

Exploring the Deep With SONIA

Félix Pageau, Team Leader Martin Morissette, Software Team Leader

SONIA AUV Project École de Technologie Supérieure http://sonia.etsmtl.ca

TS-1990

SONIA

Java™ Platform Powered Autonomous Underwater Vehicle

Learn how a team of undergraduate engineering students used Java™ technologies to build a winning Autonomous Underwater Vehicle platform

Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design Software Architecture Test and Debugging Tools Demo of the 3D AUV Simulator Development Methodologies Conclusion

Agenda

Overview of SONIA AUV

System, Mechanical and Electronic Design

Software Architecture

Test and Debugging Tools

Demo of the 3D AUV Simulator

Development Methodologies

Conclusion

SONIA AUV Project

"Système d'Opération Nautique Intelligent et Autonome"

- Founded in 1999
- Entirely managed by volunteer undergraduates
- Team of ~30 engineering undergrad students
- Low-budget project

SONIA AUV Project

"Système d'Opération Nautique Intelligent et Autonome"

SONIA 2006 competition team

École de Technologie Supérieure

Overview of the University

- 4th largest engineering university in Canada
- 5000 undergraduate and graduate students
- Applied engineering faculty of the Université du Québec network
- 4-year, 120 credit co-op engineering program
- Only admits professionally trained technicians
- Official language: French

Autonomous Underwater Vehicle

What is an AUV

- Sensors based underwater navigation
- Controlled by Artificial Intelligence (AI)
- Interacts with its environment
- AUVs are NOT remotely operated

AUVSI and ONR's International AUV Competition

Overview of the Competition

- Held at SPAWAR System Center San Diego, CA
- Focus on autonomous operations
- Annual competition
- Teams from Canada, India, Japan, USA...

Source: SPAWAR System Center San Diego. 2002. *Transducer Evaluation Center*. http://www.spawar.navy.mil/sandiego/facilities/jpg/transdec.jpg>

AUVSI and ONR's International AUV Competition

2006 Mission

Source: AUVSI. 2006. Official Rules and Mission. http://www.auvsi.org/competitions/Rules_Mission_Final_2006.pdf

Agenda

Overview of SONIA AUV

System, Mechanical and Electronic Design

Software Architecture

Test and Debugging Tools

Demo of the 3D AUV Simulator

Development Methodologies

Conclusion

SONIA AUV System Design

- Watertight
- Neutral buoyancy (+ 0.5 %)
- Battery operated
- Shallow water operations
- Four degrees of freedom (heave, sway, surge, yaw)
- Mass inferior to 25 kg
- Rapid deployment
- Easy access to electronic components

DEMO

3D Vehicle Design

Agenda

Overview of SONIA AUV
System, Mechanical and Electronic Design
Software Architecture

Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies
Conclusion

Switch from C/C++ to Java Platform

Reasons for the Switch

- Widespread OO language amongst undergrads
- Platform independent (Linux, Windows, Mac OS X)
- Open source tool availability
- Checked exceptions
- Pervasive memory protection

Switch from C/C++ to Java Platform

Impacts of the Switch

- Faster development: designed from scratch an improved system within one year
- Maintainability: same version since the switch throughout many generations of developers
- Scalability: support for new devices, new communication protocols, etc.

Java Technology in Robotics

How to Integrate Java Technology

- Memory allocation at startup
- Limit dynamic instantiation
- Modular design with intelligent devices
- Profiling of critical modules
- Object pooling, recycling used objects

java.sun.com/javaone

Software Architecture

Software Architecture

AUV4

Capabilities

- Sensor interface
- Data fusion
- Navigation and control
- Decision taking
- Artificial intelligence
- Data logging

AUV4 Architecture

Control Loop

- Navigation decisions taken within a single thread (loop)
 - Synchronized with actual navigation sensors
 - Deterministic execution of tasks
 - Processing over a same timeframe sensor value set
 - Simplify overall system
 - Prioritize navigation over global services

