
2007 JavaOneSM Conference | Session TS-7820 |

TS-7820

The Apache Harmony
Project

Tim Ellison
Geir Magnusson Jr.

Apache Harmony Project
http://harmony.apache.org

2007 JavaOneSM Conference | Session TS-7820 | 2

Goal of This Talk
In the next 45 minutes you will...

Learn about the motivations,
current status, and future plans of
the Apache Harmony project

2007 JavaOneSM Conference | Session TS-7820 | 3

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 4

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 5

In the Beginning
Apache Harmony

May 2005—founded in the Apache Incubator

Primary Goals
1. Compatible, independent implementation of

Java™ Platform, Standard Edition (Java SE
platform) under the Apache License

2. Community-developed, modular architecture
allowing sharing and independent innovation

3. Protect IP rights of ecosystem

2007 JavaOneSM Conference | Session TS-7820 | 6

Early history: 2005
Apache Harmony

Broad community discussion
• Technical issues
• Legal and IP issues
• Project governance issues

Goal: Consolidation and Consensus

2007 JavaOneSM Conference | Session TS-7820 | 7

Early history: 2005/2006
Early History

Initial Code Contributions
• Three Virtual machines

● JCHEVM, BootVM, DRLVM

• Class Libraries
● Core classes, VM interface, test cases
● Security, beans, regex, Swing, AWT
● RMI and math

2007 JavaOneSM Conference | Session TS-7820 | 8

Early history—2005/2006
Early History

• Development activity builds on the initial
contributions
• We got lucky—real VMs to build and test with

● IBM J9 and BEA JRockit made available to project
● Used for development
● Not under open source license, not a contribution

● Other goals
● Grow the committers
● Establish the build/test infrastructure

• October 2006: graduated Incubator, became
Apache Harmony project

2007 JavaOneSM Conference | Session TS-7820 | 9

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 10

Enhanced IP-cleanliness
Development Approach

• Contributors detail their prior access via a project
questionnaire

• Developers can contribute in functional areas where
they have not studied closed-source implementations
(exceptions apply)

• Existing code being contributed to the project must
provide acceptable pedigree information

This Is in Addition to the Standard
Apache Contribution Processes

See: http://harmony.apache.org/auth_cont_quest.html

2007 JavaOneSM Conference | Session TS-7820 | 11

Producing a compliant implementation
Spec-Driven Development

• Implementing the Java specifications as found in:
• Java SE platform Javadoc™ tool
• Java Programming Language specification
• Java Virtual Machine (JVM™) specification, etc.

• Ambiguities and omissions…
• Resolved by the reference implementation
• Determined by functional API testing

• Completeness and compliance determined by Java Compatibility Kit (JCK)

Writing Unit
Tests

Specification
Reading

Post intentions
on the dev list

Send Patch and
Discuss Problems

on Dev List

Writing
Implementation

Iterative

progress

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-7820 | 12

Test-Driven Development

• Functional tests
• API tests, internal interfaces tests, bug regression tests
• Component-oriented

• Integration tests
• Build verification, test with different VMs
• Component assembly oriented

• Application/system testing
• Running popular apps, ad hoc, and test suites
• End-product and compatibility-oriented

• Platform, performance, and stress testing
• Multi-platform continuous integration, growing performance/stress suites
• Robustness and quality-oriented

Producing a robust, compatible implementation

2007 JavaOneSM Conference | Session TS-7820 | 13

Project Organization

/classlib
– the class library code

/drlvm
– the VM, JIT, GC

/jdktools
– Java technology development tools

(javac, javah, javap, ...)

/trunk
– federation point

(builds everything together)
0

200

400

600

800

1000

Class library JVM Tools

Li
ne

s
of

 c
od

e
(K

LO
C

)

C/C++
Java

Code Base Is 1.33 MLOC

Current codebase

2007 JavaOneSM Conference | Session TS-7820 | 14

• Uses svn switch “trick”

• Downloads project dependencies
• Running “ant” results in complete HDK, Java Development Kit

(JDK™) and Java Runtime Environment (JRE™)
• Can work in any directory (svn commit does Right Thing)
• ant -Dsvn.revision=X builds any SVN revision

/trunk
build.xml
/working_classlib -> /classlib
/working_vm -> /<your favorite vm>
/working_jdktools -> /jdktools
/current_resources -> /current_resources

Bringing it all together
Federated Build

2007 JavaOneSM Conference | Session TS-7820 | 15

@

bug tracker

Committers

GIT | Quilt | ?

