
2007 JavaOneSM Conference | Session TS-5363 |

TS-5363

Using Aspect-Oriented
Programming to Streamline
Mobile Application
Development

Allen Lau
CTO and Co-Founder
Tira Wireless
tirawireless.com

2007 JavaOneSM Conference | Session TS-5363 | 2

Goal of This Talk

Learn how to use Aspect-Oriented
Programming (AOP) to simplify and
speed up the development of mobile
application.

2007 JavaOneSM Conference | Session TS-5363 | 3

Agenda

Development challenges
AOP primer
How AOP applies to mobile development
Demo

2007 JavaOneSM Conference | Session TS-5363 | 4

Agenda

Development challenges
AOP primer
How AOP applies to mobile development
Demo

2007 JavaOneSM Conference | Session TS-5363 | 5

Current Landscape
• Hundreds of mobile operators have

deployed Java™ platform programs—
Many have custom requirements

• Thousands of Java platform handset
models exist new models being
introduced every month

2007 JavaOneSM Conference | Session TS-5363 | 6

Why deploying on tiny devices can be so complex
The Challenges

• Devices are very different
• Screen size, heap memory, key mapping,

VM implementations difference
• Operators have different requirements
• Projects have shorter lifespan
• Lots of similar but different builds
• Lack of component model

• OOP is not sufficient
• Hard to reuse code from other device builds

or other projects
• Knowledge is in people’s heads

2007 JavaOneSM Conference | Session TS-5363 | 7

Agenda

Development challenges
AOP primer
How AOP applies to mobile development
Demo

2007 JavaOneSM Conference | Session TS-5363 | 8

What is AOP?
Aspect-Oriented Programming

• AOP complements OO programming
• Dynamically modify static OO models
• Facilitates modularization of cross-cutting

concerns
• In simple terms, it means having a single module that

can affect the behaviour of one or more classes
• Centralized changes instead of scattering across

existing model

2007 JavaOneSM Conference | Session TS-5363 | 9

Logging Example
void paint(Graphics g)
{

// your paint code
}
void keyPressed(int keyCode)
{

// your key processing code
}

2007 JavaOneSM Conference | Session TS-5363 | 10

Logging Example (Cont.)

void paint(Graphics g)
{

logging(“entering paint”);
// your paint code
logging(“leaving paint”);

}
void keyPressed(int keyCode)
{

logging(“entering keyPressed”);
// your key processing code
logging(“entering keyPressed”);

}

Now adds ‘logging’ code in an old fashioned way

2007 JavaOneSM Conference | Session TS-5363 | 11

Logging Example (Cont.)
loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}

Pseudo code of an ‘aspect’

2007 JavaOneSM Conference | Session TS-5363 | 12

Without AOP

Source Source

Executable

Compiler

2007 JavaOneSM Conference | Session TS-5363 | 13

With AOP
Source Source

Executable

Compiler

Weaver

Aspect

2007 JavaOneSM Conference | Session TS-5363 | 14

Glossary

• Pointcut
• Advice
• Aspect

2007 JavaOneSM Conference | Session TS-5363 | 15

The point of execution in the application at which
cross-cutting concern needs to be applied

Pointcut

loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}

2007 JavaOneSM Conference | Session TS-5363 | 16

The code that you want to apply to your existing model
Advice

loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}

2007 JavaOneSM Conference | Session TS-5363 | 17

The combination of pointcut(s) and the advice(s)
Aspect

loggingAspect
{

loggableCalls = paint, keyPressed;
before: loggableCalls
{

logging(“entering “ + $methodName);
}
after: loggableCalls
{

logging(“leaving “ + $methodName);
}

}

2007 JavaOneSM Conference | Session TS-5363 | 18

Agenda

Development challenges
AOP primer
How AOP applies to mobile development
Demo

2007 JavaOneSM Conference | Session TS-5363 | 19

How AOP Applies to Mobile

• Modularizing cross-cutting concerns
• Encourage code reuse
• Enable knowledge discovery
• Survey indicates developers are wasting

25%–50% of their valuable time due to:
• Inability to reuse code previous developed
• Inability to realize the existence of reusable code

Source: Tira Wireless

2007 JavaOneSM Conference | Session TS-5363 | 20

Without Modularising Concerns
Into Aspects

Source

Performance
Screen size
Memory

2007 JavaOneSM Conference | Session TS-5363 | 21

Modularising and Reusing
Concerns Into Aspects

Source

WeaverAspects

Performance
Screen size
Memory

2007 JavaOneSM Conference | Session TS-5363 | 22

Knowledge Discovery

• Overtime a lot of aspects are developed
• How can developers find the right aspects

to reuse?
• How can developers leverage the broader

community?
• Aspects are “just code”, more metadata

is needed

Reusable code is useless if nobody knows its existence

2007 JavaOneSM Conference | Session TS-5363 | 23

Jumplet

• A collection of aspects that addresses a particular issue
• An issue example: Sprint builds require GameLobby
• A Sprint GameLobby Jumplet can contain the following aspects:

• Bootstrap
• High score screen

• Metadata
• Tags
• Device properties

• e.g., List of Sprint devices
• Usage count

Aspects with metadata

2007 JavaOneSM Conference | Session TS-5363 | 24

Agenda

Development challenges
AOP primer
How AOP applies to mobile development
Demo

2007 JavaOneSM Conference | Session TS-5363 | 25

Jump Compile
Reference

Source
Target
Source

Target
Bytecode

.jad

.jar
Run

Jumplets encapsulate the transformations
to be made to the Reference Source

Initiating a “Jump”…
…starts the execution of the Jumplets

Each Jumplet contains
one or more Aspects…

…where each Aspect can
modify the source code

“Jumping” transforms the source code ready for compilation

2007 JavaOneSM Conference | Session TS-5363 | 26

Sprint Game Lobby

• Sprint’s gaming community
• View Leaderboard
• Rate the Game
• Recommend the Game
• My Stats

2007 JavaOneSM Conference | Session TS-5363 | 27

Sprint Game Lobby
Implementation

• Bootstrap code
• Insert Game Lobby class library
• Subclass from GCMIDlet instead of MIDlet
• Implement abstract methods (e.g., rxData)

• User interface
• Menu
• Score posting, rating, and recommendations (http calls)
• Leaderboard, My Stats UI

2007 JavaOneSM Conference | Session TS-5363 | 28

DEMO
Implementing Sprint Game Lobby Using AOP

2007 JavaOneSM Conference | Session TS-5363 | 29

Summary

• OOP is not sufficient as the only component
model for mobile development

• AOP provides the “missing link”
• Mobile Development 2.0—Leverage the

community

2007 JavaOneSM Conference | Session TS-5363 | 30

For More Information

• www.tirawireless.com
• www.eclipse.org/aspectj
• wikipedia.org/wiki/aspect-oriented_programming

2007 JavaOneSM Conference | Session TS-5363 | 31

Q&A
Allen Lau
CTO and Co-Founder, Tira Wireless

2007 JavaOneSM Conference | Session TS-5363 |

TS-5363

Using Aspect-Oriented
Programming to Streamline
Mobile Application
Development

Allen Lau
CTO and Co-Founder
Tira Wireless
tirawireless.com

