
2007 JavaOneSM Conference | Session TS-8897 |

TS-8897

Designing Service
Collaborations: The Design
of ‘Wire’-Centric Integration

Mark Hapner and Gopalan Suresh Raj
Sun Microsystems, Inc.
http://www.sun.com

2007 JavaOneSM Conference | Session TS-8897 | 2

The ‘Wire’ Is the ‘Computer’

In the past, integration design was focused on middleware.

Today, the internet is the focus. ‘Wire’ design is global,
non-proprietary, and platform-independent.

This session presents an overview of ‘wire’ centric design
and describes several ‘wire’ design best practices.

2007 JavaOneSM Conference | Session TS-8897 | 3

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t
What the ‘wire’ is
‘Wire’ design
‘Wire’ design best practices

2007 JavaOneSM Conference | Session TS-8897 | 4

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t
What the ‘wire’ is
‘Wire’ design
‘Wire’ design best practices

2007 JavaOneSM Conference | Session TS-8897 | 5

…Or the ‘what’ beyond my code
The ‘Wire’

● Network context
● Code’s view of its ‘wire’ consumers
● Code’s view of its ‘wire’ suppliers

● Network community
● Attracting and retaining consumers
● Leveraging suppliers
● Stability with constant change
● A ‘wire’ economy

2007 JavaOneSM Conference | Session TS-8897 | 6

‘Wire’ Supplier Concerns

● Consumer is king
● Evolve to survive
● Consumer tail is the ‘wire’
● The ‘wire’ is the product

● Make it flexible
● Provide a full consumer view

2007 JavaOneSM Conference | Session TS-8897 | 7

‘Wire’ Consumer Concerns

● Depending on suppliers is risky
● It’s useful to reverse proxy supplier ‘wires’
● Important ‘wire’ properties

● Visibility
● Stability
● Security
● Performance

2007 JavaOneSM Conference | Session TS-8897 | 8

eBusiness Is the Goal

● ‘Wire’ infrastructure
● ‘Wire’ collaboration
● ‘Wire’ centric design

2007 JavaOneSM Conference | Session TS-8897 | 9

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t
What the ‘wire’ is
‘Wire’ design
‘Wire’ design best practices

2007 JavaOneSM Conference | Session TS-8897 | 10

The ‘Wire’ Isn’t a Program

● It isn’t a remote procedure
● Don’t use it to pass control
● Code composition principles don’t apply to it

2007 JavaOneSM Conference | Session TS-8897 | 11

The ‘Wire’ Isn’t a Component Model

● It doesn’t have a constructor
● It doesn’t need to be configured
● It isn’t ‘reused’
● It isn’t ‘contained’

2007 JavaOneSM Conference | Session TS-8897 | 12

The ‘Wire’ Isn’t Reliable

● The network is unreliable
● Suppliers and consumers

● Fail
● Have bugs
● Duplicate work

2007 JavaOneSM Conference | Session TS-8897 | 13

The ‘Wire’ Isn’t Static

● Evolution is the rule
● Coordinating change is hard
● The ‘wire’ has a tail

2007 JavaOneSM Conference | Session TS-8897 | 14

The ‘Wire’ Isn’t an Architecture

● Architectures are conceptual abstractions
● The ‘wire’ is not an abstraction

● It doesn’t exist until it’s available for use
● An abstract supplier is useless
● The ‘wire’ can’t be separated from the stack of

internet standards that are its foundation

2007 JavaOneSM Conference | Session TS-8897 | 15

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t
What the ‘wire’ is
‘Wire’ design
‘Wire’ design best practices

2007 JavaOneSM Conference | Session TS-8897 | 16

The ‘Wire’ Is Global

● Global: no technical barriers to global access
● A non-global ‘wire’ is a contradiction-in-terms
● Global access is a fundamental ‘wire’ attribute
● Global computing is the HTTP stack
● Be suspicious of non-HTTP ‘wires’

2007 JavaOneSM Conference | Session TS-8897 | 17

The ‘Wire’ Is Peer-to-Peer

● Many collaborations require participants to be
both suppliers and consumers

● Client-server concepts are too limiting
● Session ‘cookies’ aren’t useful
● Pseudo conversation modes aren’t useful

