JavaOne

Designing Service
Collaborations: The Design
of ‘Wire’-Centric Integration

Mark Hapner and Gopalan Suresh Raj

Sun Microsystems, Inc.
http://www.sun.com

TS-8897

2007 JavaOnes™ Conference | Session TS-8897 | java.sun.com/javaone

JavaOne

The ‘Wire’ Is the ‘Computer’

“’M 2007 JavaOneSM Conference | Session TS-8897 | 2 java.sun.com /javaone

JavaOne

Agenda

Focus shifts to the ‘wire’
What the ‘'wire’ isn't

What the ‘wire’ is

‘Wire’ design

‘Wire’ design best practices

¢.‘J}_fﬂ 2007 JavaOneSM Conference | Session TS-8897 | 3 java.sun.com/javaone

JavaOne

Agenda

Focus shifts to the ‘wire’
What the ‘'wire’ isn't

What the ‘wire’ is

‘Wire’ design

‘Wire’ design best practices

#.‘fi_.‘a_’._’ 2007 JavaOne® Conference | Session TS-8897 | 4 java.sun.com /javaone

JavaOne

The ‘Wire’

...0Or the ‘what’ beyond my code

» Network context
« Code’s view of its ‘wire’ consumers
« Code’s view of its ‘wire’ suppliers

* Network community
 Attracting and retaining consumers
* Leveraging suppliers
- Stability with constant change
* A ‘wire’ economy

@ Sun 2007 JavaOnes Conference | Session TS-8897 | 5 java.sun.com/javaone

JavaOne

‘Wire’ Supplier Concerns

» Consumer is king
* Evolve to survive
Consumer tail is the ‘wire’

* The ‘wire’ is the product
+ Make it flexible
* Provide a full consumer view

@ Sun 2007 JavaOnes Conference | Session TS-8897 | 6 java.sun.com/javaone

JavaOne

‘Wire’ Consumer Concerns

- Depending on suppliers is risky

* It's useful to reverse proxy supplier ‘wires’
» |Important ‘wire’ properties

= Visibility

- Stability

* Security

* Performance

@Sun

2007 JavaOneSM Conference | Session TS-8897 | 7 java.sun.com/javaone

JavaOne

eBusiness Is the Goal

+ ‘Wire’ infrastructure
* ‘Wire’ collaboration
» ‘Wire’ centric design

Q.‘fi_.‘a_’._’ 2007 JavaOne®™ Conference | Session TS-8897 | 8 java.sun.com/javaone

JavaOne

Agenda

Focus shifts to the ‘wire’
What the ‘wire’ isn’t

What the ‘wire’ is

‘Wire’ design

‘Wire’ design best practices

¢.5‘£_-‘a_’._’ 2007 JavaOne®™ Conference | Session TS-8897 | 9 java.sun.com /javaone

JavaOne

The ‘Wire’ Isn’t a Program

* |t isn’t a remote procedure
* Don’t use it to pass control
- Code composition principles don’t apply to it

¢.‘J}_fﬂ 2007 JavaOneSM Conference | Session TS-8897 | 10 java.sun.com/javaone

JavaOne

The ‘Wire’ Isn’t a Component Model

* |t doesn’t have a constructor

* It doesn’t need to be configured
« |tisn’t ‘reused’

* |tisn’t ‘contained’

@ Sun 2007 JavaOnes Conference | Session TS-8897 | 11 java.sun.com/javaone

JavaOne

The ‘Wire’ Isn’t Reliable

* The network is unreliable

» Suppliers and consumers
+ Fall
- Have bugs
* Duplicate work

#.‘fi_.‘a_’._’ 2007 JavaOne®™ Conference | Session TS-8897 | 12 java.sun.com/javaone

JavaOne

The ‘Wire’ Isn’t Static

- Evolution is the rule
» Coordinating change is hard
» The ‘'wire’ has a tail

Q.‘fi_.‘a_’._’ 2007 JavaOne®™ Conference | Session TS-8897 | 13 java.sun.com/javaone