AUV4 Architecture

Control Loop

```
public void run() {
    markBeginning();
                                   //Mark the beginning of an iteration
                                  //Baseline the values for determinism
    applyNextDeviceValue();
    this.refreshSelfEnclosedDevices(); //Process polling based devices
    supervisor.process();
                                        //Check for warning conditions
    mission.process();
                                        //Process Al
    controllerManager.process();
                                        //Process navigation controllers
    commControlProcess.process();
                                        //Process Tx communication
                                        //Mark the end of an iteration
    markEnd();
    displayStats();
                               //Display stats (incl. overrun detection)
```


AUV4 Architecture

Mission

- Simple state machine
- Advanced AI inside each state
 - Expert systems
 - Neural network
 - Fuzzy logic
- Easily reconfigurable

Code Sample—State Template

```
public class StateDemo extends NormalState {
   public void setupDevices() {
     // Setup sensors/actuators the state interacts with
   public void init() {
     // Called whenever the mission enters this state
   public String process() {
     // Called by the control loop where the state can
     // process sensor data and act upon it
   }
   public void exit() {
     // Called upon exit of this state
```


Code Sample—HeadPinger State

Head toward the Acoustic Pinger and surface while over it

```
public String process() {
    Point2D p = hydro.getPingerPosition();
    elevFilter.addValue(p.getY());
    if (p.getY() <= maxElevationForGoodHeading) {</pre>
        heading.setTarget(hydro.getValue());
    } else {
        if (elevFilter.isFilled() && elevFilter >= elevationForSurface) {
            if ((currentTime - startOfState) > minTimeMs) {
                MissionLog.getInstance().log("Let's surface!");
                speedMeter.setTarget(0.0);
                return NEXTSTATE ON SUCCESS; // Trigger for surface!
        MissionLog.getInstance().log("Elev. high, but delay not over");
```


Agenda

Overview of SONIA AUV
System, Mechanical and Electronic Design
Software Architecture

Test and Debugging Tools

Demo of the 3D AUV Simulator

Development Methodologies

Conclusion

Software Architecture

Telemetry

Remote measurement and management

- Enables
 - Remote configuration
 - Remote monitoring
 - Sensors
 - Actuators
 - Remote control
 - Data logging info
- APIs
 - Swing
 - Java Management Extension (JMX™)
 - JGraph

Telemetry

Cap calibration

Graphical Display of Value Evolution vs. Time

Provides Navigation Information

o a 🗵

Telemetry

Mission editor

31

Software Architecture

Vision Client

Remote management

- Enables
 - Remote configuration of vision system
 - Remote monitoring of vision algorithm outputs
 - Customization of vision algorithms

- APIs
 - Swing
 - QuickTime for Java technology (QTJava)

Vision Client

Remote management

Software Architecture

Simulator

Underwater 3D Simulator

- Simulates
 - Physical properties of the vehicle
 - Electronic interface
 - Simulates competition environment
 - Custom physic engine and model
- Easily test control and Al
- APIs
 - Java 3D™ API

Simulator

37

DEMO

Tools

Agenda

Conclusion

Overview of SONIA AUV System, Mechanical and Electronic Design Software Architecture Test and Debugging Tools Demo of the 3D AUV Simulator **Development Methodologies**

Team Work

- Volunteer students
- Satellite members
- Unpredictable productivity
- Remote development (West-East-Europe)
- Different knowledge and backgrounds
- Multidisciplinary team
- Money is not a motivation

Methodologies

- Open source development tools
- Versioning system: SVN
- Project management and bug tracking: TRAC
- Content management: Wiki
- Code review: Diff email + RSS feed
- Pair programming
- Nightly build: Sending annoying emails on failure
- Standardized coding methodology and tools

Methodologies

Project planning in TRAC

Note:

- Timeline, roadmap, tickets (bug tracking) available online to all developers
- Allow remote management with team members in Boston, Menlo Park and Holland
- All modifications to tickets are subject to change notification (via RSS and email)

Methodologies

Change notification

Changeset 5236

Note:

