
2007 JavaOneSM Conference | Session TS-6014 |

Karthik Shyamsunder James Gould

Principal Engineer Principal Engineer
VeriSign, Inc. VeriSign, Inc.

TS-6014

You Are Hacked : AJAX
Security Essentials for
Enterprise Java™ Technology
Developers

2007 JavaOneSM Conference | Session TS-6014 | 2

Speaker Qualifications

• Karthik Shyamsunder
• Principal Engineer, VeriSign, Inc.
• Adjunct Faculty at Johns Hopkins University

• James Gould
• Principal Engineer, VeriSign, Inc.
• Application Architect for VeriSign Naming Services

2007 JavaOneSM Conference | Session TS-6014 |

Overall Presentation Goal
What will you learn?

1. Understand the AJAX security model.
2. Identify the various threats to your AJAX

web applications.
3. Learn what you can do to protect your

application from these threats.

2007 JavaOneSM Conference | Session TS-6014 | 4

Agenda
Internet Threat Model
Browser Security Model
Vulnerabilities, Attacks, and
Countermeasures
Secure Software-Development Process
Summary
Q&A

2007 JavaOneSM Conference | Session TS-6014 |

Agenda
Internet Threat Model
Browser Security Model
Vulnerabilities, Attacks, and
Countermeasures
Secure Software-Development Process
Summary
Q&A

2007 JavaOneSM Conference | Session TS-6014 |

2007 JavaOneSM Conference | Session TS-6014 |

The Problem Is Real
• Cyber crimes and

incidents are on
the rise

• 3 out of 4 business
web sites are
vulnerable to
attack (Gartner)

• 75% of the hacks
occur at the
application level
(Gartner)

Source: Gartner

2007 JavaOneSM Conference | Session TS-6014 |

Architecture of Traditional Web
Applications
• Browser—A thin client
• Most of the Application logic

resides almost exclusively
on server
• Flow/business logic
• Presentation logic

• Client acts as a dumb
terminal sending actions
to the server

• Server does all the
processing and returns
whole new page

Backend
Processes

Server Logic

Server

JavaScript Technology
Logic Layer

2007 JavaOneSM Conference | Session TS-6014 |

Attacks Against Traditional Web
Applications
• Attacks involve:

• Sending malicious data
• Sending code as data
• Trying to access unauthorized data

• Malicious command hits edge
cases in application design

• What did we say?
• Validate input parameters
• Encode output data
• Use proper authentication
• Use proper authorization

?
?

?

Backend
Processes

Server Logic

Server

JavaScript Technology
Logic Layer

2007 JavaOneSM Conference | Session TS-6014 |

Web Security—
2004 JavaOneSM Conference

Download presentation from www.youarehacked.com

2007 JavaOneSM Conference | Session TS-6014 |

Architecture of an
AJAX Application
• Browser—Rich/thick-client

application
• Application logic resides both

on client and server
• JavaScript™ technology takes

on a bigger role
• Uses XmlHttpRequest object
• Fetch any kind of resource

• HTML, GIF (view centric)
• XML, JSON (data centric)
• JavaScript technology (code centric)

• Client DOM tree is being
manipulated

Backend
Processes

Server Logic

Server

JavaScript Technology
Logic Layer

(AJAX Engine)

2007 JavaOneSM Conference | Session TS-6014 |

Web 2.0 Mashup Applications

• Aggregates services offered by other 3rd-party
applications to form a new application

• www.housingmaps.com
• Mashup of craigslist

and Google Maps

maps.google.comwww.craigslist.com

www.housingmaps.com

2007 JavaOneSM Conference | Session TS-6014 |

Attacks Against
AJAX Applications
• Traditional web application

attacks still apply
• Attacker is inside your

application
• Knowledge increases
• Larger attack surface
• Data serialization from

unknown/untrusted sources
• Companies migrate to AJAX

without much thought to security

• In the case of mashups,
attacking 3rd-party servers

Backend
Processes

Server Logic

Server

JavaScript Technology
Logic Layer

(AJAX Engine)

2007 JavaOneSM Conference | Session TS-6014 | 14

Agenda
Internet Threat Model
Browser Security Model
Vulnerabilities, Attacks, and Countermeasures
Secure Software-Development Process
Summary
Q&A

