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Goal

Learn how to effectively add speech 
recognition and speech synthesis to your 
applications to make them faster, easier, 
and more fun to use.

What you will learn
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Agenda

Background and motivation
Design considerations 
Programming examples 
The TCK 
Adoption of the API 
Conclusions and directions
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The explosion of the embedded world
Background and Motivation

• Billions of Java™ Platform, Micro Edition 
(Java ME platform) devices

• Network in your pocket
• Lots of content

• Smaller form factors
• Reduced screen sizes
• Limited number or size of buttons
• Can be harder to use
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Server-side speech approaches
Background and Motivation

• Speech technology on a server
• Can be used with standard telephones
• Uses the W3C VoiceXML markup language

Speech
Server

Content
Server

Internet
HTTP

Telephone 
Network
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Client-side speech approaches
Background and Motivation

• Speech technology on the device
• Fits well with Java ME platform 

devices
• Enough CPU and memory

• Increases usability of the device
• Minimizes latency for responses
• Easier access to local resources

• Screen, user data, and local applications
• Supports multi-modal interaction
• No telephony channel noise

JSAPI2
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Many applications for speech recognition and synthesis
Background and Motivation

• Games—“Fire missiles at the red team in sector 7”
• Data entry—“39 widgets left in bin 27”
• E-mail—“Read the message from Steve”
• Calendar—“Is next Thursday open?”
• Learning—“What is 8 times 7?”
• Accessibility—“Read chapter 3”
• Car navigation—“Take exit 34 in ½ mile”
• System Alerts—“Your fuel level is low”
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We need a standard
Background and Motivation

• Java Speech API 2 (JSAPI2)—Java Specification 
Request (JSR) 113

• Based on JSAPI1 for Java Platform, Standard 
Edition (Java SE)

• Aimed at Java ME platform
• Covers both recognition and synthesis
• Makes speech technologies easy to use
• Expert Group participants

• Andrew Thompson, Conversay (specification lead),
IBM, Intel, Nokia, Motorola, Sun, Texas Instruments
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Agenda

Background and motivation
Design considerations
Programming examples
The TCK 
Adoption of the API 
Conclusions and directions 
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Fitting speech onto the Java ME platform
Design Considerations

• Speech recognition
• Name and number dialing
• Built-in grammars (device specific)
• Application-defined grammars

• Speech synthesis
• Formant synthesis
• Concatenative synthesis

• Does not include:
• Explicit dictation support
• Speaker verification 
• Speaker identification
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Basic building blocks for Java SE platform compatibility
Design Considerations

• Add almost nothing for Java SE platform 
compatibility

• Language selection is important
• Locale–8 methods for language, country, and variant

• The API is event driven
• EventListener—a simple tagging interface
• EventObject—constructor, getSource, toString

• Speech engines have many knobs
• PropertyChangeListener—one method interface
• PropertyChangeEvent—three methods
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Adopting standards from the W3C
Design Considerations

• Speech Synthesis Markup Language (SSML)

• Speech Recognition Grammar Specification 
(SRGS)—XML format only

<speak> Java <emphasis>talks</emphasis> now!
</speak>

<grammar> <rule id="yes-or-no"> 
<one-of> 

<item>yes</item> <item>no</item> 
</one-of>

</rule> </grammar>
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Integrating speech and GUI events
Design Considerations

• JSAPI1 relied on AWT—no Applets 
• SpeechEventExecutor interface for JSAPI2

• Compatible with JSR 116 (Executor mechanism)
• Can integrate events with lcdui, Swing, etc.
// Put SpeechEvents on the MIDlet’s UI thread
engine.setSpeechEventExecutor(

new SpeechEventExecutor() {
public void execute(Runnable r) {
javax.microedition.lcdui.Display.getDisplay(

this).callSerially(r);
}});
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Defining audio input and output with an AudioManager
Design Considerations

• AudioManager interface supports media locators
• Can be implemented with JSR 135
• Can define input and output sources 

• Supports addAudioListener for AUDIO_LEVEL 
and other AudioEvents

Synthesizer synth = ... // more detail later
// Can throw SecurityException or AudioException
AudioManager am = synth.getAudioManager(); 
am.setMediaLocator("file:///user/smith/hello.wav");



2007 JavaOneSM Conference   |   Session TS-5932   | 15

Security
Design Considerations

• Security mechanisms provided by the underlying 
profile and configuration (e.g., MIDP2)

• An implementation must guarantee that:
• SecurityException is thrown when the caller does not 

have the appropriate security permissions 
• The method can be used when the appropriate 

permissions are granted 
• System properties determine permission

• Method: javax.speech.AudioSegment.getInputStream
• Key: javax.speech.supports.audio.capture
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Agenda

Background and motivation
Design considerations
Programming examples
The TCK 
Adoption of the API 
Conclusions and directions
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A Simple Conversation Example

Speech
Recognition

Engine

Speech
Synthesis

Engine

Application

Grammar
-Hit me
-Stand
-Double Down
-Bet <N> dollars

“Bet $3”

“Bet 3 Dollars” “Y
ou

’re
 B

ro
ke

!”

