
2007 JavaOneSM Conference | Session TS-5188 |

Session TS-5188

Web Services to Go:
Mobile Access to Web
Services With JSR-279 and
JSR-280

Jean-Yves Bitterlich

Sun Microsystems
http://jcp.org/en/jsr/detail?id=280

Pia Niemelä

Nokia Corporation
http://jcp.org/en/jsr/detail?id=279

2007 JavaOneSM Conference | Session TS-5188 | 2

New tools for creating a rich mobile
Web Services client-side ecosystem

Overview of XML, Web services and SOA and
introduction to Java™ Specification Request
(JSR) 279 and 280

Goal

2007 JavaOneSM Conference | Session TS-5188 | 3

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plugins?
• Interaction patterns and basic building blocks of JSR 279 web services

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 4

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plugins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 5

What Is Service-Oriented
Architecture (SOA)?

• SOA is an architectural style whose goal is to
achieve loose coupling among interacting entities;
two entities involved in service transactions are:
• A service consumer and a service provider

• Consumers and providers may build larger networks
• The third entity usually mentioned is a service

directory/repository which helps in publishing and
finding the desired services

• A service is a unit of work done by a service
provider to achieve the desired end results for a
service consumer
• Services offer methods for extracting or modifying data

2007 JavaOneSM Conference | Session TS-5188 | 6

Service contract
(WSDL) abstracts the
service, other service
logic is hidden; each
resource has a URI

What Is Service-Oriented
Architecture (SOA)?

Loosely coupled services
• The same message works

with several services
• The same service works

with several messages

All services provide
same simple
interface
No application
specific interfaces

Conventions and rules to improve application interoperability

2007 JavaOneSM Conference | Session TS-5188 | 7

What Is a Web Service?

• An application component that can be called remotely
using standard Internet Protocols such as HTTP and XML

• RPC uses mostly HTTP, whereas messaging may also
use other mechanisms; for example:
• FTP, SMTP, Java Message Service (JMS) API, IIOP, even SMS

• A unit of code that can be activated using service requests
• The purpose of Web Services is to deliver distributed

computing over the Internet
• Web Services architecture allows programs written in

different languages on different platforms to communicate
with each other in a standards-based way

2007 JavaOneSM Conference | Session TS-5188 | 8

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plugins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 9

“Classic” Web Services
XML Web Service is a software service exposed on the Web through

SOAP protocol, described with a WSDL file and registered in UDDI
registry. UDDI, WSDL, and SOAP are all XML based protocols.

JSR 172 provides API for SOAP web services

XML Web Service

Discovery: UDDI

Schema: WSDL

Communications: SOAP

Find service

Analyze service

Send messages

2007 JavaOneSM Conference | Session TS-5188 | 10

“Modern” JSR 279 Web Services
• “Seamless SSO" decreasing the app developer’s work
• Ability to use the same API to access services that use different frameworks

for auth/SSO and service discovery (e.g., Liberty ID-WSF and UPnP)

Find service

Analyze service

Send messages

JSR 279

JSR 280

JAXP DOM 2+

SAX 2 StAX

Service Frameworks
XML Filtering

W
S

I-B
asic FW

Liberty ID
W

S
F FW

O
ther Fram

ew
orks

…
Communication Layer

send-receive

use

JSR 279 Application
use

use

wireless network

Authenticate

Correlate
messages

JAXP = Java API for XML Processing

2007 JavaOneSM Conference | Session TS-5188 | 11

JSR 279 Class Diagram

2007 JavaOneSM Conference | Session TS-5188 | 12

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plugins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 13

Framework Profile Plug-In
Examples
JSR 279

Service Frameworks

W
S

I-B
asic FW

Liberty ID
W

S
F FW

O
ther Fram

ew
orks

send-receive

W
S-STAR

R
eST

SH
AR

E(*

U
PnP

A
tom

 P
ublishing P

rotocol

W
S

-S
X

New framework profile plugins can be written and installed. The
framework ID must be unique.
*)SHARE” or “Simple HTTP API with RPC and encoded data”.
(http://asynchronous.org/blog/archives/2005/03/index.html)

2007 JavaOneSM Conference | Session TS-5188 | 14

Plugging in a New Framework

The ServiceManager uses an implementation-specific mechanism to locate
framework implementations i.e., providers.

