Exploring the Deep With SONIA

Félix Pageau, Team Leader
Martin Morissette, Software Team Leader

SONIA AUV Project
École de Technologie Supérieure
http://sonia.etsmtl.ca

TS-1990
SONIA
Java™ Platform Powered Autonomous Underwater Vehicle

Learn how a team of undergraduate engineering students used Java™ technologies to build a winning Autonomous Underwater Vehicle platform
Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design
Software Architecture
Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies
Conclusion
Agenda

Overview of SONIA AUV
System, Mechanical and Electronic Design
Software Architecture
Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies
Conclusion
SONIA AUV Project
“Système d’Opération Nautique Intelligent et Autonome”

- Founded in 1999
- Entirely managed by volunteer undergraduates
- Team of ~30 engineering undergrad students
- Low-budget project
SONIA AUV Project
“Système d’Opération Nautique Intelligent et Autonome”

SONIA 2006 competition team
École de Technologie Supérieure
Overview of the University

- 4th largest engineering university in Canada
- 5000 undergraduate and graduate students
- Applied engineering faculty of the Université du Québec network
- 4-year, 120 credit co-op engineering program
- Only admits professionally trained technicians
- Official language: French

Autonomous Underwater Vehicle

What is an AUV

- Sensors based underwater navigation
- Controlled by Artificial Intelligence (AI)
- Interacts with its environment
- AUVs are NOT remotely operated
AUVSI and ONR’s International AUV Competition

Overview of the Competition

• Held at SPAWAR System Center San Diego, CA
• Focus on autonomous operations
• Annual competition
• Teams from Canada, India, Japan, USA…

AUVSI and ONR’s International AUV Competition

2006 Mission

Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design
Software Architecture
Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies
Conclusion
SONIA AUV System Design

- Watertight
- Neutral buoyancy (+ 0.5 %)
- Battery operated
- Shallow water operations
- Four degrees of freedom (heave, sway, surge, yaw)
- Mass inferior to 25 kg
- Rapid deployment
- Easy access to electronic components
Sensor Overview

- Compass
- Passive SONAR
- Firewire Cameras
- Active SONAR
- Inertial Measurement Unit
- Pressure Sensor
- Mission Switch
- Kill Switch
DEMO

3D Vehicle Design
Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design

Software Architecture

Test and Debugging Tools

Demo of the 3D AUV Simulator

Development Methodologies

Conclusion
Switch from C/C++ to Java Platform

Reasons for the Switch

- Widespread OO language amongst undergrads
- Platform independent (Linux, Windows, Mac OS X)
- Open source tool availability
- Checked exceptions
- Pervasive memory protection
- Exhaustive APIs
Switch from C/C++ to Java Platform

Impacts of the Switch

- Faster development: designed from scratch an improved system within one year
- Maintainability: same version since the switch throughout many generations of developers
- Scalability: support for new devices, new communication protocols, etc.
Java Technology in Robotics

How to Integrate Java Technology

- Memory allocation at startup
- Limit dynamic instantiation
- Modular design with intelligent devices
- Profiling of critical modules
- Object pooling, recycling used objects
Software Architecture

JMX™ = Java Management Extensions specification
Software Architecture
AUV4
Capabilities

• Sensor interface
• Data fusion
• Navigation and control
• Decision taking
• Artificial intelligence
• Data logging
AUV4 Architecture

Control Loop

- Navigation decisions taken within a single thread (loop)
 - Synchronized with actual navigation sensors
 - Deterministic execution of tasks
 - Processing over a same timeframe sensor value set
 - Simplify overall system
 - Prioritize navigation over global services
AUV4 Architecture

Control Loop

```java
public void run() {
    markBeginning();                        //Mark the beginning of an iteration

    applyNextDeviceValue();               //Baseline the values for determinism
    this.refreshSelfEnclosedDevices();   //Process polling based devices

    supervisor.process();                 //Check for warning conditions
    mission.process();                   //Process AI
    controllerManager.process();         //Process navigation controllers
    commControlProcess.process();        //Process Tx communication

    markEnd();                            //Mark the end of an iteration
    displayStats();                      //Display stats (incl. overrun detection)
}
```
AUV4 Architecture

Mission

• Simple state machine

• Advanced AI inside each state
 • Expert systems
 • Neural network
 • Fuzzy logic

