap around
int myLoc = myX*12 + myY;
if (enemyMap[myLoc+1] ||

enemyMap[myLoc-1] ||
enemyMap[myLoc+12] ||
enemyMap[myLoc-12] } {
. . .

}

2007 JavaOneSM Conference | Session TS-5109 | 50

Array Initialization

What code is generated by the Java compiler?
int[] map = {0, 1, 2, 3, …,99};

2007 JavaOneSM Conference | Session TS-5109 | 51

Array Initialization

What code is generated by the Java compiler?
int[] map = {0, 1, 2, 3, …, 99};

Javac generated code is equivalent to:
map[0] = 0;

map[1] = 1;

map[2] = 2;

map[3] = 3;

...

2007 JavaOneSM Conference | Session TS-5109 | 52

Array Initialization

Optimized: Generate the array at run-time

map = new int[100];

for (int i = 0; i < 100; i++)

map[i] = i;

2007 JavaOneSM Conference | Session TS-5109 | 53

Array Initialization

Optimized: Store the array data in a resource
DataInputStream dis = new

DataInputStream(“map.dat”);

int len = dis.readInt();

int[] array = new int[len];

for (int i=0;

i < len;

i++) {

array[i] = dis.readInt();

}
dis.close();

2007 JavaOneSM Conference | Session TS-5109 | 54

Resource Packing

2007 JavaOneSM Conference | Session TS-5109 | 55

Resource Packing
public Image readImage(String file) {

InputStream is = getResourceAsStream(pakfile);

// Determine offset and size for file
is.skip(imageOffset);
byte[] buffer = new byte[imageLength];
for (int i = 0; i < imageLength; i++) {

buffer[i] = is.read();
}

is.close();
return Image.createImage(buffer,0,buffer.length);

}

2007 JavaOneSM Conference | Session TS-5109 | 56

Resource Packing

• Reduces the ZIP overhead
• Increases compressability

• Can increase heap usage
• Can slow resource file access

2007 JavaOneSM Conference | Session TS-5109 | 57

Sharing Palette Across PNG Files

• Improves compressibility when used in
conjunction with resource packing, by:

• Reducing the palette of each subsequent PNG
to 2 bytes (compressed)

• Increasing compressibility of image data

2007 JavaOneSM Conference | Session TS-5109 | 58

Optimization Summary

▲▲Flattening 2D arrays

▲▲
▲

▼

▲▲

Heap usage

▼▼▼Array initialization
▼▼▼▼Resource packing

▼Sharing palette

▲▼▼Method inlining
▼Eliminating variables
▼▼▼▼Class merging

SpeedJAR file size
Tuned for minimum JAR file size

2007 JavaOneSM Conference | Session TS-5109 | 59

Agenda

Why size and performance matters
Under the bonnet of a Java ME
Platform MIDlet
Optimization strategy
Optimization techniques
Optimizing for Jazelle DBX and
Java HotSpot technology
Case study

2007 JavaOneSM Conference | Session TS-5109 | 60

What Is ARM Jazelle DBX?

• Some handsets now make use of Jazelle DBX
(Direct Bytecode Execution)

• Provides performance improvements by directly
supporting some byte codes for execution in
hardware

• Handsets include K700, K800, S700, O2 X4

2007 JavaOneSM Conference | Session TS-5109 | 61

Optimizing for Jazelle DBX

The following are accelerated through
Jazelle technology:

• 32-bit mathematical operations
• Bitwise manipulation
• Conditional branching
• Local data access

Strategy:
• Switch to hardware enabled byte codes
• Reduce the number of byte codes
• Focus on performance critical sections

2007 JavaOneSM Conference | Session TS-5109 | 62

Optimizing for Jazelle DBX

Techniques:
• Elimination of unnecessary field access
• Redundancy elimination
• Use if/else in place of switch instructions
• Method elimination through inlining

2007 JavaOneSM Conference | Session TS-5109 | 63

Working With HotSpot

• Sun’s Connected Limited Device Configuration
HotSpot™ Implementation JVM machine is
present on a number of high-end handsets in
the market

• Picks ‘hot’ methods in your MIDlet to compile to
native code

• But large methods might not be considered
• To compile code can mean a short pause!

2007 JavaOneSM Conference | Session TS-5109 | 64

Strategy for Java HotSpot
Technology

• To optimize a build targeted to a Java HotSpot
technology handset:
• Use Method Inlining to eliminate trivial methods
• Don’t form large methods through method inlining,

if you think they might be ‘hot’
• If you notice pauses at an inappropriate time, you may

be able to trick HotSpot into moving them earlier

652007 JavaOneSM Conference | Session TS-5109 |

Case Study

2007 JavaOneSM Conference | Session TS-5109 | 66

Where™

2007 JavaOneSM Conference | Session TS-5109 | 67

Where™

1457714453188781878418434149981877318953Constant Pool
Entries count

416415514511511415511520Number of fields

12251219143814341334140914331446Number of
methods

147146224223223146223223Number of
classes total

–19.39%–18.55%–0.61%–0.07%–0.83%–17.47%0.0%% difference
(from baseline)

–35108–33880–1106–133–1522–318970
JAR file size
difference (from
baseline)

147495148723181497182470181081150706182603192748JAR file size

CM+MI+
AI+RPCM+MIResource

Packing
Array
Init.

Method
Inlining

Class
MergingBaselineOriginal

2007 JavaOneSM Conference | Session TS-5109 | 68

Size Comparison

80000

100000

120000

140000

160000

180000

200000

Bas
elin

e

Class
 M

erg
ing

Meth
od

 In
lin

ing

Arra
y I

nit.
Reso

urce
 Pac

kin
g

CM +
MI

Eve
ryt

hin
g

JA
R

 S
iz

e
(b

yt
es

)

2007 JavaOneSM Conference | Session TS-5109 | 69

Class Hierarchy (Before)

2007 JavaOneSM Conference | Session TS-5109 | 70

Class Hierarchy (After)

2007 JavaOneSM Conference | Session TS-5109 | 71

Summary

• Size and performance matter especially for
mobile applications

• 80%–20% rule applies—focus on your effort
where it counts

• Optimizations are interdependent
• Automate where possible

722007 JavaOneSM Conference | Session TS-5109 |

Q&A

2007 JavaOneSM Conference | Session TS-5109 |

TS-5109

Optimizing Midlets for
Size and Performance

Simon Robinson

Innaworks
www.innaworks.com

2007 JavaOneSM Conference | Session TS-5109 | 74

Appendix: Where™

1457714453188781878418434149981877318953CP Entries

416415514511511415511520Num fields

12251219143814341334140914331446Num methods

147146224223223146223223Num classes

137136195194194136194194Num concrete

4421212142121Num abstract

66888688Num interfaces

–19.39%–18.55%–0.61%–0.07%–0.83%–17.47%0.00%
%Diff from
baseline

–35108–33880–1106–133–1522–318970
Diff from
baseline

147495148723181497182470181081150706182603192748Size

ALLCM+MIRPAIMICMBaselineOriginal

