
2007 JavaOneSM Conference | Session TS-7354

Session TS-7354

Fast Feedback Loop:
Unit Testing Strategies
for Tapestry

BC Holmes

Director, Architecture and Technology
Intelliware Development, Ltd.
http://www.intelliware.ca

2007 JavaOneSM Conference | Session TS-7354 | 2

Goal of This Talk

Learn how to test Tapestry pages outside
of the web container, resulting in better
tests and better Tapestry applications.

2007 JavaOneSM Conference | Session TS-7354 | 3

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 4

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 5

Things That (I Hope) Everyone
Knows

• Tapestry is a framework for creating web
applications

• Tapestry applications usually don’t use
JavaServer Pages™ (JSP™ page), relying
instead on its own “Page Components”

• Testing Tapestry applications is usually
accomplished in the same fashion as other
web applications
• Use a testing framework to send HTTP requests

at the Java™ 2 Platform, Enterprise Edition
(J2EE™ platform) server

Background information for this session

2007 JavaOneSM Conference | Session TS-7354 | 6

Tricky Things About Testing
Tapestry

• It’s easy to test a page method
• Especially in Tapestry 5, because the pages are no

longer abstract
• It’s harder to test that the page renders correctly

• Rendering is accomplished as a negotiation between
the Tapestry Framework, the HTML “template”, and
various configuration options in the Page class

• There is no single class that has responsibility for
the entire render process for a particular page

2007 JavaOneSM Conference | Session TS-7354 | 7

Typical Web Application
Testing Frameworks

• Commonly-used testing frameworks
• HttpUnit
• HtmlUnit
• Canoo
• IeUnit (more rarely)

• Each of these frameworks performs
“in server” testing
• The web application is first deployed to the server
• The framework emulates getting pages, and

filling in forms

2007 JavaOneSM Conference | Session TS-7354 | 8

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 9

Is XP Testing About Testing?

“When XP uses the words ‘test’ and ‘testing’, they are
(increasingly) bound up with different assumptions
[than QA testers]. XP testing is about facilitating the act
of programming, about process rather than product.
XP tests provide value because they speed and
smooth the programming process by helping people
think through what they’re about to do and giving them
feedback as they do it.”

A quotation

Source: Brian Marrick, Front Royal Mailing List

2007 JavaOneSM Conference | Session TS-7354 | 10

Saying It a Different Way

• Agile testing is not the same type of activity as
QA testing
• Different goals

• e.g., promoting courage to allow a developer to make a
radical change to a design

• Having said that, there are still insights that
can be gleaned from the experts in QA-style
software testing

2007 JavaOneSM Conference | Session TS-7354 | 11

Also Worth Noting

“Test-Driven Development (TDD) is a software
development technique that involves repeatedly
first writing a test case and then implementing
only the code necessary to pass the test…
Practitioners emphasize that test-driven
development is a method of designing software,
not merely a method of testing.”

Test-Driven Development

Source: Wikipedia entry on Test-Driven Development

2007 JavaOneSM Conference | Session TS-7354 | 12

The case for out-of-container testing
Thesis

• In-server testing strategies do not support
test-driven development

• The practice of creating in-server tests exists to
enable change detection
• As such, in-server testing exists as a regression-testing

technique, not as a design technique
• Out-of-container testing is far more viable with

Tapestry than most other web frameworks

2007 JavaOneSM Conference | Session TS-7354 | 13

Pop

• Cem Kaner coined the term “Pop” to describe
a quality of good tests
• Refers to the ability of a test to reveal things about

our basic assumptions
• Named after the philosopher, Karl Popper

• Karl Popper asserted that good conjectures allow
us to imagine cases in which the conjecture fails
• Kaner, then, argues that it’s more important to test for

the purpose of making the product fail, than to make
the product work

Testing for failure

2007 JavaOneSM Conference | Session TS-7354 | 14

Compare Testing Styles

• JUnit/test-driven
development
• Write the test
• Make it compile
• Run to get the red bar
• Write code to get the

green bar
• Repeat

• In-server testing
• Write the artifacts

(pages, web.xml, etc.)
• Build and/or deploy
• Start the server
• Tweak until it works
• Create a test case to

ensure that future
changes are detected

Based on practices I’ve observed

2007 JavaOneSM Conference | Session TS-7354 | 15

Five Weaknesses of In-Server
Tests

• They’re slower to execute
• Because they’re slower, developers don’t

run them as often
• They’re not as thorough

• “That’s probably good enough…”
• The test is less isolated

• more “integration” and less “unit”
• They’re more fragile
• They’re harder to troubleshoot