● Correlation is at the business layer not the
protocol layer

2007 JavaOneSM Conference | Session TS-8897 | 18

The ‘Wire’ Is Asynchronous

● The ‘wire’ spans sessions
● The ‘wire’ interleaves its work
● The ‘wire’ is more ad hoc than conventional

integration
● The ‘wire’ requires correlation to function

2007 JavaOneSM Conference | Session TS-8897 | 19

The ‘Wire’ Is a Network Resource

● The nature of network resources continues
to evolve

● Composition of network resources defines a
new computing space
● It is fundamentally different than code composition
● In some ways it has become more important than

code composition
● We have experience with the browser aspect of

network composition but are just beginning to learn
about ‘wire’ composition

2007 JavaOneSM Conference | Session TS-8897 | 20

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t
What the ‘wire’ is
‘Wire’ design
‘Wire’ design best practices

2007 JavaOneSM Conference | Session TS-8897 | 21

Message Exchange Patterns (MEPs)

● The units of ‘wire’ collaboration are MEPs
● HTTP Put, Post, Get, Delete
● WSDL 2.0 MEPs
● AS 2.0 MEPs

● Transient message exchanges
● Within HTTP session
● Transport single message and quick

acknowledge/response
● Design focus

● Select MEP
● Define the message/response it transports

2007 JavaOneSM Conference | Session TS-8897 | 22

Conversations

● Correlated message exchanges
● Span HTTP sessions
● Related by correlation values exposed

via message properties
● Peer-to-peer

● Design focus
● Define the roles
● Define the correlations
● Define the life cycle
● Define the shared state

2007 JavaOneSM Conference | Session TS-8897 | 23

Shared State

● The semantics of collaboration
● Conversation

● The message exchanges used to move the shared state
of a collaboration through its life cycle

● Shared state
● The state that the roles in a collaboration semantically

share as the representation of their common goal
● Visibility of shared state

● Shared state may be implied but not accessible
● Correlation values are ‘links’ to shared state
● The more visible its shared state is, the more

stable a collaboration is

2007 JavaOneSM Conference | Session TS-8897 | 24

Collaboration Evolution

● Collaborations aren’t static
● Participants don’t evolve in lock-step
● The tail of a collaboration must continue

to function
● While the XML messages evolve well, the

XML Schema that describe them don’t
● Don’t assume that message evolution can be

contained within a single XML Schema
● Don’t over-complicate message schemas with

‘extension points’
● Assume that new versions of messages may use

new schemas

2007 JavaOneSM Conference | Session TS-8897 | 25

The ‘Wire’ Is the Collaboration

● The ‘wire’ is the technical definition of a
collaboration

● The simpler it is, the easier it is to collaborate
● Use the least complex, most universal ‘wire’ possible
● Decide what not to use
● Visibility is important for stability

● ‘Wire’ policies are collaboration policies
● Collaboration participants have internal policies just

like they have internal state and semantics

25

2007 JavaOneSM Conference | Session TS-8897 | 26

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t
What the ‘wire’ is
‘Wire’ design
‘Wire’ design best practices

2007 JavaOneSM Conference | Session TS-8897 | 27

#1: A Wire Design Separates the Wire
From the Applications That Use It

● The Collaboration design is a complete design
element that captures the full semantic content
of the collaboration and stands apart from the
applications

● Throw away the implementation of the roles and
still be left with a complete collaboration design
that documents well-defined semantics

● A third-party should be able to follow everything
that’s going on, about all the messages that flow
through the system by just looking at the design

2007 JavaOneSM Conference | Session TS-8897 | 28

#2: Use Unique Element to ‘Wrap’
Each Business Message

● Business messages may contain one or more
business objects that they carry

● If you have a complicated interchange that has
multiple business objects to it, aggregate these
messages together by wrapping them

● Ensure that the container of the wrapped
messages has a unique top-level element name

● This wrapper can serve as an open-ended
container that sets the business context for what
to do with these messages and ensures these
messages are self-defining

2007 JavaOneSM Conference | Session TS-8897 | 29

#2: Use Unique Element to ‘Wrap’
Each Business Message…
<?xml version="1.0" encoding="UTF-8"?>
<NewPurchaseOrder version="1.0">
 <Originator>
 ...
 <Role>Seller</Role>
 </Originator>