“You’re Broke!”
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“Hello World” for Synthesis
// Create a synthesizer for the default Locale
Synthesizer synth = (Synthesizer)

EngineManager.createEngine(SynthesizerMode.DEFAULT);

// Load language specific data – can take time
synth.allocate();

// Speak the "Hello world" string
synth.speak("Hello, world!", null);

// Clean up - includes waiting for the queue to empty
synth.deallocate();
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“Hello World” for Recognition (1/3)
import javax.speech.*;
import javax.speech.recognition.*;

public class HelloWorld implements ResultListener {
static Recognizer rec;
static final String grammarMarkup =
"<grammar root='s' xml:lang='en' version='1.0'

xmlns='http://www.w3.org/2001/06/grammar'>" +
"<rule id='s' scope='public'>" +
"<one-of>" +
"<item> hello world </item>" +
"<item> hello computer </item>" +

"</one-of>" +
"</rule>" +

"</grammar>"; 
...
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“Hello World” for Recognition (2/3)
public static void main(String args[]) {// try/catch omitted
// Create a recognizer for the default Locale
Recognizer rec = (Recognizer)

EngineManager.createEngine(RecognizerMode.DEFAULT);

// Load language specific data – can take time
rec.allocate();

RuleGrammar gram =           // what to recognize
rec.loadRuleGrammar("HelloWorld.s", grammarMarkup);

rec.addResultListener(this); // get recognized words
rec.requestFocus();          // user talks to us
rec.resume();                // process audio

// Would do other things here - wait for deallocate
rec.waitEngineState(Engine.DEALLOCATED);

}
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“Hello World” for Recognition (3/3)
// Receive RESULT_ACCEPTED event: print it, clean up
public void resultUpdate(ResultEvent event) { 
if (event.getId() == RESULT_ACCEPTED) { 
try {
Result r = (Result) (event.getSource());
ResultToken tokens[] = r.getBestTokens(); 
for (int i = 0; i < tokens.length; i++)
System.out.print(tokens[i].getSpokenText() + " ");

System.out.println();
// For this example, deallocate the recognizer
rec.deallocate();

}
catch (Exception e) {
e.printStackTrace();

}
}

}
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DEMO
Hello World
Speech-Enabled Blackjack
MIDlet Examples
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Grammars From Buttons
Vector buttons = ... // from the application
String grammarName = “blackjack_grammar_” + (grammarID++);
RuleGrammar grammar = 

recognizer.createRuleGrammar(grammarName, “start”);

RuleComponent[] alts = new RuleComponent[buttons.size()];

for (int i = 0; i < alts.length; i++) {
RuleToken token =

new RuleToken(buttons.elementAt(i).toString());
RuleTag tag = new RuleTag(String.valueOf(i));
alts[i] = new RuleSequence(

new RuleComponent[] { token, tag });
}

grammar.addRule(
new Rule(“start”, new RuleAlternatives(alts),

Rule.PUBLIC_SCOPE));
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LISTENING PROCESSING PAUSED PROCESSING PAUSEDLISTENING

Catching SpeechEvents

• API “does the right thing” in basic cases
• Applications can use these events to:

• Cancel synthesis
• Update the display
• Change grammars

RESULT_CREATED RESULT_UPDATED

SPEECH_STOPPEDSPEECH_STARTED

RESULT_ACCEPTED CHANGES_COMMITTED …
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Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API 
Conclusions and directions
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Architecture
The TCK

• Prevents fragmentation by ensuring that the 
RI implements the specification

• Based on Sun’s Test Development Kit (TDK)
• MIDP2 emulator used as the test agent
• Uses a standard web server (Tomcat)

• Reports test results for assertions
• Supports testing directly on devices

• Runs semi-automatically on the desktop
• Some user feedback required for synthesis decisions
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Assertions
The TCK

• Assertions from the W3C
• Over 200 for SSML
• Over 150 for SRGS

• Hundreds of additional JSAPI2-specific 
assertions

• SSML example with manual confirmation
<speak version="1.0" xml:lang="en-US"

xmlns=http://www.w3.org/2001/10/synthesis>
This specification is from the 
<say-as interpret-as="letters"> w3c </say-as>.

</speak>
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DEMO
TCK Assertions



2007 JavaOneSM Conference   |   Session TS-5932   | 29

Agenda

Background and motivation
Design considerations
Programming examples
The TCK
Adoption of the API
Conclusions and directions



2007 JavaOneSM Conference   |   Session TS-5932   | 30

Developers
Adoption of the API

• Aimed at devices
• JSAPI2-enabled emulator runs on desktops
• Making a development kit available

• Specification, Reference Implementation (RI)
• Examples

• Encouraging compelling applications
• Building an application suite for reference
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Tools and other standards
Adoption of the API

• Talking to the Sun Java Wireless toolkit team for 
inclusion
• Want to reach developers
• Easier to integrate with other JSRs
• “Should have been there from the beginning”

• Working to include JSAPI2 in the next umbrella 
JSR, JSR 249 (Mobile Service Architecture 
Advanced)
• Speech is a natural user interface
• Speech is an aid for those with disabilities
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Next steps
Conclusions and Directions

• WTK, JSR 249, and other adoption efforts
• Incorporate feedback from developers
• Support a developer network 
• Consider API improvements

• More support for large-vocabulary recognition
• SpeakerProfile management

• Upgrade the RI technology
• Larger vocabulary
• More natural-sounding synthesis
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Summary

• JSR 113 is an API for speech-enabling mobile 
applications

• Encompasses a range of speech technologies
• Improves the user interface
• Is easy to use and incorporate into applications
• Supports applications that might otherwise be 

impractical
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For More Information

See:
• Exhibit booth
• www.conversay.com
• W3C standards

• SSML: http://www.w3.org/TR/speech-synthesis/
• SRGS: http://www.w3.org/TR/speech-grammar/

• JSR references
• 113, 116, 135, 249
• www.jcp.org
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Q&A
Charles Hemphill and Steve Rondel
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