
2007 JavaOneSM Conference | Session TS-5639 |

TS-5639

Mobility Service Oriented
Architecture Extending SOA to
Mobile Devices

Ari Shapiro/Andreas Frank
Engagement Architects
Sun Microsystems, Inc.
http://www.sun.com

2007 JavaOneSM Conference | Session TS-5639 | 2

Creating Network-Based
Mobility Services

Learn how to architect, build, and deploy
dynamic network-based Java™ platform
mobility services

2007 JavaOneSM Conference | Session TS-5639 | 3

Agenda
Why Do We Need MSOA?
What Is MSOA?
Demo—Services and Event Manager
Server Platform
Client Platform
Demo—MSOA Use Cases
Q&A ~ 5 Minutes

2007 JavaOneSM Conference | Session TS-5639 | 4

Why Do We Need MSOA?
● It is challenging to create and roll out new

dynamic network-based Java platform services
especially to existing devices

● Typical roll-out time for new service is currently
measured in several months to more than a year

● Exposing existing network services/infrastructure
to mobile clients is difficult

● Rolling out IMS services to existing non-IMS
clients (mobile devices, STBs, etc.) is a major
challenge

2007 JavaOneSM Conference | Session TS-5639 | 5

Customer Pain Points
● Faster time to market
● Revenue growth
● Composed and blended services
● “Over-the-top” services (IP-based)
● Software-as-a-Service (SaaS)
● Cross-access network personalization
● Interactive and context aware Services
● Access and provisioning across converged networks

and federated service domains
● Synchronous and asynchronous

2007 JavaOneSM Conference | Session TS-5639 | 6

Agenda
Why Do We Need MSOA
What Is MSOA?
Demo (Services and Event Manager)
Server Platform
Client Platform
Demo—MSOA Use Cases
Q&A

2007 JavaOneSM Conference | Session TS-5639 | 7

What Is MSOA?
● A Mobility Service Oriented Architecture framework and

platform that leverages existing and emerging industry
standards and technologies and combines them
through a best practice approach

● Extends SOA to mobile devices, STBs, sensors,…
● Provides the framework for customers to rapidly create

and deploy end-to-end Java platform services—
from the client (e.g., Midlet, Xlet) application through
a collaboration of back-end web services and/orIMS
services

● A full client side framework and set of management
applications

2007 JavaOneSM Conference | Session TS-5639 | 8

What Is MSOA?
● Server platform

● Uses Sun's Solaris™ Operating System (Solaris OS),
Java Enterprise Systems (Java ES), and tools

● Enables the easy creation and combination of services
● Client platform

● Provides a forward looking consistent client platform
that can run on today’s devices

● Allows to leverage high-end device functionality

2007 JavaOneSM Conference | Session TS-5639 | 9

MSOA—High Level Overview

2007 JavaOneSM Conference | Session TS-5639 | 10

MSOA Benefits
● Add/remove/configure services on the fly
● Identity-based network services
● Faster time to market
● Integrates existing services as well as new

IMS services easily
● Little or no dependency on device features
● Supported by a suite of development tools

which make development easier and faster

2007 JavaOneSM Conference | Session TS-5639 | 11

MSOA Benefits
● Follow principles and practices for designing

shared, reusable, distributed services
● Much easier to pull off with a consolidated stack

● SOA value
● Separation of service interface from underlying

implementation (loose coupling)
● Promotes service reuse through discoverable and

self-describing services
● Services are course-grained, compose-able,

and rely on a standards-based infrastructure

2007 JavaOneSM Conference | Session TS-5639 | 12

MSOA High-Level Components

2007 JavaOneSM Conference | Session TS-5639 | 13

Agenda
Why Do We Need MSOA
What Is MSOA?
Demo—Services and Event Manager
Server Platform
Client Platform
Demo—MSOA Use Cases
Q&A

2007 JavaOneSM Conference | Session TS-5639 | 14

DEMO
Services Manager
Event Manager
Provisioning Screens

2007 JavaOneSM Conference | Session TS-5639 | 15

Agenda
Business case for MSOA
What Is MSOA?
Demo—Services and Event Manager
Server Platform
Client Platform
Demo—MSOA Use Cases
Q&A

2007 JavaOneSM Conference | Session TS-5639 | 16

MSOA—Generic Components

J2ME = Java 2 Platform, Micro Edition (J2ME™ platform); J2SE = Java 2 Platform, Standard Edition (J2SE™ platform).