• Easily reconfigurable
Code Sample—State Template

public class StateDemo extends NormalState {
 public void setupDevices() {
 // Setup sensors/actuators the state interacts with
 }

 public void init() {
 // Called whenever the mission enters this state
 }

 public String process() {
 // Called by the control loop where the state can
 // process sensor data and act upon it
 }

 public void exit() {
 // Called upon exit of this state
 }
}

public String process() {
 Point2D p = hydro.getPingerPosition();
 elevFilter.addValue(p.getY());

 if (p.getY() <= maxElevationForGoodHeading) {
 heading.setTarget(hydro.getValue());
 } else {

 if (elevFilter.isFilled() && elevFilter >= elevationForSurface) {
 if ((currentTime - startOfState) > minTimeMs) {
 MissionLog.getInstance().log("Let's surface!");
 speedMeter.setTarget(0.0);
 return NEXTSTATE_ON_SUCCESS; // Trigger for surface!
 }
 }

 MissionLog.getInstance().log("Elev. high, but delay not over");
 }
}
Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design
Software Architecture
Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies
Conclusion
Software Architecture
Telemetry
Remote measurement and management

• Enables
 • Remote configuration
 • Remote monitoring
 • Sensors
 • Actuators
 • Remote control
 • Data logging info

• APIs
 • Swing
 • Java Management Extension (JMX™)
 • JGraph
Telemetry
Remote measurement

Display Sensors/Actuator Values

Graphical Display of Value Evolution vs. Time

Provides Navigation Information
Telemetry
Mission editor
Software Architecture
Vision Client
Remote management

• Enables
 • Remote configuration of vision system
 • Remote monitoring of vision algorithm outputs
 • Customization of vision algorithms

• APIs
 • Swing
 • QuickTime for Java technology (QTJava)
Vision Client
Remote management
Software Architecture
Simulator

Underwater 3D Simulator

- Simulates
 - Physical properties of the vehicle
 - Electronic interface
 - Simulates competition environment
 - Custom physic engine and model
- Easily test control and AI
- APIs
 - Java 3D™ API
Simulator
DEMO

Tools
Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design
Software Architecture
Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies
Conclusion
Team Work

- Volunteer students
- Satellite members
- Unpredictable productivity
- Remote development (West-East-Europe)
- Different knowledge and backgrounds
- Multidisciplinary team
- Money is not a motivation
Methodologies

- Open source development tools
- Versioning system: SVN
- Project management and bug tracking: TRAC
- Content management: Wiki
- Code review: Diff email + RSS feed
- Pair programming
- Nightly build: Sending annoying emails on failure
- Standardized coding methodology and tools
Methodologies
Project planning in TRAC

Note:
- Timeline, roadmap, tickets (bug tracking) available online to all developers
- Allow remote management with team members in Boston, Menlo Park and Holland
- All modifications to tickets are subject to change notification (via RSS and email)
Methodologies

Change notification

Changeset 5236

Timestamp: 03/29/07 18:31:41 (2 weeks ago)
Author: fpageau
Message: Added the IMUHeading in the HeadingStatus tx handler to be compliant with the 2007 Nav board

Files: trunk/SimSonia/src/simulator/net/protocoleCAN/handlers/tx/HeadingStatus.java (1 diff)

Note:

- Reviewed by all members of the field of study (Software, Electrical or Mechanical)
- Distributed as a RSS feed and ASCII based emails
Agenda

Overview of SONIA AUV System, Mechanical and Electronic Design
Software Architecture
Test and Debugging Tools
Demo of the 3D AUV Simulator
Development Methodologies

Conclusion
Competition Ranking

AUVSI final standings: From 2003 to 2006

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell Univ.</td>
<td>1<sup>st</sup></td>
<td>2<sup>nd</sup></td>
<td>8<sup>th</sup></td>
<td>7<sup>th</sup></td>
</tr>
<tr>
<td>Duke Univ.</td>
<td>3<sup>rd</sup></td>
<td>5<sup>th</sup></td>
<td>4<sup>th</sup></td>
<td>2<sup>nd</sup></td>
</tr>
<tr>
<td>MIT</td>
<td>4<sup>th</sup></td>
<td>1<sup>st</sup></td>
<td>3<sup>rd</sup></td>
<td>6<sup>th</sup></td>
</tr>
<tr>
<td>SONIA AUV—ETS</td>
<td>2<sup>nd</sup></td>
<td>3<sup>rd</sup></td>
<td>2<sup>nd</sup></td>
<td>3<sup>rd</sup></td>
</tr>
<tr>
<td>U. of Florida</td>
<td>8<sup>th</sup></td>
<td>7<sup>th</sup></td>
<td>1<sup>st</sup></td>
<td>1<sup>st</sup></td>
</tr>
<tr>
<td>U. of Victoria</td>
<td>10<sup>th</sup></td>
<td>10<sup>th</sup></td>
<td>16<sup>th</sup></td>
<td>14<sup>th</sup></td>
</tr>
</tbody>
</table>

