
2007 JavaOneSM Conference | Session TS-5617 |

TS-5617

Developing an Object-
Oriented Database for
Embedded Systems on Java
ME

Konstantin Knizhnik
Software Engineer, McObject

YOUR LOGO
HERE

2007 JavaOneSM Conference | Session TS-5617 | 2

OODBMS for Java™ Platform, Micro Edition
(Java ME Platform)

Implementing an Object-Oriented Database
system for the Java ME application
environment (based on Perst Lite experience)

Benefits, problems, and solutions

2007 JavaOneSM Conference | Session TS-5617 | 3

Agenda

• Benefits of OODBMS for Embedded
(Java ME platform) World
• Efficiency
• Transparent persistence

• Aspects of embedded OODBMS architecture
• Object cache
• Transaction model
• Memory allocation
• Database-specific collections

• Specific of Java ME platform OODBMS implementation
• Reflection replacement
• Cache management
• Storage layout

2007 JavaOneSM Conference | Session TS-5617 | 4

Object-Oriented Databases for Java Platform

• Java ME platform: A runtime environment for devices
• PDAs
• TV set-top boxes

• Relational DBMS and client-server approach
• Embedded specifics

• Local data processes
• Simple queries
• High speed and low footprint

• Object-Oriented database approach
• Seamless interface with application
• No records-to-objects pack/unpack overhead

2007 JavaOneSM Conference | Session TS-5617 | 5

Efficiency Advantages of Object-Oriented
Database Management Systems

• Single data model for the database and application
• No need to convert data from the “application’s

representation” to the “database representation” and back
• No query processing overhead
• Efficient representation of complex data structures using

object references
• Data encapsulation
• Polymorphic queries
• Use of a single programming language (as opposed to

Java programming language and SQL)

2007 JavaOneSM Conference | Session TS-5617 | 6

Coding Efficiency: Object-Oriented Versus
Relational Database Approaches

Person getPersonByName(string lastName)
{

Statement stmt = con.createStatement();
stmt.setString(1, lastName);
ResultSet cursor = stmt.executeQuery

("SELECT * FROM Person”
+ “ where lastName like lastName + "'%'");

if (!cursor.next()) {
cursor.close();
return null;

}
Person p = new Person();
p.firstName = cursor.getString("firstName");
p.lastName = cursor.getString("lastName");
p.age = cursor.getInt("age");
p.salary = cursor.getLong("salary");
return p;

}

Person getPersonByName(string lastName)
{

Statement stmt = con.createStatement();
stmt.setString(1, lastName);
ResultSet cursor = stmt.executeQuery

("SELECT * FROM Person”
+ “ where lastName like lastName + "'%'");

if (!cursor.next()) {
cursor.close();
return null;

}
Person p = new Person();
p.firstName = cursor.getString("firstName");
p.lastName = cursor.getString("lastName");
p.age = cursor.getInt("age");
p.salary = cursor.getLong("salary");
return p;

}

Person getPersonByName(string lastName)
{

return personIndex.prefixSearch(lastName);
}

Person getPersonByName(string lastName)
{

return personIndex.prefixSearch(lastName);
}

2007 JavaOneSM Conference | Session TS-5617 | 7

Achieving Persistence:
Persistence by Reachability

Storage

Index2

Index1

Field1

Root

Persistent
object

B-Tree
index

New instance
of the persistent-

capable class

2007 JavaOneSM Conference | Session TS-5617 | 8

Achieving Persistence by Reachability:
Database Initialization

Storage db = StorageFactory.getInstance().createStorage();
db.open("test.dbs"); // open database
RootObject root = (RootObject)db.getRoot();
if (root == null) { // if database is not yet initialized

root = new RootObject(db); // create a root object
db.setRoot(root); // and register it

}
...
db.close(); // close database

2007 JavaOneSM Conference | Session TS-5617 | 9

Achieving Persistence by Reachability:
Code Sample

class Account {
string id;
long amount;

public void deposit(long sum) {
// update object field
amount += sum;
// mark object as modified
modify();