. Java

JavaOne

The ‘Wire’ Isn’t an Architecture

* Architectures are conceptual abstractions

* The ‘wire’ is not an abstraction
» It doesn’t exist until it's available for use
- An abstract supplier is useless

* The ‘wire’ can’t be separated from the stack of
internet standards that are its foundation

¢.':}m 2007 JavaOneSM Conference | Session TS-8897 | 14 java.sun.com/javaone

JavaOne

Agenda

Focus shifts to the ‘wire’
What the ‘'wire’ isn't

What the ‘wire’ is

‘Wire’ design

‘Wire’ design best practices

#.‘fi_.‘a_’._’ 2007 JavaOne® Conference | Session TS-8897 | 15 java.sun.com /javaone

. Java

JavaOne

@ Sun

The ‘Wire’ Is Global

Global: no technical barriers to global access
* A non-global ‘wire’ is a contradiction-in-terms
Global access is a fundamental ‘wire’ attribute
Global computing is the HTTP stack

- Be suspicious of non-HTTP ‘wires’

2007 JavaOneSM Conference | Session TS-8897 | 16 java.sun.com/javaone

= Java

JavaOne

The ‘Wire’ Is Peer-to-Peer

» Many collaborations require participants to be
both suppliers and consumers

- Client-server concepts are too limiting
» Session ‘cookies’ aren’t useful
» Pseudo conversation modes aren’t useful

- Correlation is at the business layer not the
protocol layer

@ Sun 2007 JavaOne$ Conference | Session TS-8897 | 17 java.sun.com/javaone

JavaOne

The ‘Wire’ Is Asynchronous

* The ‘wire’ spans sessions
* The ‘wire’ interleaves its work

+ The ‘wire’ is more ad hoc than conventional
Integration

= The ‘wire’ requires correlation to function

¢.':}m 2007 JavaOneSM Conference | Session TS-8897 | 18 java.sun.com/javaone

;

JavaOne

The ‘Wire’ Is a Network Resource

The nature of network resources continues
to evolve

Composition of network resources defines a
new computing space
It is fundamentally different than code composition

In some ways it has become more important than
code composition

We have experience with the browser aspect of
network composition but are just beginning to learn
about ‘wire’ composition

@ Sun 2007 JavaOneS™ Conference | Session TS-8897 | 19 java.sun.com/javaone

JavaOne

Agenda

Focus shifts to the ‘wire’
What the ‘'wire’ isn't

What the ‘wire’ is

‘Wire’ design

‘Wire’ design best practices

#.‘fig‘ﬂ 2007 JavaOne®™ Conference | Session TS-8897 | 20 java.sun.com/javaone

JavaOne

Message Exchange Patterns (MEPs)

» The units of ‘wire’ collaboration are MEPs
« HTTP Put, Post, Get, Delete
- WSDL 2.0 MEPs
- AS 2.0 MEPs

» Transient message exchanges
« Within HTTP session

» Transport single message and quick
acknowledge/response

- Design focus

- Select MEP
+ Define the message/response it transports

@ Sun 2007 JavaOne$ Conference | Session TS-8897 | 21 java.sun.com/javaone

JavaOne

Conversations

» Correlated message exchanges
« Span HTTP sessions

* Related by correlation values exposed
via message properties

* Peer-to-peer

- Design focus
* Define the roles
- Define the correlations
+ Define the life cycle
« Define the shared state

¢.':}m 2007 JavaOnesM™ Conference | Session TS-8897 | 22 java.sun.com/javaone

JavaOne

Shared State

* The semantics of collaboration

» Conversation

- The message exchanges used to move the shared state
of a collaboration through its life cycle

» Shared state

» The state that the roles in a collaboration semantically
share as the representation of their common goal

