

lavaOne

Service Virtualization: Separating Business Logic from Policy Enforcement

K. Scott Morrison

VP of Engineering & Chief Architect Layer 7 Technologies www.layer7tech.com

TS-8459

Ron Ten-Hove

Senior Staff Software Engineer Sun Microsystems, Inc. www.sun.com

Goal of This Talk

Learn How Service Virtualization Can Help You to Securely Manage Service-Oriented Architectures

Agenda

Service Delivery: Separation of Concerns

Virtualization and Policy Enforcement

Deployment Strategies

Java™ technology based XML Appliances for Policy Enforcement

Benefits and Costs

Service Delivery: 2 Separate Concerns

These Are Fundamentally Different

Policy

Dynamic and run time

- Security
 - AuthN/AuthR, integrity, confidentiality, key mgmt, audit, etc.
- SLA, QoS
 - Throughput limits, traffic shaping
- Application routing
- Versioning

Core Service

Static and design time

- Data binding
 - Java application environment to/from XML
- Transport handling
 - HTTP, Java™ Message Service (JMS) handling
- Localized "routing"
 - Mapping of service to local EJB architecture, Java code, legacy adapter, etc.

Consider Security, For Example:

- Remember: OASIS WS-Security (WSS) is about integrating and accommodating different security models
- Authentication
 - HTTP basic and digest
 - WSS UTP, x509, Kerberos, SAML, REL, etc.
- Authorization
 - LDAP, Sun Java™ System Access Manager, MSAD, etc (very long list…)
- Confidentiality and Integrity
 - SSL/TLS, W3C XML encryption, canonicalization and signing
 - A problem of enormous breadth and complexity...

Add to This Emerging Threat Vectors

- API discovery attacks
 - WSDL, UDDI
- Direct assaults on an API
 - Replay, parameter substitution
- Denial of Service (DoS)
 - Numerous parser-based attacks, such as recursive payload, oversized payloads, coercive parsing, etc.
- Reference substitutions
 - STRs (both inside and outside messages), external entities, Xincludes, etc.
- Content attacks
 - SQL injection, XQuery injection, schema poisoning, virus/trojan/spyware embedded inside attachments and message content, etc.
- Compromise of participants
 - A particular issue for intermediates in a multi-hop transaction

Benefits of Declarative Policy 1

Just basic, application server-based policy

Benefits of Declarative Policy 2

Add policy enforcement layer

Benefits of Declarative Policy 3

Here Is When This Really Shines:

Service Providers Policy J2EE Platform **Enforcement Point** .NET Legacy Adapter √ Consistent Policy Application Ruby ✓ Centralized Monitor and Management

Service Virtualization Is a View of a Service Managed Through Policy

- Policy can be anything applied to a stream of XML
 - Extract credentials, authenticate and authorize
 - Decrypt, validate signatures
 - Schema validate, scan for threats
 - Transform
 - Route, etc
- Policy is declarative
 - Determined at run time
 - Easy to change
- Policy is administrative
 - Not programmatic; it is not implemented in your Java code!
 - Written by a dedicated security administrator
- Policy is effectively an Aspect of a service

Mgmt. of Services: Monitoring and **Audit**

Service Versioning: Dealing with Change

Service Virtualization

Service Virtualization

How It Works Intermediate Request **Policy Layer XML** Message 111111111 111111111 111111111 mmm Response Logs, audits Service **XML** Security **Provider** Message Officer ✓ Deep Message Inspection **Operations** √ Policy Execution Security, Manageability, etc.

✓ Declarative Policy Authoring

Concrete Infrastructure

Patterns of Virtualization 1

At the edge of the network

Patterns of Virtualization 2

Co-located within the service provider

Patterns of Virtualization 3

Java™ Technology Based Virtualization Infrastructure

This is by no means exhaustive, but is just the more interesting components

Transport

- Servlets
- JMS
- HTTP Client
- JGroups
- RMI

Hardened OS

Java Message Processing Engine

- Java Logging API
- Java Technology Applet
- Hibernate
- Spring

Hardware Acceleration

- XML processing (XSLT, XPath, Schema validation)
- Security (SSL, JCE provider [RSA, etc.], HSM)

Benefits and Costs

- Benefits
 - Centralization
 - Consistency
 - Manageability
- Costs
 - Separation from application
 - Scaling and fault tolerance demands

Summary

- Service Virtualization is really about creating new, managed views of services
- Management and security is best handled at a Policy Enforcement Point (PEP) that is separate from your code
 - This ensures policy is decoupled from the application
- Sun and Layer 7 Technologies have partnered to offer such infrastructure for security and management of services
 - And this is based on Java technology

lavaOne

Q&A

Ron Ten-Hove, Sun Microsystems K. Scott Morrison, Layer 7 Technologies

lavaOne

Service Virtualization: Separating Business Logic from Policy Enforcement

K. Scott Morrison

VP of Engineering & Chief Architect Layer 7 Technologies www.layer7tech.com

TS-8459

Ron Ten-Hove

Senior Staff Software Engineer Sun Microsystems, Inc. www.sun.com