2007 JavaOneSM Conference | Session TS-5639 | 17

Software Components and
Interfaces

2007 JavaOneSM Conference | Session TS-5639 | 18

Agenda
Business Case for MSOA
What Is MSOA?
Demo—Services and Event Manager
Server Platform
Client Platform
Demo—MSOA Use Cases
Q&A

2007 JavaOneSM Conference | Session TS-5639 | 19

Today MIDP 2.0-based, easily extensible to CDC
Client Platform
● Services Manager MIDlet

● Provides one point of entry for all services
● Services are received from the server and can be

dynamically changed (updated/added/removed separately)

● Event Manager MIDlet
● Provides a single point of entry for all events received

by the client

● UI Manager
● Pure Java technology, will run on any MIDP 2.0 device
● Consistent look and feel across multiple devices
● Theme manager

2007 JavaOneSM Conference | Session TS-5639 | 20

Today MIDP 2.0-based, easily extensible to CDC
Client Platform
● Communications Manager

● HTTP-based communications manager using an
optimized binary protocol

● Event Manager
● Provides a single point of entry for all events received

by the client
● Development Tools—Based on Netbeans™

Software Mobile and the Sun Java Wireless
Toolkit

2007 JavaOneSM Conference | Session TS-5639 | 21

Communication Manager
● Http-based communication with the server
● Uses an optimized binary protocol to transfer

Objects
● Supported by Netbeans Software Mobile
● Supports access to web services without

needing Java Specification Request (JSR) 172
on the device

2007 JavaOneSM Conference | Session TS-5639 | 22

UI Manager
● MIDP 2.0 Pure Java technology-based
● Runs on today’s devices
● Supports application theming
● Provides a number of layout managers

(Box, Grid, Flow) out of the box

2007 JavaOneSM Conference | Session TS-5639 | 23

Major client-side issues
Client-Side Challenges
● Launch MIDlet from another MIDlet

● The Services Manager needs to be able to launch
other services which are implemented as MIDlets

● Every MIDlet needs to be able to go back to it’s caller
● Client-side caching

● Data needs to be cached on the client easily by
applications

● Cross-device UI
● The MSOA UI Manager provides a framework to build

UIs that will work on multiple devices
● CDC and CLDC support

2007 JavaOneSM Conference | Session TS-5639 | 24

Deep dive into the problem

Launching a MIDlet From
Another MIDlet
● Available options

● JSR 211 CHAPI
● Pros—Standards-based
● Cons—Very few devices today support JSR 211

● Proprietary APIs (e.g., Muglet API)
● Pros—Deployed on a lot of devices
● Cons—Not standards-based

● Platform request
● Cons—Implementation dependent

● MSOA framework handles this transparently
for you

● Supports MVM as well

2007 JavaOneSM Conference | Session TS-5639 | 25

Using JSR 211 CHAPI
● JSR 211 CHAPI allows an application to

register itself as a handler
● Every MSOA MIDlet registers as a handler

● MicroEdition-Handler-1-ID = fully qualified name
● The Services Manager uses the fully qualified

name it receives from the server to launch the
service

● When the called service exits control reverts
back to the launching MIDlet

2007 JavaOneSM Conference | Session TS-5639 | 26

Muglet API example
Proprietary APIs
● The Muglet API provides a facility to launch a

MIDlet from another MIDlet
● The following code launches a MIDlet:

// launch the specified midlet
com.sprintpcs.util.System.setExitURI(midlet:fullQualifiedName?params);
// the above specified MIDlet will only launch after
// the current MIDlet exits
launchingMidlet.notifyDestroyed();

2007 JavaOneSM Conference | Session TS-5639 | 27

Using Platform Request
● On some devices Platform Request can be used

to launch a MIDlet from another MIDlet
● The following code launches another MIDlet

// launch the specified midlet, needToExit let's us know
// if we need to exit the current MIDlet
boolean needToExit =

launchingMidlet.platformRequest("midlet:fullyQualified
Name”);