}
Account (string id) {

this.id = id;
}

}

class Bank {
FieldIndex<Account> accounts;
void createAccount (string id) {

// create new instance
Account acc = new Account (id);
// include it in index:
accounts.add(acc); // acc is
// made persistent implicitly
return acc;

}
}

2007 JavaOneSM Conference | Session TS-5617 | 10

Transparent Persistence

• Definitions
• Transparent persistence: Data is accessed directly using Java

programming language vs. a database sub-language (embedded SQL)
or call interface (ODBC/JDBC)

• Java platform reflection support is a key to OOBDMSs’
transparent persistence
• Structural reflection: Inspection of object content at runtime
• Lack of behavioral reflection: Not possible to control access to the objects
• Not possible to implement completely transparent persistence without

special tools

• Explicitly fetch/store persistent objects
• Error prone
• Lack of transparency: Eliminates the main advantage of OODBMS
• Requires more effort from programmer

2007 JavaOneSM Conference | Session TS-5617 | 11

Transparent Persistence Benefits:
Code Sample

Explicit control of object persistence

class Project {
// use identifiers instead of references
int managerID;

}
class Manager {

int projectID;
void assign(Project p) {
// load object
Manager mgr = db.get(p.managerID);
// update object
mgr.projectID = 0;
// store modified object
db.put(mgr);

// get object ID
this.projectID = db.getID(p);

}
}

Transparent persistence: No difference
between transient and persistent objects

class Project {
Manager manager; // use normal references

}
class Manager {

Project project;
void assign(Project p) {

// not necessary to load the object
Manager mgr = p.manager;
// update object
mgr.project = null;
// not necessary to explicit store the

object
project = p;

}
}

2007 JavaOneSM Conference | Session TS-5617 | 12

Agenda

• Benefits of OODBMS for embedded world
• Efficiency
• Transparent persistence

• Aspects of Embedded OODBMS architecture
• Object cache
• Transaction model
• Memory allocation
• Database-specific collections

• Specific of Java ME platform OODBMS implementation
• Reflection replacement
• Cache management
• Storage layout

2007 JavaOneSM Conference | Session TS-5617 | 13

Object Caching Keeps Frequently
Used Objects in Memory

…
74324
43555
20302

23234
12344

Object cache
Object

OID:12344

Object
OID:23234

Object 43555

Object
OID:74324

Next
Child

Parent

class MyClass {
void traverse()
{

MyClass obj = child;
while (obj != null) {

obj = obj.next;
}

}
}

class MyClass {
void traverse()
{

MyClass obj = child;
while (obj != null) {

obj = obj.next;
}

}
}

Strong
reference

Strong
reference

Weak
reference

Weak
reference

Least
recently used

Least
recently used

Goal: Avoiding Excessive Storage Access

2007 JavaOneSM Conference | Session TS-5617 | 14

New

Persistent Object State Transfer

Persistent
(assigned OID)

Saved to
the disk

Raw
(stub object)

Loaded Modified

referenced

load()

Thrown
away from

cache

modify()

commit() GC
finalization

2007 JavaOneSM Conference | Session TS-5617 | 15

Two OODBMS Transaction Models:
Write Ahead Log and Shadow Objects

• Write ahead log
• Based on writing all data changes into a log file before

writing them into the database file; in case of fault, all
committed transactions can be recovered from the log

• Shadow objects
• The database creates copies of updated objects,

and transactions modify these copies rather than the
original objects; the database accesses objects
(originals and copies) indirectly through the “object
index”; transactions are committed by switching
between the “active” and the “shadow” versions of
this index

2007 JavaOneSM Conference | Session TS-5617 | 16

Write Ahead Log vs. Shadow Objects:
Advantages and Disadvantages

Fast recovery time—
only need to switch
current index

Recovery requires reading
and processing the whole
log file

Concurrent transaction
execution is problematic

Easily facilitates multiple
concurrent transactions

If application is not using
transactions, then
overhead is minimal

Always double amount of
disk IO

No need for extra files
Restricted by log size,
system administrator
interaction usually needed

Shadow objectsWrite ahead log

2007 JavaOneSM Conference | Session TS-5617 | 17

Memory Allocation Strategies

• Memory allocation is a critical component of reaching
top performance in object-oriented databases