Check out

Patches Continuous
Integration and

Test by
Community’s

Heterogeneous
Build Farm

Notify

SVN Server

Contributors

Check in/out

E-mail

Apache
Infrastructure

Heterogeneous build and test farm across community
Distributed Build-test

2007 JavaOneSM Conference | Session TS-7820 | 16

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 17

Trace JIT
Compiler Interpreter Memory

Manager
Thread

Manager

VM

XML NIO

Beans

Native
Code

Java
Native

Interface
(JNI™)

Portability Layer

Hardware/Operating System

VMI (C)

security
Java SE Class Libraries

Java SE Platform API

L
a
u
n
c
h
e
r

Class Library
Kernel Classes (Java Class Files)

lang
util
net
io

Architectural Overview
Everything is pluggable

2007 JavaOneSM Conference | Session TS-7820 | 18

Virtual Machine Modularity

• Well-defined interfaces,
consistent across
platforms

• Interfaces do not
compromise runtime
performance

• Modules either build-time
or runtime replaceable

• Multiple implementations
already exist for some
modules

Code execution and memory management

2007 JavaOneSM Conference | Session TS-7820 | 19

Class Library Modularization

• A module
• Related functionality

scoped by Java
technology packages

• ‘Exports’ user API and internal API, hides private internal implementation
• Defined by dependencies in the Java specification
• Minimizes coupling by explicit internal APIs
• Our Java Archive (JAR) files are real OSGi bundles

• Benefits
• Easier to manage prior exposure
• Freedom of assembly for module consumers
• Unit of replacement for fixes and updates
• Facilitates contributions

XML NIO

Beans

Class Library
Native
CodeVMI (C) JNI APIKernel classes (Java class files)

lang
util
net
io

Security

Java SE Platform 5 API

Java SE platform implemented in ~ 30 components

2007 JavaOneSM Conference | Session TS-7820 | 20

Development Time Modularity

• Not a replacement for JDK software
• HDK Harmony devs :: JDK software Java technology devs
• Contains all files necessary for Harmony development and testing

• Enables fast rebuild of individual modules—Java platform and native
• Removes necessity to check out whole source tree
• Supports separate or in place development of HDK trees

$ svn co http://... modules/nio
$ cd modules/nio
$ ant -DHY.HDK=path/to/hdk -DHY.TARGET=path/to/target

The Harmony Development Kit (“HDK”)

2007 JavaOneSM Conference | Session TS-7820 | 21

Packaging Modularity

Applet
AWT

Beans
LUNI
Annotation

Instrument
Lang-mgmt

Math
NIO
NIO_char

Security
SQL

Text
Concurrent

Archive
Logging

Prefs

rt.jar

jsse.jar
jce.jar
…

prefs.jar +
prefs-src.jar +
hyprefs.dll

Harmony’s ApproachConventional Approach

Software assemblies

2007 JavaOneSM Conference | Session TS-7820 | 22

Runtime Modularity

• Single launcher program
• Runs command-line Java technology programs, including generic

launcher and JDK software tools
• Select VM provider based on command-line option
• Select runtime specified modules (e.g., GC algorithm)

jre/bin/
java.exe
default/
drlvm-v1/
drlvm-v2/
ibm-j9/

$ java MyClass
$ java –vmdir:ibm-j9 MyClass
$ java –vmdir:drlvm-v1 MyClass

Multi-VM launcher

2007 JavaOneSM Conference | Session TS-7820 | 23

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 24

Harmony’s Class Library/VM
Interface

• VM-specific ‘kernel’ classes
• 23 publicly defined Java SE platform types that the

VM typically knows intimately, plus one helper
• Harmony provides templates for many of these

• Standard Java Native Interface
• To create objects, etc. from class library natives

• Harmony defined VM interface functions
• 10 new C functions…

Compatible VMs are required to implement…

2007 JavaOneSM Conference | Session TS-7820 | 25

Harmony’s Kernel Class List

java.security.AccessControlContext
java.security.AccessController
java.lang.reflect.AccessibleObject
java.lang.reflect.Array
java.lang.reflect.Constructor
java.lang.reflect.Field
java.lang.reflect.Method
java.lang.ref.PhantomReference
java.lang.ref.Reference
java.lang.ref.WeakReference
java.lang.ref.SoftReference
org.apache.harmony.kernel.VM

java.lang.Object
java.lang.Class
java.lang.ClassLoader
java.lang.Compiler
java.lang.Package
java.lang.Runtime
java.lang.StackTraceElement
java.lang.System
java.lang.Thread
java.lang.ThreadGroup
java.lang.Throwable