2007 JavaOneSM Conference | Session TS-5188 | 15

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plugins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 16

Interaction Patterns

receive() is
synchronous,

MessageListener
is
asynchronous

receive(),
setMessageListener()

– handle()
notification

Notification

asyncNo direct supportNotification-
response

syncsendReceive()Request-
response

asyncsend()One-way

ModeJSR 279Pattern

2007 JavaOneSM Conference | Session TS-5188 | 17

Service Descriptor

Contract
(e.g., urn:nokia:test:
addrbook:2004-09)

Endpoint
(e.g., http://localhost:8080/

jwsf/basic)
Facet

Service Descriptor
Service descriptor specifies the desired service; it has three parts:
1. Contract
2. Endpoint
3. Set of facets

2007 JavaOneSM Conference | Session TS-5188 | 18

Service Descriptor
• Contract

• An abstract way to refer to a service, “name” of the service
• Contract is defined by specifications implemented into a JSR 279 framework

plug-in
• In WSDL terms there is no interoperable equivalent in standard WSDL
• For Liberty services, the contract is likely to be the namespace within

which all of the XML elements of the messages are placed

• Endpoint
• A concrete way to define a service, a network endpoint
• WSDL soap:address location equals the endpoint

• Set of facets
• WSDL content mapped as facets

• Facet names are presented in XPath notations
• Metadata, policy

2007 JavaOneSM Conference | Session TS-5188 | 19

Service Descriptor vs. WSDL
• The service should be describable in WSDL 1.0

• ReST support is defined in WSDL 2.0
• http://www.w3.org/TR/2007/WD-wsdl20-primer-

20070326/#reservationDetails_HTTP

A ServiceDescriptor can be generated from WSDL with the constructor:
ServiceDescriptor desc = new ServiceDescriptor(WSDL);

WSDL can be generated from a ServiceDescriptor:
String wsdl = serviceDescriptor.getWSDL();

2007 JavaOneSM Conference | Session TS-5188 | 20

ServiceDescriptor Generation:
Facets

To help the app developer in constructing the ServiceDescriptor a following method
can be used:
String[] ServiceDescriptor.getFacetValueOptions(frameworkId,
facetName);
If there is a closed set of options, the method returns them; otherwise null is returned

Facet valueFacet Name (XPath/URN)

QoS definition, high accurate service
desired

accuracy:high

QoS definition, free of charge service
desired

price:0

Specifies the sequence of operations
i.e. interaction pattern

portType/operation

Specifies an address for the portdefinitions/service/port

2007 JavaOneSM Conference | Session TS-5188 | 21

Message Object Is the Actual
Content

• The Element[] array is
provided because the
soap body of the
message may have
multiple elements without
necessarily having a
single top-level element

• Properties contain, for
example, correlation and
authentication headers

• Properties can also
override facets of
ServiceDescriptor

2007 JavaOneSM Conference | Session TS-5188 | 22

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plugins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 23

Authentication

• The most basic operation in a high-value relationship with
customers, employees, citizens or business partners

• Has to be done with great care to proactively fight fraud
and identity theft
• Secure solutions are essential
• User consent must be supported

• Common mechanisms to handle authentication
information is required
• Technically, to enable interoperability and seamless user

experiences
• Legally, to enable a business relationship between different

entities in a distributed environment

2007 JavaOneSM Conference | Session TS-5188 | 24

Authentication

• Steps to use authentication with JSR 279
1. Populate a AuthenticationInfo object
2. Associate the AuthenticationInfo and the identity

provider
3. Associate the service and the identity provider
• The framework takes care of the rest