2007 JavaOneSM Conference | Session TS-7354 | 16

JUnit In-Server
Project One
Number of tests 1035 87
Time to run ~ 2m 37s ~ 5m 28s

Project Two
Number of tests 495 20
Time to run ~ 59s ~ 5m

Test Characteristics Affect Behaviour

Source: Two recent projects

Comparison of test characteristics on real projects

2007 JavaOneSM Conference | Session TS-7354 | 17

Prerequisite Factors

• Developers require fast feedback in order to use
that feedback to make design decisions

2007 JavaOneSM Conference | Session TS-7354 | 18

Features of Good Tests

• Power
• Valid
• Value
• Credible
• Representative
• Non-redundant
• Motivating
• Performable
• Maintainable

• Repeatable
• Pop
• Coverage
• Easy to evaluate
• Supports troubleshooting
• Appropriately complex
• Accountable
• Cost
• Opportunity cost

Source: Cem Kaner and James Bach

2007 JavaOneSM Conference | Session TS-7354 | 19

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 20

Two Basic Tests

• Objective: to use testing to help eliminate all
the basic typo problems
• You can spend a lot of time fussing with getting

the JWCIDs
• These tests are “structural”

2007 JavaOneSM Conference | Session TS-7354 | 21

First Basic Test

• Create a test that:
• Walks through your source code directory
• Finds all Tapestry page classes
• Finds corresponding .html files
• Parse the .html files, and extract all JWCIDs
• Reflect the page class, and assert that each JWCID

has a corresponding component
• Part of the appeal of this test is that you write it

once for your project, and you can keep getting
value out of it each time you add a page

2007 JavaOneSM Conference | Session TS-7354 | 22

Typical Implementation
interface Assertion {
public void performAssertion(

File file, Document html, Class pageClass)
throws Exception;

}

public void testJwcids() throws Exception {
iterateOverAllPages(new Assertion() {

public void performAssertion(
File file, Document html, Class pageClass)
throws Exception {

assertAllJwcidsHaveCorrespondingClassProperties(
file, root, pageClass);

}
});

}

2007 JavaOneSM Conference | Session TS-7354 | 23

Second Basic Test

• Similarly, use reflection to ensure that OGNL
property paths are correct
• If you do a lot of refactoring, it’s easy to get OGNL

expressions that no longer resolve correctly
• A bit trickier to implement, but still quite viable

2007 JavaOneSM Conference | Session TS-7354 | 24

But What Does This Buy You?

• As described, it’s hard to see the overall value
• Usually, the “problems” they detect are problems

that any competent person would notice while
trying to start up the application
• The test is probably faster to run, but that’s just

splitting hairs
• And there’s the standard regression argument, but

we’ve already covered that
• Once in place, it’s easy to elaborate this type of

test to include other “structural” checks

Is this type of testing really worthwhile?

2007 JavaOneSM Conference | Session TS-7354 | 25

Improving Your Basic Tests

• Consider:
• Localization

• It’s surprisingly easy to forget to add appropriate
bindings to Submit buttons

Extending to detect the “Hard Stuff”

@Component(type="Submit",
bindings={"value=message:login"})

public abstract Submit getLoginSubmit();

2007 JavaOneSM Conference | Session TS-7354 | 26

Also…

• Tests like this keep all members of the team on
the same page, as far as design decisions go
• Less worry about a new team member not being

informed of a particular expectation or requirement

Tests document design decisions

2007 JavaOneSM Conference | Session TS-7354 | 27

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 28

Invoking the Render Cycle

• In order to test functionality on pages, we need to
emulate sending requests at the Tapestry Servlet
• But first we need to emulate the start-up and

initialization of servlets
• We must consider the “unit” under consideration

to be the combination of the Tapestry framework
and the page

• One of the few frameworks for this type of test
support is the ServletUnit framework
• Made by the same folk who make HttpUnit