• Memory allocators critically affect database
performance through:
• Allocation and de-allocation speed
• Memory overhead
• Fragmentation

• Memory allocators’ secondary impacts on performance
• Locality of references
• Protection from fault

2007 JavaOneSM Conference | Session TS-5617 | 18

Database-Specific Collections

• OODBMS offers classes for dedicated purposes, such as:
• Range queries: “Select * from T where age between 20 and 40”
• Optimize access to the disk: B-Tree
• Lazy loading of collections’ members
• Spatial indices: R-Tree

• Embedded collections: Reducing the number of objects
• Extends the limited set of standard collection classes

available in Java ME platform and provides JDK 1.2
compatible abstractions

2007 JavaOneSM Conference | Session TS-5617 | 19

Example: Perst OODBMS Uses Its
Range Queries Collection

// calculate average salary for employees which age
// belongs to the specified interval
void CalculateAverageSalary(Date min, Date max) {

long totalSalary = 0;
int nEmployees = 0;
for (Employee e : index.iterator(new Key(min), new Key(max),

Index.ASCENT_ORDER))
{

totalSalary += e.salary;
nEmplyees += 1;

}
return nEmployees != 0 ? totalSalary/nEmplyees : 0;

}

2007 JavaOneSM Conference | Session TS-5617 | 20

Agenda

• Benefits of OODBMS for embedded world
• Efficiency
• Transparent persistence

• Aspects of embedded OODBMS architecture
• Object cache
• Transaction model
• Memory allocation
• Database-specific collections

• Specifics of Java ME platform OODBMS implementation
• Reflection replacement
• Cache management
• Storage layout

2007 JavaOneSM Conference | Session TS-5617 | 21

Java ME Platform (CLDC 1.0 and 1.1)
vs. Java Platform, Standard Edition
(Java SE Platform) Supported Features

Floating point

Weak
references

Reflection

J2SE™
PlatformCLDC 1.1CLDC 1.0

2007 JavaOneSM Conference | Session TS-5617 | 22

Engineering Around CLDC Limitations:
Reflection

• Reflection is used to inspect
the object format at runtime

• Reflection gives the database
runtime “knowledge” of the
storage format and access
methods of the object

2007 JavaOneSM Conference | Session TS-5617 | 23

How OODBMSs Use Reflection
to Pack and Unpack Objects

• Database engine iterates
through all fields of the
object, extracts their values
and packs them into an
internal database format

• Object is stored on disk as
an array of bytes

• Reflection is slow because
the runtime has to verify
that object fields are
accessed in the proper way

// List of field descriptors prepared by
// the OODBMS using reflection
FieldDescriptor[] flds = desc.fields;
// Loop through all fields in the class
for (int i = 0, n = flds.length; i < n; i++) {

FieldDescriptor fd =flds[i];
Field f = fd.field;

switch(fd.type) {
case ClassDescriptor.tpByte:

buf.extend(offs + 1);
// get the value of a byte field
buf.arr[offs++] = f.getByte(obj);

continue;
case ClassDescriptor.tpInt:

buf.extend(offs + 3);
// get the value of a short field
Bytes.pack2(buf.arr, offs, f.getShort(obj));

}
}

2007 JavaOneSM Conference | Session TS-5617 | 24

How Perst Lite Replaces Reflection

• Pack/unpack routines are automatically
generated by the preprocessor

• Less overhead: no loops and switches
• Need for default constructor is eliminated

public class Manager extends Employee {
public Project project;
public int age;
public String character;

public void write (+ out) {
super.write(out);
out.writeObject(project);
out.writeInt(age);
out.writeString(character);

}
}

final byte[] packObject(IPersistent obj) {
// create stream for writing
// serialized data
PerstObjectOutputStream out =

new PerstObjectOutputStream(obj);
// write the object to the stream
obj.write (out);
// return byte array with the
// serialized data
return out.toArray();

}

2007 JavaOneSM Conference | Session TS-5617 | 25

Engineering Around CLDC Limitations:
Object Cache

• The “object” is the
fundamental concept in
OODBMS and applications
usually access a large
number of objects