• The authenticated service connection can be
reused while it is not expired

2007 JavaOneSM Conference | Session TS-5188 | 25

AuthenticationInfo

Current authentication facets:

public static final String FCT_USERNAME=“ USERNAME“;

public static final String FCT_PASSWORD=“ PASSWORD“;

public static final String FCT_X509= "X509_CERTIFICATE“;

public static final String FCT_JAAS="JAAS_SUBJECT“;

public static final String FCT_IMEI=“IMEI”;

2007 JavaOneSM Conference | Session TS-5188 | 26

Authentication: Liberty Example
// create an AuthenticationInfo object
AuthenticationInfo authInfo = new AuthenticationInfo();
authInfo.setFacet(AuthenticationInfo.FCT_USERNAME, "uname");
authInfo.setFacet(AuthenticationInfo.FCT_PASSWORD, "pwd");
// set up the Identity Provider
ServiceDescriptor idp = new ServiceDescriptor(null, null,

"http://localhost:8080/jwsf/as");
// set up associations between IdP and authinfo, and service and idp
serviceManager.associateAuthenticationInfo(idp, authInfo);
// create the descriptor giving the contract
ServiceDescriptor pattern = new ServiceDescriptor(null,

"urn:nokia:test:addrbook:2004-09", null);
serviceManager.associateIdentityProvider(pattern, idp);

2007 JavaOneSM Conference | Session TS-5188 | 27

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plug-ins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 28

JSR 280

• The starting point for JSR 280 was about:
• Revising JSR 172, concentrating on XML and leaving

Web services to JSR 279
• Defragmenting XML APIs from the different JSRs
• Be synced and backward compatible with JSR 172,

173, 226, 279
• Offering a state of the art and rich XML parsing

ecosystem

2007 JavaOneSM Conference | Session TS-5188 | 29

XML Use Cases
• Web services
• MMS messages
• Multimedia presentations (SMIL)
• Browsing (WML, xHTML)
• Scalable Vector Graphics (SVG)
• Office applications (many document mark-ups, some proprietary)
• P2P and proximity protocols like UPnP and JXTA™ technology use

SOAP and XML mark-ups
• Small, simple, fit-for-purpose protocols/formats, e.g., RSS and ATOM
• Synchronizing (SyncML)

2007 JavaOneSM Conference | Session TS-5188 | 30

javax.xml.stream org.xml.sax org.w3c.dom

.p
ar

se
rs

.s
tre

am

.e
ve

nt
s

.v
ie

w
s

.e
xt

.h
el

pe
rs

XML Parser Programming Model

• The following technologies for parsing XML exists
• Pull parsers (e.g., StAX)
• Push parsers (e.g., SAX)
• DOM (document object model) parser

• JSR 280 covers them all:

2007 JavaOneSM Conference | Session TS-5188 | 31

Start

Application Logic

Pull

XMLPull parsing process

Pull ...

Abort

Pull

• Based on an Iterator—pattern
• Intuitive for developers

2007 JavaOneSM Conference | Session TS-5188 | 32

<javaOne>
<jsr280>
<chapter id="1">
3 different parsers
</chapter>
</jsr280>
</javaOne>

parser.next()
parser.next()
parser.next()

parser.next()
parser.next()

parser.next()

parser.next()

parser.next()
parser.next()

parser.next()
parser.next()

parser.next()

EVENT: START_DOCUMENT
EVENT: START_ELEMENT[<javaOne>]
EVENT: CHARACTERS[\n]

EVENT: START_ELEMENT[<chapter id=“1”>]

EVENT: CHARACTERS[3 different
parsers\n\t]
EVENT: END_ELEMENT[</chapter>]

EVENT: CHARACTERS[\n\t]
EVENT: START_ELEMENT[<jsr280>]

EVENT: CHARACTERS[\n]

