

lavaOne

Java™ Technology and Web Services Security in **Action**

Marc Chanliau and Vikas Jain Security Product Management

Oracle Corporation www.oracle.com

TS-8131

Goal

Learn about key industry and Java™ technology security standards and how they are implemented in protected service-oriented architecture (SOA) deployments

Agenda

The Need for Security in SOA Environments "Define Once, Enforce Anywhere"

Paradigmatic Use Cases

SOA Environments
Web Applications

Key Industry Standards

XML Frameworks

Java Technology Frameworks

Implementation Choices

Product Demo

Agenda

The Need for Security in SOA Environments "Define Once, Enforce Anywhere"

Paradigmatic Use Cases
SOA Environments

Web Applications

Key Industry Standards

XML Frameworks

Java Technology Frameworks

Implementation Choices

Product Demo

The Need for Security in SOA Environments

- Access to resources and services over HTTP (mainly)
 - Insecure port 80
 - Readable messages (XML)—Message-level security required
- Declarative security
 - No hard-coded security
- Define security centrally
 - Policies are in a single point of control and administration
- Enforce security locally
 - Policy enforcement points are distributed across the environment
- Heterogeneous environments
 - Industry standards for integration and interoperability
 - Flexible deployment (multiple-platform support)

Agenda

The Need for Security in SOA Environments "Define Once, Enforce Anywhere"

Paradigmatic Use Cases

SOA Environments Web Applications

Key Industry Standards

XML Frameworks

Java Technology Frameworks

Implementation Choices

Product Demo

Use Case #1: **SOA Application**

Use Case #1 Security Vulnerabilities

: Security vulnerabilities

Use Case #2:

Web Application Invoking Web Services

Agenda

The Need for Security in SOA Environments "Define Once, Enforce Anywhere"

Paradigmatic Use Cases

SOA Environments

Web Applications

Key Industry Standards

XML Frameworks

Java Technology Frameworks

Implementation Choices

Product Demo

Requirements

- Authentication
 - Verify that the user is who she claims to be
- Authorization—Access Control
 - Verify that the authenticated user has access rights to the service invoked
- Confidentiality
 - Hide whole or part of a document using encryption
- Integrity, non-repudiation
 - Have an authority digitally sign a document
- Credential mediation
 - Exchange security tokens in a trusted environment
- Service capabilities and constraints
 - Define what a service can do, under what circumstances

Key Industry-Standard Security Frameworks

Application-Level Security

- Complements transport-level security (SSL)
- Based on XML frameworks
 - Confidentiality, Integrity, Authenticity
 - XML Encryption, XML Signature
 - Message Structure, Message Security
 - SOAP, WS-Security
 - Trust Management/Federation
 - WS-Trust
 - WS-SecureConversation
 - Metadata
 - WS-Policy, WS-PolicyAttachment
 - WS-MetadataExchange

Confidentiality, Integrity, Authenticity: XML Encryption, XML Signature

- XML Encryption (data confidentiality)
 - How digital content is encrypted and decrypted
 - How the encryption key information is passed to a recipient
 - How encrypted data is identified to facilitate decryption
- XML Signature (data integrity, authenticity)
 - Bind the sender's identity (or "signing entity") to an XML document
 - Signing/signature verification can be done using asymmetric or symmetric keys
 - Ensure non-repudiation of the signing entity
 - Proves that messages have not been altered since they were signed

Message Structure, Message Security: SOAP, WS-Security

- WS-Security defines how to attach XML Signature and XML Encryption headers to SOAP messages
- WS-Security provides profiles for 5 security tokens
 - Username (with opt. pwd digest)
 - X.509 cert
 - Kerberos ticket
 - SAML assertion
 - REL (rights markup) document

WS-Security With SAML Security Token

 SAML assertions and references to assertion identifiers are contained in the <wsse:Security> element, which in turn is included in the <soap-env:Header> element (described in the WS-Security SAML Token Profile)

WS-Trust

- WS-Security assumes parties already know each other and agree on the security token used
- WS-Trust addresses situations where trust must be brokered between parties that don't use the same security tokens
 - A Security Token Service (STS) enables security token exchange, token issuance, and token validation
 - WS-Trust defines a request/response protocol
 - A client sends a RequestSecurityToken (RST) to the STS
 - The STS replies with a RequestSecurityTokenResponse (RSTR)