 <Receiver>
 ...
 <Role>Buyer</Role>
 </Receiver>

 <PurchaseOrder>
 ...
 </PuchaseOrder>
</NewPurchaseOrder>

2007 JavaOneSM Conference | Session TS-8897 | 30

#3: For Large Messages Use MTOM

● If the exchanged Business Objects are large,
use MTOM

● Create a wrapper message that can contain
multiple different types of files

● The wrapped message can then serve as a
virtual message

● Use multi-part MIME to physically carry the
message so at any point, you don’t have to
parse the entire message at once

2007 JavaOneSM Conference | Session TS-8897 | 31

#4: Version Number Message Wrappers

● Explicitly add a version number attribute to
the first element of both the request and the
response message

● This will ensure the Message Exchange Pattern
(MEP) and the schema of the exchanged
messages evolve in tandem

● You now have complete control over how to
evolve the MEP

2007 JavaOneSM Conference | Session TS-8897 | 32

#4: Version Number Message Wrappers
<!-- Version 1.0 message -->
<?xml version="1.0" encoding="UTF-8"?>
<person version="1.0">
 <firstName>John</firstName>
 <lastName>Doe</lastName>
</person>

<!-- Version 2.0 message -->
<?xml version="1.0" encoding="UTF-8"?>
<person version="2.0">
 <firstName>John</firstName>
 <middleInitial>A</middleInitial>
 <lastName>Doe</lastName>
</person>

2007 JavaOneSM Conference | Session TS-8897 | 33

#5: Protocol Is Not Part of the
Business Message

● A message has a header and a body
● However when you want to persist the data in a

database for further processing, you only persist
the message body since that contains the
business data

● Therefore the Message body has to stand alone—
do not place information that you will need to
reuse to process a collaboration in the Message
header

● Caveat: Do not use SOAPAction to route
messages

2007 JavaOneSM Conference | Session TS-8897 | 34

#6: Identify Shared Conversational
State Upfront

● Conversations have an implied semantic state
that participants can share and refer to the shared
state in the message body to keep track of
message relationships

● Identify element(s) in the message that can serve
as a shared state-holder, e.g., unique business
specific identifiers that are customer specific, like
SSNs, Claim Numbers, PO ids, etc.

● Ensure that these values are easy to find in the
message body by clearly defining XPath queries
to extract the identifier(s) from within each
message

2007 JavaOneSM Conference | Session TS-8897 | 35

#6: Identify Shared Conversational
State Upfront…

● Correlation identifiers:
● /NewPurchaseOrder/Originator/OrderID
● /NewPurchaseOrder/Receiver/OrderID

Buyer
Process

Seller
Process

OrderID=1234
Purchase Order

OrderID=5678
Purchase Order

<NewPurchaseOrder version=”1.0”>
 <Originator>
 ...
 <OrderID=”5678” />
 </Originator>
 <Receiver> ...
 ...
 <OrderID=”1234” />
 </Receiver>
 <PurchaseOrder ID=”5678”>
 ...
 </PurchaseOrder>
</NewPurchaseOrder>

2007 JavaOneSM Conference | Session TS-8897 | 36

#7: Use Correlation Values to
Reference Shared State

● Share conversational state on the wire using
self-defined correlations in the message

● This ensures that subsequent processes in the
collaboration tail can correlate the response to a
specific request

● The identifier(s) placed in the Message Property
can serve as correlation identifier(s) that tie
together message instances with a particular
conversation

2007 JavaOneSM Conference | Session TS-8897 | 37

#8: Use Separate MEPs for Business
Responses

● When dealing with stateful interactions,
mandating a business response as part of a
single request/response MEP overly restricts the
asynchronous collaboration that is required

● Often the business response is not available
quick enough to place the acknowledgment into
the response

● The only way the business response can fully be
decoupled from messages that produce them is
to place the acknowledgment in a separate MEP

2007 JavaOneSM Conference | Session TS-8897 | 38

#9: The Wire Always Goes Forward

● Compensation is an application level function
that defines the semantics for resolving issues
that come up with in-flight instances; It is better
handled by providing application level
‘cancellation’ functions

● Think of the Collaboration as an entity that
relentlessly pushes forward—it may change but
it never ‘goes back’ to a previous state

● If things get hopelessly stuck, then cancel and
take whatever business hit cancellation costs
(such as canceling a nonrefundable flight
reservation)