* Visibility of shared state
+ Shared state may be implied but not accessible
« Correlation values are ‘links’ to shared state

* The more visible its shared state is, the more
stable a collaboration is

@ Sun 2007 JavaOne$ Conference | Session TS-8897 | 23 java.sun.com/javaone

-

JavaOne

@ Sun

Collaboration Evolution

Collaborations aren’t static
Participants don’t evolve in lock-step

The tail of a collaboration must continue
to function

While the XML messages evolve well, the
XML Schema that describe them don't

Don’t assume that message evolution can be
contained within a single XML Schema

Don’t over-complicate message schemas with
‘extension points’

Assume that new versions of messages may use
new schemas

2007 JavaOne®™ Conference | Session TS-8897 | 24 java.sun.com/javaone

JavaOne

The ‘Wire’ Is the Collaboration

The ‘wire’ is the technical definition of a
collaboration

The simpler it is, the easier it is to collaborate
Use the least complex, most universal ‘wire’ possible
Decide what not to use
Visibility is important for stability

‘Wire’ policies are collaboration policies

Collaboration participants have internal policies just
like they have internal state and semantics

@ Sun 2007 JavaOnes™ Conference | Session TS-8897 | 2 java.sun.com/javaone

JavaOne

Agenda

Focus shifts to the ‘wire’

What the ‘wire’ isn't

What the ‘wire’ is

‘Wire’ design

‘Wire’ design best practices

Q.‘fi_.‘a_’._’ 2007 JavaOne® Conference | Session TS-8897 | 26 java.sun.com /javaone

" "#1: A Wire Design Separates the Wire
From the Applications That Use It

The Collaboration design is a complete design
element that captures the full semantic content
of the collaboration and stands apart from the
applications

Throw away the implementation of the roles and
still be left with a complete collaboration design
that documents well-defined semantics

A third-party should be able to follow everything
that’s going on, about all the messages that flow
through the system by just looking at the design

‘@.\]’m 2007 JavaOneSM Conference | Session TS-8897 | 27

Jav

#2: Use Unique Element to ‘Wrap’
Each Business Message

Business messages may contain one or more
business objects that they carry

If you have a complicated interchange that has
multiple business objects to it, aggregate these
messages together by wrapping them

Ensure that the container of the wrapped
messages has a unique top-level element name

This wrapper can serve as an open-ended
container that sets the business context for what
to do with these messages and ensures these
messages are self-defining

2007 JavaOne®M Conference | Session TS-8897 | 28

JavaOne

#2: Use Unique Element to ‘Wrap’
Each Business Message...

<?xml version="1.0" encoding="UTF-8"?>
<NewPurchaseOrder version="1.0">
<Originator>

<Role>Seller</Role>
</Originator>

<Receiver>

<Role>Buyer</Role>
</Receiver>

<PurchaseOrder>

</PuchaseOrder>
</NewPurchaseOrder>

¢.':}m 2007 JavaOneSM Conference | Session TS-8897 | 29 java.sun.com/javaone

l;&l g %;!I — __|

JavaOne

#3: For Large Messages Use MTOM

If the exchanged Business Objects are large,
use MTOM

Create a wrapper message that can contain
multiple different types of files

The wrapped message can then serve as a
virtual message

Use multi-part MIME to physically carry the
message so at any point, you don’t have to
parse the entire message at once

'@.':}m 2007 JavaOneSM Conference | Session TS-8897 | 30

#4: Version Number Message Wrappers

Explicitly add a version number attribute to
the first element of both the request and the
response message

This will ensure the Message Exchange Pattern
(MEP) and the schema of the exchanged
messages evolve in tandem

You now have complete control over how to
evolve the MEP

2007 JavaOneSM Conference | Session TS-8897 | 31

JavaOne

#4: Version Number Message Wrappers

<!-- Version 1.0 message -->

<?xml version="1.0" encoding="UTF-8"?>

<person version="1.0">
<firstName>John</firstName>
<lastName>Doe</lastName>

</person>

<!-- Version 2.0 message -->

<?xml version="1.0" encoding="UTF-8"7?>

<person version="2.0">
<firstName>John</firstName>
<middleInitial>A</middleInitial>
<lastName>Doe</lastName>