- Reviewed by all members of the field of study (Software, Electrical or Mechanical)
- Distributed as a RSS feed and ASCII based emails

Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design Software Architecture Test and Debugging Tools Demo of the 3D AUV Simulator Development Methodologies Conclusion

Competition Ranking

AUVSI final standings: From 2003 to 2006

	2003	2004	2005	2006
Cornell Univ.	1 st	2 nd	8 th	7 th
Duke Univ.	3 rd	5 th	4 th	2 nd
MIT	4 th	1 st	3 rd	6 th
SONIA AUV—ETS	2 nd	3 rd	2 nd	3 rd
U. of Florida	8 th	7 th	1st	1 st
U. of Victoria	10 th	10 th	16 th	14 th

Source: AUVSI. Final standings.

http://www.auvsi.org/competitions/water.cfm

Budget Comparison

AUVSI final standings: From 2003 to 2006

	2003	2004	2005	2006
Cornell Univ.	X	30,000	X	X
Duke Univ.	X	65,000	113,050	93,100
MIT	X	X	X	X
SONIA AUV—ETS	22,000	30,000	44,000	62,000
U. of Florida	X	X	X	X
U. of Victoria	13,000	X	X	160,000

Sources: Burdyny, Matt. U. of Victoria

http://robotics.pratt.duke.edu/archives/2005-2006/char_budget.html

http://robotics.pratt.duke.edu/archives/2004-2005/budget.htm

http://www.duke.edu/web/robotics/html/auv budget.htm

http://www.engr.uvic.ca/~ess/modules/documents/files/endowment_2002A.pdf

http://www.news.cornell.edu/chronicle/02/8.15.02/Chronicle.pdf

Funding and Sponsorship

Past, present and future overview

SONIA AUV had a \$70,000 CDN budget in 2006

- 74% of funding was from private donations
- 29 sponsors contributed to the project

SONIA AUV has a \$60,000 CDN budget in 2007

- 10% of the funding is still to secure
- 25 sponsors renewed their support

SONIA AUV needs to acquire new sensors for 2008–2009

- Doppler Velocity Log (DVL): positioning sensor worth \$25,000
- Altimeters: 2x distance sensors worth \$3000 each
- Your support is essential to our success

Summary

- Switch to Java technology for improved results
- Java technology is a prime choice for robotics
- Teamwork, creativity and innovation
- Low cost solutions
- Adapted methodologies

For More Information

List

- Sun Microsystems, 2006, Meet SONIA,
 http://research.sun.com/spotlight/2006/2006-10-20_SONIA.html
- SONIA AUV. 2006, SONIA 2006: A Leap Forward,
 http://sonia.etsmtl.ca/doc/jpaper/jpaper_sonia_2006.pdf
- AUVSI, 2007, 10th AUVSI & ONR AUV competition, http://www.auvsi.org/competitions/water.cfm

Glossary

Acronym	Definition			
AI	Artificial Intelligence			
API	Application Programming Interface			
ASCII	American Standard Code for Information Interchange			
AUV	Autonomous Underwater Vehicle			
AUVSI	Association for Unmanned Systems International			
CDN	Canadian currency			
DVL	Doppler Velocity Log			
ETS	École de Technologie Supérieure			
IMU	Inertial Measurement Unit			
ONR	Office of Naval Research			
OO	Object Oriented			
RSS	Really Simple Syndication			
SONIA	Système d'Opération Nautique Intelligent et Autonome			
SPAWAR	Space and Naval Warfare Systems Center			
SVN	Subversion (http://subversion.tigris.org/)			
TRAC	Open source, minimalist, web-based project management and bug-tracking tool. (http://trac.edgewall.org/)			
USD	United States currency			

50

Q&A

Félix Pageau Martin Morissette

Exploring the Deep With SONIA

Félix Pageau, Team Leader Martin Morissette, Software Team Leader

SONIA AUV Project École de Technologie Supérieure http://sonia.etsmtl.ca

TS-1990