Source: AUVSI, *Final standings.*

<http://www.auvsi.org/competitions/water.cfm>
Budget Comparison

AUVSI final standings: From 2003 to 2006

<table>
<thead>
<tr>
<th></th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cornell Univ.</td>
<td>X</td>
<td>30,000</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Duke Univ.</td>
<td>X</td>
<td>65,000</td>
<td>113,050</td>
<td>93,100</td>
</tr>
<tr>
<td>MIT</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SONIA AUV—ETS</td>
<td>22,000</td>
<td>30,000</td>
<td>44,000</td>
<td>62,000</td>
</tr>
<tr>
<td>U. of Florida</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>U. of Victoria</td>
<td>13,000</td>
<td>X</td>
<td>X</td>
<td>160,000</td>
</tr>
</tbody>
</table>

Sources: Burdyny, Matt. U. of Victoria
http://www.duke.edu/web/robotics/html/auv_budget.htm
http://www.news.cornell.edu/chronicle/02/8.15.02/Chronicle.pdf

Note: All budgets are in USD for ease of comparison.
Funding and Sponsorship
Past, present and future overview

SONIA AUV had a $70,000 CDN budget in 2006
- 74% of funding was from private donations
- 29 sponsors contributed to the project

SONIA AUV has a $60,000 CDN budget in 2007
- 10% of the funding is still to secure
- 25 sponsors renewed their support

SONIA AUV needs to acquire new sensors for 2008–2009
- Doppler Velocity Log (DVL): positioning sensor worth $25,000
- Altimeters: 2x distance sensors worth $3000 each
- Your support is essential to our success
Summary

- Switch to Java technology for improved results
- Java technology is a prime choice for robotics
- Teamwork, creativity and innovation
- Low cost solutions
- Adapted methodologies
For More Information

List

- Sun Microsystems, 2006, *Meet SONIA*,

- AUVSI, 2007, 10th AUVSI & ONR AUV competition,
 <http://www.auvsi.org/competitions/water.cfm>
Glossary

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ASCII</td>
<td>American Standard Code for Information Interchange</td>
</tr>
<tr>
<td>AUV</td>
<td>Autonomous Underwater Vehicle</td>
</tr>
<tr>
<td>AUVSI</td>
<td>Association for Unmanned Systems International</td>
</tr>
<tr>
<td>CDN</td>
<td>Canadian currency</td>
</tr>
<tr>
<td>DVL</td>
<td>Doppler Velocity Log</td>
</tr>
<tr>
<td>ETS</td>
<td>École de Technologie Supérieure</td>
</tr>
<tr>
<td>IMU</td>
<td>Inertial Measurement Unit</td>
</tr>
<tr>
<td>ONR</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>OO</td>
<td>Object Oriented</td>
</tr>
<tr>
<td>RSS</td>
<td>Really Simple Syndication</td>
</tr>
<tr>
<td>SONIA</td>
<td>Système d’Opération Nautique Intelligent et Autonome</td>
</tr>
<tr>
<td>SPAWAR</td>
<td>Space and Naval Warfare Systems Center</td>
</tr>
<tr>
<td>SVN</td>
<td>Subversion (http://subversion.tigris.org/)</td>
</tr>
<tr>
<td>TRAC</td>
<td>Open source, minimalist, web-based project management and bug-tracking tool. (http://trac.edgewall.org/)</td>
</tr>
<tr>
<td>USD</td>
<td>United States currency</td>
</tr>
</tbody>
</table>
Q&A

Félix Pageau
Martin Morissette
Exploring the Deep With SONIA

Félix Pageau, Team Leader
Martin Morissette, Software Team Leader

SONIA AUV Project
École de Technologie Supérieure
http://sonia.etsmtl.ca

TS-1990