• VM implementers provide concrete implementations
• Either written from scratch, or derived from Harmony’s stub

implementations

VM-specific classes

2007 JavaOneSM Conference | Session TS-7820 | 26

Harmony’s VMI Functions
• Access to structures and interfaces shared by the VM and

class library
• The VMI provides:

• Access to the operating system abstraction library (port library)
• Access to per VM storage functions (VMLS) which allows multiple

VMs to exist in a single address space
• Ability to get/set/iterate system properties
• Major.minor version information to detect incompatible VMI

shape changes

• The VMI does not:
• Require any enhanced VM/class library linkage
• Prescribe object layout, garbage collection, synchronization,

and so on

Additional C-interface to the VM

2007 JavaOneSM Conference | Session TS-7820 | 27

Compatible VMs are required to implement
Harmony’s VMI Functions

/* Version check */
vmiError (JNICALL* CheckVersion) (VMInterface* vmi, vmiVersion* version);

/* Obtain VM structures & interfaces */
JavaVM* (JNICALL* GetJavaVM) (VMInterface* vmi);
JavaVMInitArgs* (JNICALL* GetInitArgs) (VMInterface* vmi);
HyPortLibrary* (JNICALL* GetPortLibrary) (VMInterface* vmi);
HyZipCachePool* (JNICALL* GetZipCachePool) (VMInterface* vmi);
HyVMLSFunctionTable* (JNICALL* GetVMLSFunctions) (VMInterface* vmi);

/* System properties */
vmiError (JNICALL* GetSystemProperty) (VMInterface* vmi, char* key, char** valuePtr);
vmiError (JNICALL* SetSystemProperty) (VMInterface* vmi, char* key, char* value);
vmiError (JNICALL* CountSystemProperties) (VMInterface* vmi, int* countPtr);
vmiError (JNICALL* IterateSystemProperties) (VMInterface* vmi,

vmiSystemPropertyIterator iterator, void* userData);

2007 JavaOneSM Conference | Session TS-7820 | 28

Via two exported functions
VMs Expose the VMI Struct

VMInterface* JNICALL VMI_GetVMIFromJavaVM (JavaVM* vm);

VMInterface* JNICALL VMI_GetVMIFromJNIEnv (JNIEnv* env);

2007 JavaOneSM Conference | Session TS-7820 | 29

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 30

API Completeness

• Completeness “heat map”
courtesy of JAPI tool
• Compares API compatibility

• Over 96% 1.5 API
complete in mid-April

• Missing packages are
primarily
• Swing multi and synth PLAF
• RTF support
• ORB dynamic introspection

See: http://kaffe.org/~stuart/japi

Our goal—Java SE platform 5

April 2007

2007 JavaOneSM Conference | Session TS-7820 | 31

Testing, bug fixing, metrics...
Code Quality

> 20K JUnit test reports

• harmonytest.org
• Result aggregator for

community-based testing

• Bug tracking
• Commits correlated to

fixed bugs
• Regression tests

2007 JavaOneSM Conference | Session TS-7820 | 32

Users run applications, not VMs
Application-Oriented Testing

• Some automated application
tests in the Harmony test
framework

• Published JDK software/
JRE software builds allow others
to easily test and report bugs

• Apache Tomcat: 100%
• Apache Geronimo: 96.2%
• Apache Tuscany SCA: 99.4%
• Apache Commons: passes 95+% of

the 40,000+ tests
• JBoss
• Eclipse
• ...

2007 JavaOneSM Conference | Session TS-7820 | 33

Blackburn, S. M., et al The DaCapo Benchmarks: Java
Benchmarking Development and Analysis, OOPSLA '06:
Proceedings of the 21st annual ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and
Applications, (Portland, OR, USA, October 22-26, 2006)

Source: http://www.dacapobench.org

2007-03-07
dacapo-2006-10-MR2

Tracked by DaCapo Java technology performance
benchmarks

Performance

2007 JavaOneSM Conference | Session TS-7820 | 34

Multi-Platform Support
• “CruiseControl”-based automated builds and testing
• Community builds, tests, and reports results on:

• x86 Windows 2000, Windows XP
• x86 Debian, SUSE9, RHEL AS 4, Ubuntu 6
• x86_64 SUSE 9, RHEL AS 4, Ubuntu 6

• Known work in progress on:
• Itanium Linux and Windows
• PPC 32-bit/64-bit Linux and AIX
• x86 Mac OS X and FreeBSD
• zSeries 31-bit/64-bit zLinux and zOS

• Interested in other platforms? Us too!