Using JUnit tests to call up and render pages

2007 JavaOneSM Conference | Session TS-7354 | 29

A Mock Web Container

• If you don’t want to use ServletUnit, you can
accomplish much the same thing by creating your
own “stubs” (or “mocks”) of some key
javax.servlet interfaces
• HttpServletRequest
• HttpServletResponse
• HttpSession
• HttpServletContext
• HttpServletConfig
• Perhaps also the filter equivalents

2007 JavaOneSM Conference | Session TS-7354 | 30

Initializing the Tapestry Environment
private void setUpApplicationServlet() throws ... {
if (servlet == null) {
servletContext = new MockServletContext();
servletContext.setWebRootDirectory(

new File("./WebRoot"));

setUpSpringEnvironment(servletContext);
ApplicationServlet temp = new ApplicationServlet();
MockServletConfig config =

new MockServletConfig("app", servletContext);
temp.init(config);

// only assign this after the object
// has been initialized
servlet = temp;

}
}

2007 JavaOneSM Conference | Session TS-7354 | 31

Sending a Mock Request
MockHttpServletRequest httpRequest = createRequest(path);
MockHttpServletResponse httpResponse =

new MockHttpServletResponse();

getApplicationServlet().service(
httpRequest, httpResponse);

assertOk(httpResponse);

2007 JavaOneSM Conference | Session TS-7354 | 32

Things you learn while testing
Interesting Discoveries

• The Tapestry environment for Tapestry 4.x takes
about 6 to 7 seconds to initialize in our out-of-
container test environment
• That’s a lot of time, all things considered
• We only want to incur that cost once per suite

● In our environment, we cache the Tapestry Application Servlet
and reuse it across multiple requests

• External links tend to be more conducive to
testing than direct links
• In practice, this finding influenced how we tended to

build applications

2007 JavaOneSM Conference | Session TS-7354 | 33

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 34

Interpreting the HTML in the output
Making Sense of the Output

• Typically, you want to be able to write meaningful
assertions on the HTML output

2007 JavaOneSM Conference | Session TS-7354 | 35

Example
public void testAttemptInvalidLogin() throws Exception {
// set up a case where the password fails
...

Form form = getForm(renderSimplePage());
form.setInput("usernameTextField", "wrong");
form.setInput("passwordTextField", "bad");

post(form);

assertTitle(root, "Login Page");
assertFormValue("usernameTextField", "wrong");
assertFormValue("passwordTextField", "");
assertHasMessage(INVALID_PASSWORD);

}

2007 JavaOneSM Conference | Session TS-7354 | 36

Parse the Response HTML
What Do You Need to Do This?

• To make sense of the output, you probably want
to parse the HTML into nodes of some sort
• Standard XML Parser (if the output is XHTML)
• CyberNeko HTML Parser

● Used by HttpUnit and ServletUnit
• JTidy (tries to “tidy” the HTML in addition to parsing)

• Create some utilities to perform basic traversal of
nodes, and wrap these up as custom assertions
• At this point, this strategy is essentially the same as the

strategy of various in-server testing frameworks

2007 JavaOneSM Conference | Session TS-7354 | 37

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 38

Stubbing out dependencies
Spring Injection

• Tapestry allows you to inject an object directly
into a page from Spring
• These dependencies often provide important

functionality that’s tested separately
• You don’t want to include that functionality in your

testing unit

2007 JavaOneSM Conference | Session TS-7354 | 39

Spring Injection

@InjectObject("spring:ReportService")
public abstract ReportService getReportService();

<bean id="ReportService"
class="com.example.service.impl.ReportServiceImpl">
...

</bean>

Sample InjectObject Annotation (Tapestry 4.x)

Corresponding Spring Definition

@Inject("spring:ReportService")
private ReportService reportService;

Sample Inject Annotation (Tapestry 5)

2007 JavaOneSM Conference | Session TS-7354 | 40

Mocking Out Dependencies

XmlWebApplicationContext spring =
new XmlWebApplicationContext();

spring.setServletContext(servletContext);
spring.setConfigLocations(new String[] {

"/mock-spring.xml" });
spring.refresh();

servletContext.setAttribute(
ROOT_WEB_APPLICATION_CONTEXT_ATTRIBUTE, spring);

<bean id="ReportService"
class="com.example.service.impl.MockReportServiceImpl">
...

