
2007 JavaOneSM Conference | Session TS-5711 |

Developing Reliable Products:
Static and Dynamic Analysis of the
Code

Aleksandr Kuzmin
Java ME Software Quality Architect
Sun Microsystems, Inc.
Member of American Society for Quality
Mikhail Davidov
Java ME Software Quality Manager

Sun Microsystems, Inc.

Java™ ME = Java™ Platform, Micro Edition

TS-5711

2007 JavaOneSM Conference | Session TS-5711 | 2

Analytical Tools Improve Code
Quality

Proper application of static and
dynamic tools, during development and
test execution, significantly improves
the reliability of products

2007 JavaOneSM Conference | Session TS-5711 | 3

Agenda
Static analysis

Theory
Benefits
Examples

Dynamic analysis
Theory
Benefits
Examples

Quality wins !

2007 JavaOneSM Conference | Session TS-5711 | 4

Why Do We Need Such Tools ?
● Many software defects don’t manifest

themselves during regular testing; Software
with subtle problems may run flawlessly on one
platform, but crash on another

● Stability of the code is critical for embedded
software and server applications

2007 JavaOneSM Conference | Session TS-5711 | 5

Static Analysis
● Static analysis helps to detect defects

beyond the limits of runtime coverage
● Analytical tools report potential errors by

modeling dynamics of software applications
relying solely on the source code

● In addition to market tools, Sun develops
internal,customized static analysis
instruments

2007 JavaOneSM Conference | Session TS-5711 | 6

Static Analysis: Why It’s
Important
● Static analysis may detect defects that are not

reachable by functional test coverage
● Benefits:

● All blocks and execution paths can be analyzed
● All data ranges can be tested
● No instrumentation of the code
● No tests to develop

2007 JavaOneSM Conference | Session TS-5711 | 7

Static Analysis: Call-graph
● Control Flow Graph (CFG) is just a different

representation of the program source—it’s built
on syntax tree of the program and defined
constraints over variables assigned to nodes

● A CFG is a directed graph, in which nodes
correspond to program points and edges
represent possible flow of control

2007 JavaOneSM Conference | Session TS-5711 | 8

Static Analysis:
CFG—Dataflow Analysis
● Dataflow analysis considers CFG with dataflow

constraints that relate to the values of the
variables of the corresponding CFG nodes

● When we consider the whole chain of function
calls, the analysis is called inter-procedural

2007 JavaOneSM Conference | Session TS-5711 | 9

Static Analysis: Data Ranges
● There are interesting values to inject into given

code sections that can trigger bugs and check for
boundary values

● Some static analysis tools (e.g. PolySpace) may
automatically determine if all callers to a given
method only pass safe values to the method

2007 JavaOneSM Conference | Session TS-5711 | 10

Typical Errors Detected by Static
CFG Analysis in Native Code
● Illegal pointer access to variable/structure
● Array index within bounds
● Non-Initialized Variable/Pointer
● User assertion
● Overflows/Underflows, division by zero
● Wrong number, wrong type for arguments
● Non-termination of Call or Loop
● Unreachable code

2007 JavaOneSM Conference | Session TS-5711 | 11

DEMO
Static Analysis

2007 JavaOneSM Conference | Session TS-5711 | 12

Static Analysis: Example 1

Unreachable code

2007 JavaOneSM Conference | Session TS-5711 | 13

Static Analysis: Example 2

Out of bounds if 'len' > 16

2007 JavaOneSM Conference | Session TS-5711 | 14

Static Analysis: Example 3
If statement condition contains assignment. (Severe

Violation: (pbugs-21, IfAssign.rule))
720 if ((temp1.ptr[0] == 1) && (temp1.size = 1)) {

Assignment operators shall not be used in
expressions which return boolean value
(Violation: (misra-035,

AvoidAssignmentsInBooleanExpr_MISRA_035.rule))

2007 JavaOneSM Conference | Session TS-5711 | 15

Static Analysis: Example 4
XDecode.c
186
187 CRC = readHeader(src, chunkLength, &data, CRC);
188

in "XDecode.c" line 187 column 10
the readHeader call never terminates:

readHeader():
...
while (length > 0) {

int n = (length < (long)sizeof(buf)) > length : n;
crc->getBytes(src, buf, n);
CRC = update_crc(CRC, buf, n);

}
...