Write once, debug everywhere!

2007 JavaOneSM Conference | Session TS-7820 | 35

DEMO
Harmony in action

2007 JavaOneSM Conference | Session TS-7820 | 36

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of Open JDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 37

Disclaimer

Caution: The following section contains political and
other unfounded statements which may not be
suitable for all viewers. It does not represent the
position of our respective employers, the Apache
Software Foundation, or the Apache Harmony
project or our friends or enemies. Sometimes we
can’t even believe we say this stuff. Your mileage
may vary. Viewer discretion is advised. Offer not
valid in CT, TX, CA, or the Canary Islands. Supplies
limited. May contain nuts. Contains forward looking
statements. We reserve the right to substitute an
item of similar value and quality...

2007 JavaOneSM Conference | Session TS-7820 | 38

For the Avoidance of Doubt…

• We applaud Sun for doing OpenJDK
• Courageous as predictably internally disruptive

• It’s a monumental event in the history of
open source
• We can’t think of any contribution to FLOSS of this

magnitude
• The adventure is just beginning for Sun and the

greater community
• We look forward to find ways to have OpenJDK

and Apache Harmony collaborate (hint : javac)

2007 JavaOneSM Conference | Session TS-7820 | 39

Some Relevant History

• What significant, groundbreaking changes
happened to the Java technology ecosystem
when Sun released Project Glassfish™?

(Nothing)

2007 JavaOneSM Conference | Session TS-7820 | 40

The Java Technology Ecosystem

Important underpinnings of the Java Technology Ecosystem
• Specification-based technology

• “Collaborate on specifications, compete in implementations” —me

• Historically—mostly proprietary
• Started that way by Sun
• Slowly changing, but much still exists

2007 JavaOneSM Conference | Session TS-7820 | 41

Moving Forward

• Harmony community members choose to
participate for their own, independent reasons
• “It’s fun”—Dalibor Topic (kaffe)

• Need for FLOSS implementation that permits
freedom of downstream licensing persists
• Sun recognizes this—they will continue to license

OpenJDK under proprietary, commercial terms

2007 JavaOneSM Conference | Session TS-7820 | 42

Moving Forward

• Competition and choice makes Java technology
ecosystem healthy

• Community matters, and not all are the same
• Apache has a well understood, transparent model

• Collaboration of peers
• (This doesn’t work for everyone)

• OpenJDK governance model still undefined
• Our guess? A model similar to OpenSolaris™ project,

Project Glassfish, and NetBeans™ software
● Ideal for Sun’s users, customers and ISV partners

2007 JavaOneSM Conference | Session TS-7820 | 43

Agenda

Project History
Development Model
Modularity
VM Interface
How Are We Doing?
Relevance in the Age of OpenJDK
Summary

2007 JavaOneSM Conference | Session TS-7820 | 44

The best is yet to come...
Summary

• Rapidly approaching a fully compatible, open source,
implementation of Java SE platform

• We invested time up-front getting the IP
infrastructure right

• The community is focused on building a first-class
runtime environment

• Our strong modularity story has given us flexibility
and robustness to progress quickly and maintain
stability

• We have come a long way in 2 years!

2007 JavaOneSM Conference | Session TS-7820 | 45

What we’ve done so far
Accomplishments

• ~ 96% of Java platform v.5 class library API coverage
• Modern, Java platform v.5-capable VM with JIT
• Community continues to grow
• Full Apache project
• Self-hosting codebase
• “Runs” many major applications
• Modularity approach successful in classlib, ongoing in VM

2007 JavaOneSM Conference | Session TS-7820 | 46

What we still need to do
Active Areas of Effort

• Class library completion
• VM performance work
• VM stability work
• Build/test infrastructure
• Improved test case coverage
• Real world application testing
• Community growth

2007 JavaOneSM Conference | Session TS-7820 | 47

Q&A

http://harmony.apache.org

geirm@apache.org

tellison@apache.org
Geir Magnusson Jr.
Tim Ellison

2007 JavaOneSM Conference | Session TS-7820 |

TS-7820

The Apache Harmony Project
Tim Ellison
Geir Magnusson Jr.

Apache Harmony Project
http://harmony.apache.org