EVENT: END_ELEMENT[</jsr280>]
EVENT: CHARACTERS[\n]

EVENT: END_ELEMENT[</javaOne>]
EVENT: END_DOCUMENT[]parser.next()

ParserApplication

2007 JavaOneSM Conference | Session TS-5188 | 33

Push

• Based on events
• Parser emits events, which are captured by

event handlers

Start Parser

Callback Application Logic

End

SAX parsing process

2007 JavaOneSM Conference | Session TS-5188 | 34

<javaOne>
<jsr280>
<chapter id="1">
3 different parsers
</chapter>
</jsr280>
</javaOne>

parser.parse(xmlDocument)

startDocument()
startElement(uri="",localName="javaOne",qname="javaOne",attributes={
})
characters(text="\n")
startElement(uri="",localName="jsr280",qname="jsr280",attributes={})
characters(text="\n\t")

startElement(uri="",localName="chapter",qname="chapter",attributes
=
{{uri="",localName="id",qname="id",type="CDATA",value="1"}})
characters(text="\n\t3 different parsers")
characters(text="\n\t")

endElement(uri="",localName="chapter",qname="chapter")
characters(text="\n")

endElement(ri="",localName="jsr280",qname="jsr280")
characters(text="\n")

endElement(uri="",localName="javaOne",qname="javaOne")
endDocument()

ParserApplication

2007 JavaOneSM Conference | Session TS-5188 | 35

DOM

• Models the whole document in memory
• Easy to access and manipulate data in the DOM tree

Application Logic

DOM parsing

DOM in-memory
tree structureStart Parser End

2007 JavaOneSM Conference | Session TS-5188 | 36

Push (e.g. SAX 2.0) Pull (e.g. StAX)

- public domain

- widely used in Java SE

- act like I/O stream: cannot seek back or leap ahead. Perfect for
having application reacting on incoming data

- Intuitive usage for the developer
(iteration)
- can be easily stopped whenver
the developer wishes to

- can be stopped by throwing an
application specific exception (not
intuitive)

- widely used and accepted tools
for Java ME (kxml, XMLPull) - “de
facto” standards, which do no
cessarily conform to XML 1.0

- quite usefull subset for Java ME
already in JSR 172

- StAX in JSR 280 is compatible
with JSR 173 defined StAX Java
ME subset

Pull and Push Compared

Java ME = Java Platform, Micro Edition (Java ME platform)
Java SE = Java Platform, Standard Edition (Java SE platform)

2007 JavaOneSM Conference | Session TS-5188 | 37

Pull/Push and DOM Compared

• DOM parsing is the right tool when you need to process both the
document and data

• DOM can be understood as SAX/XMLPull parser with event handler
that stores XML document into an in-memory tree

Push/Pull DOM

- modifying XML doc structurally

- handling small/middle sized docs
- sorting

NOT Competitors: DOM is a complementing tool for extensive
document handling
- performance/memory sensitive
- structure of the document does
not need to be recognized

- sharing the XML doc in memory
with other apps

- when processing is started after
validation

2007 JavaOneSM Conference | Session TS-5188 | 38

Agenda
• What are SOA, Web services, why to use them?
• Classic versus modern Web services

• JSR 279 introduced
• How to extend Service Framework with new framework plug-ins?
• Interaction patterns and basic building blocks of JSR 279 web services:

• ServiceDescriptor
• Message

• Adding identity to Web services (e.g., Liberty)
• XML tooling

• JSR 280 introduced
• Three programming models StAX, SAX, and DOM compared

• Current XML standardization landscape
• DEMO 279 and 280
• Q&A

2007 JavaOneSM Conference | Session TS-5188 | 39

XML Parser Landscape
JSR Title XML parser Status
172 J2ME Web Services

173 Streaming API for XML

226 DOM subset restricted to SVG docs only

279 ServiceConnection API

280 XML API for JavaME

287

290 Refers to JSR280 DOM Core and Events

102 JDOM 1.0 DOM API for Java. No activities since 2001

SAX subset, lacking some substantial
classes (e.g. XMLReader)
Targets JavaSE. The “only standard pull
parser”. Maintenance release includes 280
change proposals

