
2007 JavaOneSM Conference | Session TS-5932 |

TS-5932

Catch This SpeechEvent—
Recognition and
Synthesis on Devices

Charles Hemphill, Senior Speech Scientist
Steve Rondel, CEO
Conversay
www.conversay.com

YOUR LOGO
HERE

2007 JavaOneSM Conference | Session TS-5932 | 2

Goal

Learn how to effectively add speech
recognition and speech synthesis to your
applications to make them faster, easier,
and more fun to use.

What you will learn

2007 JavaOneSM Conference | Session TS-5932 | 3

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions

2007 JavaOneSM Conference | Session TS-5932 | 4

The explosion of the embedded world
Background and Motivation

• Billions of Java™ Platform, Micro Edition
(Java ME platform) devices

• Network in your pocket
• Lots of content

• Smaller form factors
• Reduced screen sizes
• Limited number or size of buttons
• Can be harder to use

2007 JavaOneSM Conference | Session TS-5932 | 5

Server-side speech approaches
Background and Motivation

• Speech technology on a server
• Can be used with standard telephones
• Uses the W3C VoiceXML markup language

Speech
Server

Content
Server

Internet
HTTP

Telephone
Network

2007 JavaOneSM Conference | Session TS-5932 | 6

Client-side speech approaches
Background and Motivation

• Speech technology on the device
• Fits well with Java ME platform

devices
• Enough CPU and memory

• Increases usability of the device
• Minimizes latency for responses
• Easier access to local resources

• Screen, user data, and local applications
• Supports multi-modal interaction
• No telephony channel noise

JSAPI2

2007 JavaOneSM Conference | Session TS-5932 | 7

Many applications for speech recognition and synthesis
Background and Motivation

• Games—“Fire missiles at the red team in sector 7”
• Data entry—“39 widgets left in bin 27”
• E-mail—“Read the message from Steve”
• Calendar—“Is next Thursday open?”
• Learning—“What is 8 times 7?”
• Accessibility—“Read chapter 3”
• Car navigation—“Take exit 34 in ½ mile”
• System Alerts—“Your fuel level is low”

2007 JavaOneSM Conference | Session TS-5932 | 8

We need a standard
Background and Motivation

• Java Speech API 2 (JSAPI2)—Java Specification
Request (JSR) 113

• Based on JSAPI1 for Java Platform, Standard
Edition (Java SE)

• Aimed at Java ME platform
• Covers both recognition and synthesis
• Makes speech technologies easy to use
• Expert Group participants

• Andrew Thompson, Conversay (specification lead),
IBM, Intel, Nokia, Motorola, Sun, Texas Instruments

2007 JavaOneSM Conference | Session TS-5932 | 9

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions

2007 JavaOneSM Conference | Session TS-5932 | 10

Fitting speech onto the Java ME platform
Design Considerations

• Speech recognition
• Name and number dialing
• Built-in grammars (device specific)
• Application-defined grammars

• Speech synthesis
• Formant synthesis
• Concatenative synthesis

• Does not include:
• Explicit dictation support
• Speaker verification
• Speaker identification

2007 JavaOneSM Conference | Session TS-5932 | 11

Basic building blocks for Java SE platform compatibility
Design Considerations

• Add almost nothing for Java SE platform
compatibility

• Language selection is important
• Locale–8 methods for language, country, and variant

• The API is event driven
• EventListener—a simple tagging interface
• EventObject—constructor, getSource, toString

• Speech engines have many knobs
• PropertyChangeListener—one method interface
• PropertyChangeEvent—three methods

2007 JavaOneSM Conference | Session TS-5932 | 12

Adopting standards from the W3C
Design Considerations

• Speech Synthesis Markup Language (SSML)

• Speech Recognition Grammar Specification
(SRGS)—XML format only

<speak> Java <emphasis>talks</emphasis> now!
</speak>

<grammar> <rule id="yes-or-no">
<one-of>

<item>yes</item> <item>no</item>
</one-of>

</rule> </grammar>

2007 JavaOneSM Conference | Session TS-5932 | 13

Integrating speech and GUI events
Design Considerations

• JSAPI1 relied on AWT—no Applets
• SpeechEventExecutor interface for JSAPI2

• Compatible with JSR 116 (Executor mechanism)
• Can integrate events with lcdui, Swing, etc.
// Put SpeechEvents on the MIDlet’s UI thread
engine.setSpeechEventExecutor(

new SpeechEventExecutor() {
public void execute(Runnable r) {
javax.microedition.lcdui.Display.getDisplay(

this).callSerially(r);
}});