2007 JavaOneSM Conference | Session TS-8897 | 39

#10: Contract First Development
(Top-Down)

● Also called Design By Contract
● Create the data contract in XSD and the

behavioral contract in WSDL upfront
● Use the XSD and WSDL editors provided by the

NetBeans™ Software SOA Pack to do this
● This approach forces the designer to focus on

messages and contracts as the key concepts in
designing a service contract

2007 JavaOneSM Conference | Session TS-8897 | 40

#11: Prefer Use of Document/Literal
Rather than RPC
● Prefer ‘document’ encoding and ‘literal’ use over

other types for interoperability
● It is better-suited for coarse-grained interactions

and better represents the data exchanged
● It provides the ability to validate the XML data if

the XML Schema is available
● Ability to Transform messages using XSLT easily
● Provides better performance than other

encoding/use styles
● Since the service interface in the WSDL clearly

defines the types of documents expected, it
makes it easy for the consumer

2007 JavaOneSM Conference | Session TS-8897 | 41

#12: For Asynchronous, Peer-to-Peer
Collaborations Use Multiple MEPs

● MEPs are transient message exchange elements
● If there is work that can be accomplished in a

single, one-shot, stateless, self-contained
collaboration, use a single MEP

● For long-running, conversational, peer-to-peer
collaborations, where there is an asynchronous
lag between a request and a response with
shared state use multiple MEPs with correlations

● You cant have an asynchronous collaboration
without having peer-to-peer message exchanges

2007 JavaOneSM Conference | Session TS-8897 | 42

#13: Don’t Expose Unnecessary
Details in the Service Contract

● When exposing your existing applications as
services:
● Analyze your existing architecture
● Define a service contract
● Define a logical architecture that you want to migrate to
● Refactor your existing architecture by exposing

appropriate facades to match the service contract
● Migrate your implementation to conform to the logical

architecture
● In service orientation you are exposing services

not objects

2007 JavaOneSM Conference | Session TS-8897 | 43

#14: Don’t Use WS-Addressing
Cookies for Acknowledgments

● WS-Addressing requires you to use cookies in
the header to perform callbacks

● However, in an asynchronous, peer-to-peer
exchange scenario, where the response is not
immediately available, the data may have to be
persisted to database until the business response
is available

● In such a case, the message body that has the
business data and the correlation values will be
persisted to the database and the header with the
WS-Addressing cookie data will be thrown away

2007 JavaOneSM Conference | Session TS-8897 | 44

#15 Maintain Secure Conversation With
Users Often Communicating With You

● Efficient strategy is to maintain a secure
conversation with those users who are often
communicating with each other in a fairly high
bandwidth way

● Based on amount of communication between the
provider and a consumer, consider setting up a
secure conversation with partners that you are
frequently communicating with

2007 JavaOneSM Conference | Session TS-8897 | 45

Project Open Enterprise Service Bus
(Open ESB)

http://open-esb.org http://blogs.sun.com/gopalan
JBI = Java Business Integration

Open ESB 2.0 Beta 2—Available Now!
JBI based SOA Integration platform
● Open Standard, Open Source, Interoperable
● Build composite applications leveraging

existing applications and webservices
● An extensible platform with pluggable

architecture
● Integrated runtime with GlassFish™ V.2
● Integrated Tooling through NetBeans

release 6.0
● Available in Java Platform, Enterprise

Edition (Java EE platform) SDK
● Community-based JBI component

development

A True Open SOA Community

● JBI—An open standard for SOA based
integration platform

● Rich set of Service Engines including
BPEL, IEP, XSLT, Java EE platform,
Aspects, WLM, Data Mashups,
Encoder

● Exhaustive list of Binding components
including Http, Java DataBase
Connectivity (JDBC™), Java Message
Services (JMS), MQ, SAP, Email,
CICS, IMS, and many more

● Free to download and deploy

2007 JavaOneSM Conference | Session TS-8897 | 46

Q&A
Mark Hapner and Gopalan Suresh Raj
Sun Microsystems, Inc.
http://www.sun.com

2007 JavaOneSM Conference | Session TS-8897 |

TS-8897

Designing Service
Collaborations: The Design
of ‘Wire’-Centric Integration

Mark Hapner and Gopalan Suresh Raj
Sun Microsystems, Inc.
http://www.sun.com