</person>

¢.':}m 2007 JavaOneSM Conference | Session TS-8897 | 32 java.sun.com/javaone

JavaOne

#5: Protocol Is Not Part of the
Business Message

A message has a header and a body

However when you want to persist the data in a
database for further processing, you only persist
the message body since that contains the
business data

Therefore the Message body has to stand alone—
do not place information that you will need to

reuse to process a collaboration in the Message
header

Caveat: Do not use SOAPAction to route
messages

2007 JavaOne®™ Conference | Session TS-8897 | 33

Jav

" #6: Identify Shared Conversational
State Upfront

Conversations have an implied semantic state
that participants can share and refer to the shared
state in the message body to keep track of
message relationships

|dentify element(s) in the message that can serve
as a shared state-holder, e.g., unique business
specific identifiers that are customer specific, like
SSNs, Claim Numbers, PO ids, etc.

Ensure that these values are easy to find in the
message body by clearly defining XPath queries
to extract the identifier(s) from within each
message

2007 JavaOne®M Conference | Session TS-8897 | 34

JavaOne

#6: ldentify Shared Conversational
State Upfront...

Seller
Process

Buyer
Process

—

e

OrderlD=1234
Purchase Order

OrderlD=5678
Purchase Order

» Correlation identifiers:
* INewPurchaseOrder/Originator/OrderID
+ [INewPurchaseOrder/Receiver/OrderlD

’S@;_?._’ 2007 JavaOneSM Conference | Session TS-8897 | 35 java.sun.com /javaone

|]avaOne

#7: Use Correlation Values to
Reference Shared State

Share conversational state on the wire using
self-defined correlations in the message

This ensures that subsequent processes in the
collaboration tail can correlate the response to a
specific request

The identifier(s) placed in the Message Property
can serve as correlation identifier(s) that tie
together message instances with a particular
conversation

@Sun 2007 JavaOne®™ Conference | Session TS-8897 | 36 java.sun.com/javaone

" #8: Use Separate MEPs for Business
Responses

When dealing with stateful interactions,
mandating a business response as part of a
single request/response MEP overly restricts the
asynchronous collaboration that is required

Often the business response is not available
quick enough to place the acknowledgment into
the response

The only way the business response can fully be
decoupled from messages that produce them is
to place the acknowledgment in a separate MEP

‘@.\'HH 2007 JavaOneSM Conference | Session TS-8897 | 37

|]avaOne

#9: The Wire Always Goes Forward

Compensation is an application level function
that defines the semantics for resolving issues
that come up with in-flight instances; It is better
handled by providing application level
‘cancellation’ functions

Think of the Collaboration as an entity that
relentlessly pushes forward—it may change but
it never ‘goes back’ to a previous state

If things get hopelessly stuck, then cancel and
take whatever business hit cancellation costs
(such as canceling a nonrefundable flight
reservation)

‘@.\'HH 2007 JavaOneSM Conference | Session TS-8897 | 38

JavaOne

#10: Contract First Development
(Top-Down)

Also called Design By Contract

Create the data contract in XSD and the
behavioral contract in WSDL upfront

Use the XSD and WSDL editors provided by the
NetBeans™ Software SOA Pack to do this

This approach forces the designer to focus on
messages and contracts as the key concepts in
designing a service contract

@.'ﬂrm 2007 JavaOne®™ Conference | Session TS-8897 | 39

""#11: Prefer Use of Document/Literal

Rather than RPC

Prefer ‘document’ encoding and ‘literal’ use over
other types for interoperability

It is better-suited for coarse-grained interactions
and better represents the data exchanged