// if we need to exit the current MIDlet
if (needToExit) {

launchingMidlet.notifyDestroyed();
}

2007 JavaOneSM Conference | Session TS-5639 | 28

MSOA MIDlet Launch Framework
● Uses Factory pattern to create a launcher
● All launchers implement the MidletHelper

interface
● MidletHelper provides the interface to launch a

MIDlet and go back to the caller

2007 JavaOneSM Conference | Session TS-5639 | 29

Factory class to create the appropriate launcher
MSOA MidletLauncherFactory
// first see if the platform supports Muglets

try {
Class.forName("com.sprintpcs.util.Muglet");
return new MugletMidletHelper();

} catch (ClassNotFoundException ex) {
// next try CHAPI
try {

Class.forName("javax.microedition.content.Registry");
return new ChapiMidletHelper();

} catch (ClassNotFoundException e) {
//none of the above use Platform Request
return new PlatformRequestMidletHelper();

}
}

2007 JavaOneSM Conference | Session TS-5639 | 30

Using the MSOA MIDlet
Launch Framework
● Using this framework from a client is really simple
● Below is code taken from the Services Manager

// launch the selected MIDlet
protected void launchMidlet(int midletNum) {

helper.launchMidlet(managerMidlet,midlets[midletNum].g
etPackagename());

}

2007 JavaOneSM Conference | Session TS-5639 | 31

Agenda
Why Do We Need MSOA?
What Is MSOA?
Demo—Services and Event Manager
Server Platform
Client Platform
Demo—MSOA Use Cases
Q&A

2007 JavaOneSM Conference | Session TS-5639 | 32

DEMO
The mSOA Framework in Action

Dynamic Deployment of Services
Conference Call Setup
Location-Based Services

2007 JavaOneSM Conference | Session TS-5639 | 33

Summary
● Extends SOA to mobile devices, STBs, sensors…
● Provides the framework for customers to rapidly

create and deploy end-to-end Java platform
services

● Leverages existing and emerging industry
standards and technologies and combines
them through a best practice approach

2007 JavaOneSM Conference | Session TS-5639 | 34

Q&A
Ari Shapiro/Andreas Frank

2007 JavaOneSM Conference | Session TS-5639 |

TS-5639

Mobility Service Oriented
Architecture Extending SOA to
Mobile Devices

Ari Shapiro/Andreas Frank
Engagement Architects
Sun Microsystems, Inc.
http://www.sun.com

2007 JavaOneSM Conference | Session TS-5639 | 36

Back-Up Slides

2007 JavaOneSM Conference | Session TS-5639 | 37

Cross Device UI
● The MSOA UI Manager provides a framework to

build UIs that will work on multiple devices

2007 JavaOneSM Conference | Session TS-5639 | 38

Services Manager MIDlet
● The Services Manager

serves as a mini-AMS
● It displays the services

the user has
● Each service is a

separate MIDlet
● The user can launch his

services directly from the
Services Manager

2007 JavaOneSM Conference | Session TS-5639 | 39

Event Manager MIDlet
● The Event Manager serves as

one point of entry for all events
● Events responses are context

sensitive
● The user can launch a response

to an event right
from the Event Manager

2007 JavaOneSM Conference | Session TS-5639 | 40

MidletHelper Interface Methods
// launch the specified midlet with parameters
public void launchMidlet(MIDlet launchingMidlet,
String newMidletName, String[] params);

// launch the specified midlet no params
public void launchMidlet(MIDlet launchingMidlet,
String newMidletName);

// go back to the MIDlet that called you
public void goBackToCallingMidlet(MIDlet

launchingMidlet);

2007 JavaOneSM Conference | Session TS-5639 | 41

MSOA Caching Framework
● Data needs to be cached on the client to provide

better performance and less network traffic
● MSOA provides a caching framework that can

be used by all MSOA clients to cache data,
preferences, etc.

2007 JavaOneSM Conference | Session TS-5639 | 42

MSOA Design Principles
● Whole services lifecycle including creation,

deployment, delivery, management, and execution
which entails a Services creation and execution
environment

● Tool support
● New generation adopt SOA for telco/cable

● Layering
● Web services
● Orchestration, etc.

● Identity plays a central role
● Third-party services providers integration (Liberty)

2007 JavaOneSM Conference | Session TS-5639 | 43

Event Manager Server Access
Workflow