Scalable 2D Vector Graphics API
for J2ME

Web services part of JSR 172 DOM
Element is used
State of the art XML tooling for Java ME.
To be released in June

Scalable 2D Verctor Grphics API 2.0
for J2ME

Successor of JSR 226. Proper subset of
JSR280 as needed for SVG purposes

Java Language XML UI Markup
Integration

J2ME = Java 2 Platform, Micro Edition (J2ME™ platform)

2007 JavaOneSM Conference | Session TS-5188 | 40

Target: Defragmenting XML API

• New JSRs should either refer to the whole package or
define a strict subset of any XML parsers of JSR 280
• Otherwise the co-existence of JSRs in a same device is at risk
• Referring directly to JSR 280 is the best way to avoid

fragmentation
• TCK signature tests have to be modified every time a new subset

is defined

• For example: In JSR 287 the current proposal is:
• If JSR 280 and 287 are implemented in the same device, then

signatures of the DOM interfaces need to be according to 280;
however, the classes implementing them for 287 use only need to
have proper implementation of the methods in the 287 micro-DOM

• If JSR 287 is alone then micro-DOM is used

2007 JavaOneSM Conference | Session TS-5188 | 41

Target: Offer a Rich XML
Ecosystem

• Push, pull, and DOM programming
models, are provided
• The ultimate goal has been to take

whole packages, no subsets
• Having added plenty of DOM Core

Level 3 methods to DOM Core Level 2
package, breaks against the rule
the most

• The additions are due to alignment of
JSR 280 with JSR 287 and 290

• In StAX streamlining was done by
removing duplicate methods

• In StAX, a new tool for DTD parsing was
introduced: the DTDStreamReader

2007 JavaOneSM Conference | Session TS-5188 | 42

<!DOCTYPE life[
<!ENTITY hum SYSTEM “humility.xml">]>
<life>Life is pleasant. Death is peaceful. But the transition is troublesome&hum;</life>

Application Parser DTDStreamReader
parser.next()

parser.getProperty(“javax.xml.stream.entities”);

EVENT: DTD

return entities (as a List)

JSR 173

parser.next()
EVENT: DTD

parser.getProperty(“javax.microedition.xml.stream.DTDStreamReader”);
return DTDStreamReader

dtdParser.next()

JSR 280 (incl. JSR
173 MR)

EVENT: START_DTD

DTDStreamReader

2007 JavaOneSM Conference | Session TS-5188 | 43

JSR 279 and 280: Sample Flow
…

// use JSR 280 API to prepare WS request (StAX approach shown)

XMLOutputFactory outFactory = XMLOutputFactory.newInstance();

XMLStreamWriter sw = outFactory.createXMLStreamWriter (osRequest);

sw.writeStartDocument();

…

// use JSR 279 API to obtain a connection and call the web service

ServiceDescriptor sd = new ServiceDescriptor (fwID, contract, endpoint);

ServiceConnection con = ServiceManager.getServiceConnection (sd);

Message response = con.sendReceive (message);

// use JSR 280 API to parse WS response (DOM)

442007 JavaOneSM Conference | Session TS-5188 |

DEMO
279: Authentication using Liberty (local and
remote) and Basic Service Profile
280: Create sample XML using DOM and
StAX and parse

452007 JavaOneSM Conference | Session TS-5188 |

Q&A

2007 JavaOneSM Conference | Session TS-5188 |

Session TS-5188

Web Services to Go:
Mobile Access to Web
Services With JSR-279 and
JSR-280

Jean-Yves Bitterlich

Sun Microsystems
http://jcp.org/en/jsr/detail?id=280

Pia Niemelä

Nokia Corporation
http://jcp.org/en/jsr/detail?id=279