WS-SecureConversation

- WS-SecureConversation plays the same role in messagelevel security that SSL plays at the transport level
- WS-SecureConversation defines the creation and sharing of security contexts between communicating parties
 - The <securityContextToken> (SCT) element supports the requirements of security contexts
- An SCT involves a shared secret used to sign and/or encrypt messages
 - Derived keys are used for signing and encrypting messages associated with the security context
 - WS-SecureConversation defines how derived keys are computed and passed

WS-Policy

- WS-Policy enables one to specify policy information that can be used to access web services applications
- A policy is expressed as one or more policy assertions
- A policy assertion represents a capability or a requirement
 - For example, a policy assertion may stipulate that a request to a web service be encrypted, or a policy assertion can define the maximum message size that a web service can accept
- The meaning of each assertion is specific to a particular domain, for example, security, reliability, or privacy

WS-PolicyAttachment

- WS-PolicyAttachment defines how (WS-Policy) policies are attached to web services
 - Policies can be bound to WSDL or UDDI

```
<definitions>
  <binding name="StockQuoteWebServiceSoapBinding" ...>
    <wsp:PolicyReference xmlns:... URI="#SecureMessagePolicy"/>
  </binding>
  <wsp:Policy wsu:Id="SecureMessagePolicy"... >
    <sp:SignedParts>
      <sp:Body/>
    </sp:SignedParts>
    <sp:EncryptedParts>
      <sp:Body/>
    </sp:EncryptedParts>
  </wsp:Policy>
</definitions>
```


WS-MetadataExchange

- Defines how a client can request the metadata it needs to access and communicate with a web service endpoint
 - Metadata can be WSDL, WS-Policy, schema
- Uses WS-Addressing to identify endpoints
- WS-MetadaExchange works as follows:
 - A requester sends a GetMetadata request message to an endpoint
 - The endpoint replies with a GetMetadata response message including a reference to the metadata section requested

Agenda

The Need for Security in SOA Environments

"Define Once, Enforce Anywhere"

Paradigmatic Use Cases

SOA Environments

Web Applications

Key Industry Standards

XML Frameworks

Java Technology Frameworks

Implementation Choices

Product Demo

Java Technology Frameworks

- Java Platform, Enterprise Edition (Java EE platform) 5
- Apache/WSO2
- Vendor specific (Oracle, Sun, BEA, etc.)

Java EE Platform 5

JAX-RPC = Java API for XML-based RPC | JAX-WS = Java APIs for XML Web Services JSR = Java Specification Request | SAAJ = The SOAP with Attachments API for Java JCE = Java Cryptography Extension | JCA = Java Cryptography Architecture

Apache/WSO2

Vendor Specific (Oracle 11g)

Agenda

The Need for Security in SOA Environments

"Define Once, Enforce Anywhere"

Paradigmatic Use Cases

SOA Environments

Web Applications

Key Industry Standards

XML Frameworks

Java Technology Frameworks

Implementation Choices

Product Demo

Application Server vs. External

- Security can be implemented in the application server or external to the application server
- Application Server security
 - Focused on a specific platform (Oracle, BEA, Sun, etc.)
- External security (Oracle WSM, XML Appliances, etc.)
 - Defined in a single policy manager
 - Enforced across heterogeneous platforms
 - Deployment flexibility
 - Monitoring capabilities

DEMO

Web Services Security

Demo Scenario

Summary

- SOA security is based on XML frameworks and Java technology standards
- Security includes authentication, authorization, integrity, confidentiality, trust
- SOA security should be externalized for flexible deployment and easier administration

For More Information

- OASIS Web Services Security (WSS) TC
 - http://www.oasis-open.org
- GlassFish XWSS
 - http://xwss.dev.java.net
- Oracle Technology Network
 - http://www.oracle.com/technology/products/middleware
- Blog
 - http://ws-security.blogspot.com

Q&A

Marc Chanliau and Vikas Jain

lavaOne

Java™ Technology and Web Services Security in **Action**

Marc Chanliau and Vikas Jain Security Product Management

Oracle Corporation www.oracle.com

TS-8131