</bean>

Loading a “Mock” Spring file

Mock Spring Definition

2007 JavaOneSM Conference | Session TS-7354 | 41

Stubbing out dependencies
Hand-Cranked Mock Objects?

• Here we’ve set up an alternate (mock) version
of the ReportService in a “mock” application
context file
• But really, this is what cool tools like jMock are for

• It’s hard to use jMock to inject objects into a
Tapestry page because Tapestry controls the
page lifecycle

• Idea
• Use Spring’s idea of a FactoryBean to help

2007 JavaOneSM Conference | Session TS-7354 | 42

Revised Spring File
<bean id="ReportService"

class="com.example.util.spring.JMockBeanFactory">
<property name="primaryInterface"
value="com.example.service.ReportService" />

</bean>

2007 JavaOneSM Conference | Session TS-7354 | 43

JMockBeanFactory
public class JMockBeanFactory implements FactoryBean {

private static final Map<String,Object> MAP =
synchronizedMap(new HashMap<String,Object>());

private Class primaryInterface;

...

// This method is invoked when Spring initializes
public Object getObject() throws Exception {
return Proxy.newProxyInstance(
this.primaryInterface.getClassLoader(),
new Class[] { this.primaryInterface },
new MockHolder());

}

...

2007 JavaOneSM Conference | Session TS-7354 | 44

Invocation Handler (Inner Class)
class MockHolder implements InvocationHandler {

// this method is invoked when a page calls a method
// on the dependency
public Object invoke(Object proxy,

Method method, Object[] args)
throws Throwable {

try {
return method.invoke(getMockObjectFromMap(), args);

} catch (InvocationTargetException e) {
throw e.getCause();

}
}

}

2007 JavaOneSM Conference | Session TS-7354 | 45

Test Code
public void testRenderNoReports() throws Exception {

Mock mock = mock(ReportService.class);
mock.expects(once())

.method("getReportCount")

.will(returnValue(0));

...

// register the mock object in the factory
JMockBeanFactory.register(

ReportService.class,
mock.proxy());

2007 JavaOneSM Conference | Session TS-7354 | 46

Additional tricks for testing
Other Thoughts

• You could use some simple utility to auto-convert
the normal applicationContext.xml file into a
“mock” version using JMockBeanFactory entries
• The key trick is being able to correlate the registered

name of the bean with its primary interface
• You could also use jMock to mock the entire

WebApplicationContext interface
• Can be a bit tricky

2007 JavaOneSM Conference | Session TS-7354 | 47

Agenda

Quick Primer on Background Info
Testing and Test-Driven Development
Basic Tests
Tapestry Test Support
Analyzing Page Output
Stubbing/Mocking Dependencies
Putting It All Together

2007 JavaOneSM Conference | Session TS-7354 | 48

Handling state
Last Little Details

• Tapestry stores important state in the
HttpSession object
• If we’ve created a stub implementation, then we

can manipulate the state
• Most common example, “the logged in state”

2007 JavaOneSM Conference | Session TS-7354 | 49

Emulating a Logged-In User
protected void emulateUser(

MockHttpServletRequest httpRequest, User user) {

HttpSession session = httpRequest.getSession(true);
UserContext userContext = new UserContext();
userContext.setCurrentUser(user);
session.setAttribute(

"state:app:userContext", userContext);
}

2007 JavaOneSM Conference | Session TS-7354 | 50

DEMO
Test Suite

2007 JavaOneSM Conference | Session TS-7354 | 51

Summary

• We’ve discussed the way in-server testing often
constrains the way developers use testing

• We’ve discussed some structural types of tests
that can be used to handle fussy elements of
dealing with Tapestry development

• We’ve show strategies for invoking Tapestry
application pages outside of the container

2007 JavaOneSM Conference | Session TS-7354 | 52

Q&A

2007 JavaOneSM Conference | Session TS-7354

Session TS-7354

Fast Feedback Loop:
Unit Testing Strategies
for Tapestry

BC Holmes

Director, Architecture and Technology
Intelliware Development, Ltd.
http://www.intelliware.ca

