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Goal of This Talk 

Learn how to use Aspect-Oriented 
Programming (AOP) to simplify and 
speed up the development of mobile 
application.
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Current Landscape
• Hundreds of mobile operators have 

deployed Java™ platform programs—
Many have custom requirements

• Thousands of Java platform handset 
models exist new models being 
introduced every month
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Why deploying on tiny devices can be so complex
The Challenges

• Devices are very different
• Screen size, heap memory, key mapping, 

VM implementations difference 
• Operators have different requirements
• Projects have shorter lifespan
• Lots of similar but different builds
• Lack of component model

• OOP is not sufficient
• Hard to reuse code from other device builds 

or other projects
• Knowledge is in people’s heads
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What is AOP?
Aspect-Oriented Programming

• AOP complements OO programming
• Dynamically modify static OO models
• Facilitates modularization of cross-cutting 

concerns
• In simple terms, it means having a single module that 

can affect the behaviour of one or more classes
• Centralized changes instead of scattering across 

existing model
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Logging Example
void paint(Graphics g) 
{

// your paint code
}
void keyPressed(int keyCode)
{

// your key processing code
}
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Logging Example (Cont.)

void paint(Graphics g) 
{

logging(“entering paint”);
// your paint code
logging(“leaving paint”);

}
void keyPressed(int keyCode)
{

logging(“entering keyPressed”);
// your key processing code
logging(“entering keyPressed”);

}

Now adds ‘logging’ code in an old fashioned way
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Logging Example (Cont.)
loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}

Pseudo code of an ‘aspect’
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Without AOP

Source Source

Executable

Compiler
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With AOP
Source Source

Executable

Compiler

Weaver

Aspect
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Glossary

• Pointcut
• Advice
• Aspect
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The point of execution in the application at which 
cross-cutting concern needs to be applied 

Pointcut

loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}
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The code that you want to apply to your existing model
Advice

loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}
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The combination of pointcut(s) and the advice(s)
Aspect

loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}
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How AOP Applies to Mobile 

• Modularizing cross-cutting concerns
• Encourage code reuse
• Enable knowledge discovery
• Survey indicates developers are wasting 

25%–50% of their valuable time due to:
• Inability to reuse code previous developed
• Inability to realize the existence of reusable code

Source: Tira Wireless
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Without Modularising Concerns 
Into Aspects

Source

Performance
Screen size
Memory
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Modularising and Reusing 
Concerns Into Aspects

Source

WeaverAspects

Performance
Screen size
Memory
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Knowledge Discovery

• Overtime a lot of aspects are developed
• How can developers find the right aspects 

to reuse?
• How can developers leverage the broader 

community?
• Aspects are “just code”, more metadata 

is needed

Reusable code is useless if nobody knows its existence
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Jumplet

• A collection of aspects that addresses a particular issue 
• An issue example: Sprint builds require GameLobby
• A Sprint GameLobby Jumplet can contain the following aspects:

• Bootstrap
• High score screen

• Metadata
• Tags
• Device properties

• e.g., List of Sprint devices
• Usage count

Aspects with metadata
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Jump Compile
Reference

Source
Target
Source

Target
Bytecode

.jad

.jar
Run

Jumplets encapsulate the transformations
to be made to the Reference Source

Initiating a “Jump”…
…starts the execution of the Jumplets

Each Jumplet contains
one or more Aspects…

…where each Aspect can
modify the source code

“Jumping” transforms the source code ready for compilation
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Sprint Game Lobby

• Sprint’s gaming community
• View Leaderboard
• Rate the Game
• Recommend the Game
• My Stats
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Sprint Game Lobby 
Implementation

• Bootstrap code
• Insert Game Lobby class library
• Subclass from GCMIDlet instead of MIDlet
• Implement abstract methods (e.g., rxData)

• User interface
• Menu
• Score posting, rating, and recommendations (http calls)
• Leaderboard, My Stats UI



2007 JavaOneSM Conference   |   Session TS-5363   | 28

DEMO
Implementing Sprint Game Lobby Using AOP
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Summary

• OOP is not sufficient as the only component 
model for mobile development

• AOP provides the “missing link”
• Mobile Development 2.0—Leverage the 

community
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For More Information

• www.tirawireless.com
• www.eclipse.org/aspectj
• wikipedia.org/wiki/aspect-oriented_programming
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Q&A
Allen Lau
CTO and Co-Founder, Tira Wireless
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