2007 JavaOneSM Conference | Session TS-5711 | 16

Static Analysis: Summary
● 75% of bugs are local (intra-procedural)
● Finding real integration bugs might require

too heavy inter-procedural analysis
● At least 30% of unreachable code reveals

real bugs
● First 20% of review time classifies 60% of

false positives
● 80% of warnings can be easy evaluated

2007 JavaOneSM Conference | Session TS-5711 | 17

Dynamic Analysis
● Dynamic analysis helps to identify the source of

the problem much faster than intensive
stress testing

● Dynamic analysis discovers real problems with
high precision (vs. potential defects) using its
instrumentation of the code and analysis of all
memory operations

2007 JavaOneSM Conference | Session TS-5711 | 18

Dynamic Analysis: Why It’s
Important
● Memory leaks or illegal pointer operations may

not be noticed during functional nor stress testing,
but may cause problems in production
deployment

● Benefits:
● Low rate of false positives
● Easy to automate

2007 JavaOneSM Conference | Session TS-5711 | 19

Dynamic Analysis: How It Works

The tools insert some analysis code at every line
of source code; They build a database of all
program elements, and then at runtime, the
tools check each data value and memory
reference against its database to verify
consistency and correctness

Source
Code

Insert Dynamic
Analysis

Get Hidden Runtime
Bugs

Compilati
on

Run
Tests

2007 JavaOneSM Conference | Session TS-5711 | 20

Typical Errors Detected by
Dynamic Analysis
● Memory Leaks
● Invalid Pointers
● Memory Corruption
● Memory Overflow
● Reading/Writing Uninitialized Memory
● Unused Variables/Arguments
● Data Formatting Problems
● Unexpected Errors
● Invalid Arguments
● Invalid System Calls

2007 JavaOneSM Conference | Session TS-5711 | 21

DEMO

Dynamic analysis

2007 JavaOneSM Conference | Session TS-5711 | 22

Dynamic Analysis: Example 1

keyPtr = "com.sun.midp.io.j2me.sms.DatagramPortOut";
valuePtr = strdup(serverTrafficPort);
setInternalProp(keyPtr, valuePtr);
setSystemProp(keyPtr, valuePtr);

Memory leak: valuePtr was not free()-ed

2007 JavaOneSM Conference | Session TS-5711 | 23

Dynamic Analysis: Example 2

else {
carry = (t1 < t2);
t1=(t1 - t2);

}

t1 was not
initialized

2007 JavaOneSM Conference | Session TS-5711 | 24

Dynamic Analysis: Statistics
● Low rate (10%) of false positives
● Up to 1 defect per 3-10 Klines_of_code

2007 JavaOneSM Conference | Session TS-5711 | 25

Dynamic Analysis: Summary
● As usual, a regular memory debugger is helpful

when the program already has reproducible
crash; instead, dynamic analysis helps to find
hidden defects automatically during regular
functional testing

● The precision and breadth of dynamic analysis
is limited only by runtime test coverage of
the product

2007 JavaOneSM Conference | Session TS-5711 | 26

False Positives
● Analytical tools may report “false positives”
● This is OK, because:

● General-purpose tools may not know about specific
assumptions in your code

● Their rules might be too general
● The warnings might be over-prioritized

2007 JavaOneSM Conference | Session TS-5711 | 27

How to Manage False Positives
● False alarms can be suppressed by:

● Customized filters
● Proper prioritization of the rules
● Better stub-functions
● Analyzing the whole system instead of a single module
● Modify data ranges

2007 JavaOneSM Conference | Session TS-5711 | 28

Summary

Quality

Defect
Detection

Cost
Regular test
cycle

Bug detection
using
rule-based

analyzers
Static and
dynamic
analysis

Static and dynamic analyses help
to significantly improve quality
and lower cost of defect detection

They pay off quickly

2007 JavaOneSM Conference | Session TS-5711 | 29

Our Message to JavaOneSM

Conference

Sun Java™ technology product testing
teams apply various static and dynamic
analysis in software development
process to find bugs earlier and to build
quality into the software that we deliver

2007 JavaOneSM Conference | Session TS-5711 | 30

Tools Available for Java Code
and Native Code

www.sun.com
www.parasoft.com
http://findbugs.sourceforge.net
www.enerjy.com
www.coverity.com
www.polyspace.com
www.klocwork.com
http://valgrind.org/
www.ibm.com

2007 JavaOneSM Conference | Session TS-5711 | 31

See Also
● TS-9667: Testing Java Code: Beyond the IDE,

Wednesday, 2:50pm

● BOF-9587: Pimp My Java Application: Applying
Static Analysis Tools to Boost Java Code Quality,
Wednesday, 7:55pm

● BOF-9231: FindBugs BOF, Wednesday, 8:55pm

● TS-2007: Improving Software Quality with Static
Analysis, Wednesday, 1:30pm

2007 JavaOneSM Conference | Session TS-5711 | 32

Q&A

2007 JavaOneSM Conference | Session TS-5711 |

Developing Reliable Products:
Static and Dynamic Analysis of the
Code

Aleksandr Kuzmin
Java ME Software Quality Architect
Sun Microsystems, Inc.
Member of American Society for Quality
Mikhail Davidov
Java ME Software Quality Manager

Sun Microsystems, Inc.

Java™ ME = Java™ Platform, Micro Edition

TS-5711