2007 JavaOneSM Conference | Session TS-5932 | 14

Defining audio input and output with an AudioManager
Design Considerations

• AudioManager interface supports media locators
• Can be implemented with JSR 135
• Can define input and output sources

• Supports addAudioListener for AUDIO_LEVEL
and other AudioEvents

Synthesizer synth = ... // more detail later
// Can throw SecurityException or AudioException
AudioManager am = synth.getAudioManager();
am.setMediaLocator("file:///user/smith/hello.wav");

2007 JavaOneSM Conference | Session TS-5932 | 15

Security
Design Considerations

• Security mechanisms provided by the underlying
profile and configuration (e.g., MIDP2)

• An implementation must guarantee that:
• SecurityException is thrown when the caller does not

have the appropriate security permissions
• The method can be used when the appropriate

permissions are granted
• System properties determine permission

• Method: javax.speech.AudioSegment.getInputStream
• Key: javax.speech.supports.audio.capture

2007 JavaOneSM Conference | Session TS-5932 | 16

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions

2007 JavaOneSM Conference | Session TS-5932 | 17

A Simple Conversation Example

Speech
Recognition

Engine

Speech
Synthesis

Engine

Application

Grammar
-Hit me
-Stand
-Double Down
-Bet <N> dollars

“Bet $3”

“Bet 3 Dollars” “Y
ou

’re
 B

ro
ke

!”

“You’re Broke!”

2007 JavaOneSM Conference | Session TS-5932 | 18

“Hello World” for Synthesis
// Create a synthesizer for the default Locale
Synthesizer synth = (Synthesizer)

EngineManager.createEngine(SynthesizerMode.DEFAULT);

// Load language specific data – can take time
synth.allocate();

// Speak the "Hello world" string
synth.speak("Hello, world!", null);

// Clean up - includes waiting for the queue to empty
synth.deallocate();

2007 JavaOneSM Conference | Session TS-5932 | 19

“Hello World” for Recognition (1/3)
import javax.speech.*;
import javax.speech.recognition.*;

public class HelloWorld implements ResultListener {
static Recognizer rec;
static final String grammarMarkup =
"<grammar root='s' xml:lang='en' version='1.0'

xmlns='http://www.w3.org/2001/06/grammar'>" +
"<rule id='s' scope='public'>" +
"<one-of>" +
"<item> hello world </item>" +
"<item> hello computer </item>" +

"</one-of>" +
"</rule>" +

"</grammar>";
...

2007 JavaOneSM Conference | Session TS-5932 | 20

“Hello World” for Recognition (2/3)
public static void main(String args[]) {// try/catch omitted
// Create a recognizer for the default Locale
Recognizer rec = (Recognizer)

EngineManager.createEngine(RecognizerMode.DEFAULT);

// Load language specific data – can take time
rec.allocate();

RuleGrammar gram = // what to recognize
rec.loadRuleGrammar("HelloWorld.s", grammarMarkup);

rec.addResultListener(this); // get recognized words
rec.requestFocus(); // user talks to us
rec.resume(); // process audio

// Would do other things here - wait for deallocate
rec.waitEngineState(Engine.DEALLOCATED);

}

2007 JavaOneSM Conference | Session TS-5932 | 21

“Hello World” for Recognition (3/3)
// Receive RESULT_ACCEPTED event: print it, clean up
public void resultUpdate(ResultEvent event) {
if (event.getId() == RESULT_ACCEPTED) {
try {
Result r = (Result) (event.getSource());
ResultToken tokens[] = r.getBestTokens();
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i].getSpokenText() + " ");

System.out.println();
// For this example, deallocate the recognizer
rec.deallocate();

}
catch (Exception e) {
e.printStackTrace();

}
}

}

222007 JavaOneSM Conference | Session TS-5932 |

DEMO
Hello World
Speech-Enabled Blackjack
MIDlet Examples

2007 JavaOneSM Conference | Session TS-5932 | 23

Grammars From Buttons
Vector buttons = ... // from the application
String grammarName = “blackjack_grammar_” + (grammarID++);
RuleGrammar grammar =

recognizer.createRuleGrammar(grammarName, “start”);