It provides the ability to validate the XML data if
the XML Schema is available

Ability to Transform messages using XSLT easily

Provides better performance than other
encoding/use styles

Since the service interface in the WSDL clearly
defines the types of documents expected, it
makes it easy for the consumer

2007 JavaOne®M Conference | Session TS-8897 | 40

|]avaOne

#12: For Asynchronous, Peer-to-Peer
Collaborations Use Multiple MEPs

MEPs are transient message exchange elements

If there is work that can be accomplished in a
single, one-shot, stateless, self-contained
collaboration, use a single MEP

For long-running, conversational, peer-to-peer
collaborations, where there is an asynchronous
lag between a request and a response with
shared state use multiple MEPs with correlations

You cant have an asynchronous collaboration
without having peer-to-peer message exchanges

@Sun 2007 JavaOnesM Conference | Session TS-8897 | 41 java.sun.com/javaone

|]avaOne

#13: Don’t Expose Unnecessary
Details in the Service Contract

When exposing your existing applications as
services:

Analyze your existing architecture
Define a service contract
Define a logical architecture that you want to migrate to

Refactor your existing architecture by exposing
appropriate facades to match the service contract

Migrate your implementation to conform to the logical
architecture

In service orientation you are exposing services
not objects

@Sun 2007 JavaOne®™ Conference | Session TS-8897 | 42 java.sun.com/javaone

Jav

"#14: Don’t Use WS-Addressing
Cookies for Acknowledgments

WS-Addressing requires you to use cookies in
the header to perform callbacks

However, in an asynchronous, peer-to-peer
exchange scenario, where the response is not
iImmediately available, the data may have to be
persisted to database until the business response
Is available

In such a case, the message body that has the
business data and the correlation values will be
persisted to the database and the header with the
WS-Addressing cookie data will be thrown away

2007 JavaOne®M Conference | Session TS-8897 | 43

Jm#15 Maintain Secure Conversation With
Users Often Communicating With You

Efficient strategy is to maintain a secure
conversation with those users who are often
communicating with each other in a fairly high
bandwidth way

Based on amount of communication between the
provider and a consumer, consider setting up a
secure conversation with partners that you are
frequently communicating with

@Sun 2007 JavaOnes™ Conference | Session TS-8897 | 44 java.sun.com/javaone

JavaOne

JBl=J
@ Sun

Project Open Enterprise Service Bus

(Open ESB)
A True Open SOA Community
Open ESB 2.0 Beta 2—Available Now!

JBI based SOA Integration platform

« Open Standard, Open Source, Interoperable JBI—An open standard for SOA based

integrati |atf
* Build composite applications leveraging integration piatrorm

existing applications and webservices + Rich set of Service Engines including

_ _ BPEL, IEP, XSLT, Java EE platform,
* An extensible platform with pluggable Aspects, WLM, Data Mashups
architecture Encoder ’ ’

including Http, Java DataBase
Connectivity (JDBC™), Java Message
Services (JMS), MQ, SAP, Email,
- Available in Java Platform, Enterprise CICS, IMS, and many more

Edition (Java EE platform) SDK

« Community-based JBI component
development

http://open-esb.org http://blogs.sun.com/gopalan

ava Business Integration

 Integrated Tooling through NetBeans
release 6.0

* Free to download and deploy

2007 JavaOne®™ Conference | Session TS-8897 | 45 java.sun.com/javaone

JavaOne

Mark Hapner and Gopalan Suresh Raj
Sun Microsystems, Inc.
http://www.sun.com

java.sun.com/javaone

2007 JavaOnes™ Conference | Session TS-8897 | 46

JavaOne

Designing Service
Collaborations: The Design
of ‘Wire’-Centric Integration

Mark Hapner and Gopalan Suresh Raj

Sun Microsystems, Inc.
http://www.sun.com

TS-8897

2007 JavaOnes™ Conference | Session TS-8897 | java.sun.com/javaone