• An OODBMSs’ object
cache keeps frequently
used objects in memory, to
avoid excessive access to
non-volatile device storage

2007 JavaOneSM Conference | Session TS-5617 | 26

Overview of Caching Policies

Implemented upon weak
cache, pins the most
frequently used objects in
memory using the LRU
discipline

LRU (least recently used)

Variation of the
weak cache.
Objects are
pinned in
memory until
the transaction
commit

Eliminates disk
I/O until the
commit and
avoids
redundant I/O

Object cache is
based on the
java.lang.SoftR
eference class

GC will do its
best to keep
objects in the
cache as long
as possible

Object cache is
based on the
java.lang.Weak
Reference class

Un-referenced
objects in the
cache live until
the first garbage
collection (GC)

Object cache
keeps strong
references to all
objects

This cache “pins”
all objects in
memory and is
used for in-
memory
databases

PinnedSoftWeakStrong

2007 JavaOneSM Conference | Session TS-5617 | 27

OODBMS Caching in the Java ME
Application Environment

• An OODBMS’s object cache keeps frequently
used objects in memory, to avoid excessive
access to non-volatile device storage;
lack of weak references requires using
strong references and cache clean-up upon
transaction commit

• It is still possible to use the LRU discipline to
keep the most frequently used objects in cache

2007 JavaOneSM Conference | Session TS-5617 | 28

Example of Java ME Platform OODBMS
Using Object Cache for Object Lookup
final IPersistent lookupObject(int oid, Class cls) {

IPersistent obj = objectCache.get(oid); // try to find object in cache
if (obj == null || obj.isRaw()) {
obj = loadStub(oid, obj, cls); // object is not in the cache or is raw

}
return obj;

}
final IPersistent loadStub(int oid, IPersistent obj, Class cls)
{ …

if (obj == null) {
obj = (IPersistent)desc.newInstance(); // create new instance
objectCache.put(oid, obj); // put created instance in the cache

}
return obj;

}

2007 JavaOneSM Conference | Session TS-5617 | 29

Perst Lite’s Storage Layer for
Java ME Platform

Database Storage
• Use page pool to optimize access

to the underlying storage
• Abstract from the underlying
implementation

• One virtual file on top of several physical
files

• Database page is stored as RMS record
• Access to any file and device
• Available for PDA and smartphones

Record Management System
Package: javax.microedition.rms

Java™ Specification Request (JSR) 75
Package: javax.microedition.io.file

2007 JavaOneSM Conference | Session TS-5617 | 30

Conclusion
• OODBMSs in the embedded world must operate in a restricted

environment; this demands efficient and compact algorithms
• Features traditionally used in Java platform OODBMSs such as

reflection and weak object cache have to be replaced with
lightweight alternatives

• In order to be truly useful, an object-oriented embedded database for
Java ME platform must not only adhere to CLDC specifications, but
also accommodate development in specific environments, such as
Blackberry

• Complexity of Java ME platform storage management argues in
favor of integrating open source or commercial database system
rather than self-developed solution

• Perst.Lite (www.mcobject.com/perst) is an Open Source, truly
object-oriented DBMS for Java ME platform that is built on the
principles discussed in this presentation

2007 JavaOneSM Conference | Session TS-5617 | 31

For More Information

• Visit McObject website
http://www.mcobject.com/perst/

• Sun resources
• http://java.sun.com/javame/index.jsp
• http://java.sun.com/javame/technology/index.jsp
• http://java.sun.com/products/midp/
• http://java.sun.com/products/sjwtoolkit/
• https://phoneme.dev.java.net/content/index_feature.html

• Vendor-specific Blackberry development tools
http://na.blackberry.com/eng/developers/

2007 JavaOneSM Conference | Session TS-5617 | 32

Q&A
Konstantin Knizhnik, McObject
Andrei Gorine, McObject

2007 JavaOneSM Conference | Session TS-5617 |

TS-5617

Developing an Object-
Oriented Database for
Embedded Systems on Java
ME

Konstantin Knizhnik
Software Engineer, McObject

YOUR LOGO
HERE