RuleComponent[] alts = new RuleComponent[buttons.size()];

for (int i = 0; i < alts.length; i++) {
RuleToken token =

new RuleToken(buttons.elementAt(i).toString());
RuleTag tag = new RuleTag(String.valueOf(i));
alts[i] = new RuleSequence(

new RuleComponent[] { token, tag });
}

grammar.addRule(
new Rule(“start”, new RuleAlternatives(alts),

Rule.PUBLIC_SCOPE));

2007 JavaOneSM Conference | Session TS-5932 | 24

LISTENING PROCESSING PAUSED PROCESSING PAUSEDLISTENING

Catching SpeechEvents

• API “does the right thing” in basic cases
• Applications can use these events to:

• Cancel synthesis
• Update the display
• Change grammars

RESULT_CREATED RESULT_UPDATED

SPEECH_STOPPEDSPEECH_STARTED

RESULT_ACCEPTED CHANGES_COMMITTED …

2007 JavaOneSM Conference | Session TS-5932 | 25

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions

2007 JavaOneSM Conference | Session TS-5932 | 26

Architecture
The TCK

• Prevents fragmentation by ensuring that the
RI implements the specification

• Based on Sun’s Test Development Kit (TDK)
• MIDP2 emulator used as the test agent
• Uses a standard web server (Tomcat)

• Reports test results for assertions
• Supports testing directly on devices

• Runs semi-automatically on the desktop
• Some user feedback required for synthesis decisions

2007 JavaOneSM Conference | Session TS-5932 | 27

Assertions
The TCK

• Assertions from the W3C
• Over 200 for SSML
• Over 150 for SRGS

• Hundreds of additional JSAPI2-specific
assertions

• SSML example with manual confirmation
<speak version="1.0" xml:lang="en-US"

xmlns=http://www.w3.org/2001/10/synthesis>
This specification is from the
<say-as interpret-as="letters"> w3c </say-as>.

</speak>

282007 JavaOneSM Conference | Session TS-5932 |

DEMO
TCK Assertions

2007 JavaOneSM Conference | Session TS-5932 | 29

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions

2007 JavaOneSM Conference | Session TS-5932 | 30

Developers
Adoption of the API

• Aimed at devices
• JSAPI2-enabled emulator runs on desktops
• Making a development kit available

• Specification, Reference Implementation (RI)
• Examples

• Encouraging compelling applications
• Building an application suite for reference

2007 JavaOneSM Conference | Session TS-5932 | 31

Tools and other standards
Adoption of the API

• Talking to the Sun Java Wireless toolkit team for
inclusion
• Want to reach developers
• Easier to integrate with other JSRs
• “Should have been there from the beginning”

• Working to include JSAPI2 in the next umbrella
JSR, JSR 249 (Mobile Service Architecture
Advanced)
• Speech is a natural user interface
• Speech is an aid for those with disabilities

2007 JavaOneSM Conference | Session TS-5932 | 32

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions

2007 JavaOneSM Conference | Session TS-5932 | 33

Next steps
Conclusions and Directions

• WTK, JSR 249, and other adoption efforts
• Incorporate feedback from developers
• Support a developer network
• Consider API improvements

• More support for large-vocabulary recognition
• SpeakerProfile management

• Upgrade the RI technology
• Larger vocabulary
• More natural-sounding synthesis

2007 JavaOneSM Conference | Session TS-5932 | 34

Acknowledgements
Conclusions and Directions

• Many thanks to the Expert Group participants
• Andrew Thompson, IBM, Intel, Nokia, Motorola,

Sun, Texas Instruments
• Technical staff at Sun
• Java Community ProcessSM program office
• Conversay team members

2007 JavaOneSM Conference | Session TS-5932 | 35

Summary

• JSR 113 is an API for speech-enabling mobile
applications

• Encompasses a range of speech technologies
• Improves the user interface
• Is easy to use and incorporate into applications
• Supports applications that might otherwise be

impractical

2007 JavaOneSM Conference | Session TS-5932 | 36

For More Information

See:
• Exhibit booth
• www.conversay.com
• W3C standards

• SSML: http://www.w3.org/TR/speech-synthesis/
• SRGS: http://www.w3.org/TR/speech-grammar/

• JSR references
• 113, 116, 135, 249
• www.jcp.org

372007 JavaOneSM Conference | Session TS-5932 |

Q&A
Charles Hemphill and Steve Rondel

2007 JavaOneSM Conference | Session TS-5932 |

TS-5932

Catch This SpeechEvent—
Recognition and
Synthesis on Devices

Charles Hemphill, Senior Speech Scientist
Steve Rondel, CEO
Conversay
www.conversay.com

YOUR LOGO
HERE

