
2007 JavaOneSM Conference | Session TS-88040 |

Session TS-88040

Distributed Computing in the
Modern Data Center: Matching the
Right Technology to Your Task

Ari Zilka
CTO and Founder
Terracotta

http://www.openterracotta.org

2007 JavaOneSM Conference | Session TS-88040 | 2

Goal
Goal
Goal

Examine some real-world Enterprise
Java use cases

From those cases, learn how to lighten
your application stack burden

Goal

2007 JavaOneSM Conference | Session TS-88040 | 3

Agenda

Define Lightweight
Four Use Cases I Saw This Year
The Gaps in the Stack That Added Weight
The Pattern: CAP and 2PC/Java™ 2 Platform,
Enterprise Edition (J2EE™ Platform) Misuse
Heap-Level Replication
Agility Returns
Two Cases I Saw Where Lightweight Worked

2007 JavaOneSM Conference | Session TS-88040 | 4

Lightweight

• Starts with POJO
• Object identity (no implements serializable)
• No Manager pattern (get() and putback())
• Free domain modeling

• Then, UWYN—When you need it
• Continuations, Cometd, and DWR, Spring
• Use the Container I choose

• Leads to abstracting what I see fit
without leaks

2007 JavaOneSM Conference | Session TS-88040 | 5

1. Unit of Work was a queue,
not a bean...ugh!

2. Cannot scale work
3. EJB architecture gave

transactional queue
update, but not what
was needed

4. Problem: Durable queues

Case #1: Retailer—
EJB™ Architecture Abuse

Priority 1

ejb

ejb

ejb

ejb

Priority 2

ejb

ejb

ejb

ejb

Priority n

ejb

ejb

ejb

ejb

Job DB

jobs Priority 1
ejb
ejb
ejb
ejb

Priority 2
ejb
ejb
ejb
ejb

Priority n
ejb
ejb
ejb
ejb

Issues With Lightweight-ness

2007 JavaOneSM Conference | Session TS-88040 | 6

Case #2: Financial—Trading
Pipeline

Receiver

Customer
Accounts

Match
Log

Web
Server

Web
Server

Web
Server

Issues with Lightweight-ness
1. 20K matches/sec
2. Only unmatched trades

need to be preserved
3. DB bottleneck and

code smell

Sequencer

Exposer

Matcher

Exposer

Dispatch

2007 JavaOneSM Conference | Session TS-88040 | 7

Case #3: Online Gaming—
Network Abuse

Game Controllers

Game
1

Game
2

RMI

JMS

Game
1

Game
2

Game
3

Table Servers

2007 JavaOneSM Conference | Session TS-88040 | 8

Case #3: Online Gaming—
Network Abuse

Issues With
Lightweightness

1. JMS API + RMI with
serialization

2. Domain is gone in
favor of infrastructure

3. Results 1 GBit
insufficient

Game Controllers

Game
1

Game
2

RMI

JMS

Game
1

Game
2

Game
3

Table Servers

2007 JavaOneSM Conference | Session TS-88040 | 9

Gaps in the Application Stack

• Stack is OS, Virtual Machine for the Java platform
(JVM™ machine), (optional) App Server,
Frameworks, your code

• Case #1 (EJB Architecture Abuse)—Needs a
seamless clustered and durable queue

• Case #2 (Trading Pipeline)—Needs a durable queue
• Case #3 (Network Abuse)—Needs to share data

structure (this time not a queue but a map) across
processes for socket scale out

• The gap is clustered POJO
The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-88040 | 10

The Pattern: Why All the
Confusion

• CAP Theorem (Amazon.com) says you can
have only two of the following:
• Consistency
• Availability
• Partitionability

2007 JavaOneSM Conference | Session TS-88040 | 11

Application of CAP

Architecture Concern Trade Off (Cap) Result
or Fear

Tables or controllers
crash; lost game!CPConnected end users

Bottleneck on DBCARestartability

No partionability, no scaleCALost job

2007 JavaOneSM Conference | Session TS-88040 | 12

Let’s Think About It

• Consistency means all nodes are the same
• Availability means no single point of failure
• Partitionability means nodes lose

interconnectedness and do not care
• So Consistent + Available::

• Copy all data everywhere (consistent) but orphan any
node that won’t ACK (available)

• ⇒ No partitioning support
• Available + Partitionable::

• Allow autonomous changes (available) with catch up and
conflict resolution (partition)

• ⇒ No consistency

2007 JavaOneSM Conference | Session TS-88040 | 13

What It All Means

Spectrum of AvailabilityLow Cost
Low Guarantee

High Cost
High Guarantee

OracleMySQLRAM

Trade Off the Risk of the Loss of Data Versus the Cost of Storage

P2P
File

2007 JavaOneSM Conference | Session TS-88040 | 14

A Recipe for Managing CAP

• Make the trade-offs at a fine grained level
• Try to keep them out of code to freely move up

and down as lessons are learned

• Fine-grained == RAM or Heap
• Out of code == POJO/annotations

• Monolithic app servers and architectures didn’t
help because the need is lower level

2007 JavaOneSM Conference | Session TS-88040 | 15

Heap-Level Replication

• Cluster what you need (for consistency across
JVM machines)

• Store objects to disk (for availability across
restarts)

• Partition problems organically (each JVM
machine consumes only objects it needs)

• Central Traffic Cop that itself must scale—
think Network Attached Memory

2007 JavaOneSM Conference | Session TS-88040 | 16

Agility Returns

• Punt on the clustering work until you cluster
• Cluster without a wholesale rewrite
• Cluster the app with approximately the same

architecture as you started
• Avoid getting married to one paradigm so that you

can switch
• Balance the trade-offs by keeping assumptions

out of code where possible; C+A+P = happy line
of business owner

• Yes, you are scaling, but first, you are delivering a
business app, not a scalability architecture, no?

2007 JavaOneSM Conference | Session TS-88040 | 17

Positive Case #1

• A European Credit Card Reconciliation
• SEDA on one server
• Unit testing complete
• C+A were most important but at high scale
• Scale out—Java Message Service (JMS) API

scalability failing with durable queues (price of C
too high)

• “C” brought in check with clustered POJO queue
(no 2PC, no RDBMS)

2007 JavaOneSM Conference | Session TS-88040 | 18

Positive Case #2

• Japanese Bank’s Trading Engine
• Single Server design
• Operational for 2+ years
• C+A were most important but at high scale
• Scale out—JavaSpaces™ technology required

rewrite, too risky
• Again, “C” delivered scaled out

192007 JavaOneSM Conference | Session TS-88040 |

Q&A
Ari Zilka
Terracotta

http//www.terracotta.org

2007 JavaOneSM Conference | Session TS-88040 |

Session TS-88040

Distributed Computing in the
Modern Data Center: Matching the
Right Technology to Your Task

Ari Zilka
CTO and Founder
Terracotta

http://www.openterracotta.org