2007 JavaOneSM Conference | Session TS-6014 |

JavaScript Security in the Browser
• “Mobile code” = potential security risk
• Browsers execute JavaScript code in a sandbox
• Restrictions on JavaScript code in the sandbox

• Cannot read/write files from/to the local system
• Cannot execute any other programs
• Cannot read the history of the browser
• Cannot close a window that mobile code did not open
• Cannot open a window that is too small

2007 JavaOneSM Conference | Session TS-6014 | 16

Browser’s “Same Origin” Policy
• Also called “Server of Origin” Policy
• “Origin” = (protocol + host + port) parts of the URL
• Restriction was put to limit interaction between

frames, iframes, and script tags from different origins
• Restriction extended to include XMLHttpRequest

• Prevents client-side JavaScript from making requests to any
server other than the server from which it was downloaded

• Different browser vendors implement this security somewhat
differently

2007 JavaOneSM Conference | Session TS-6014 |

“Same Origin” Policy for AJAX

JavaScript Technology
Logic Layer

(AJAX Engine)

www.othersite.com
www.mysite.com
X
m
lH
t
t
p
R
e
q
u
e
s
t

Xm
lH
tt
pR
eq
ue
st

2007 JavaOneSM Conference | Session TS-6014 |

More “Same Origin” Policy Cases
URLs ALLOWED? REASON

http://www.mysite.com/webapp1/action1 Yes Although paths come from 2 different
applications, the protocol, host and port is
the samehttp://www.mysite.com/webapp2/action2

http://www.mysite.com:8080/action1 No Port numbers don’t match

http://www.mysite.com/action2

http://www.mysite.com/action1 No Protocols don’t match

https://www.mysite.com/actions2

http://www.mysite.com/action1 No Although www.mysite.com resolved to
128.220.101.100, but the browser does
not work this outhttp://128.220.101.100/action2

http://www.mysite.com/action1 No Sub-domains are treated as separate
domains

http://scripts.mysite.com/action2

1

2

3

4

5

2007 JavaOneSM Conference | Session TS-6014 | 19

Dancing Around the
“Same Origin” Policy

1. Manipulate Browser Security Policy

2. Proxy Remote Services

3. Dynamic <SCRIPT> Tag

2007 JavaOneSM Conference | Session TS-6014 | 20

1. Manipulate Browser Security Policy
• Internet Explorer

• IE security system is based on the concept of “zones”
• Contacting external sites makes IE popup warning window
• IE trusts AJAX applications running from the local file system

• Mozilla
• Mozilla security system is based on the concept of privileges
• Application needs to request for privilege
• Privileges handled by netscape.security.PrivilegeManager
• To request privilege programmatically call enablePrivilege
• Firefox can be configured to not listen to privilege manager

2007 JavaOneSM Conference | Session TS-6014 |

2. Proxy Remote Services
• Also called “bridge” or “server-side proxy”
• 3rd-party proxy such as Apache mod proxy
• Custom proxy

JavaScript Technology
Logic Layer

(AJAX Engine)

www.othersite.com
www.mysite.com

X
m
lH
t
t
p
R
e
q
u
e
s
t

Proxy Logic

2007 JavaOneSM Conference | Session TS-6014 |

3. Dynamic <SCRIPT> tag
• Create dynamic <SCRIPT> HTML tag instead of XMLHTTPRequest
• Assign the src attribute the URL of the web service
• Append the <SCRIPT> to the page, which triggers the request
• Server returns JavaScript (or JSON object) executed in the browser

function yahooSearch() {
var head = document.getElementsByTagName("head").item(0);

}

http://api.search.yahoo.com/ImageSearchService/V1/imageSearch?appid=
YahooDemo&query=madonna&output=json&callback=yahooCallback

var script = document.createElement("SCRIPT");
script.setAttribute("type", "text/javascript");
script.setAttribute("src", “http://api.search.yahoo...”);

function yahooCallback(obj) {

}

head.appendChild(script);

2007 JavaOneSM Conference | Session TS-6014 | 23

Agenda
The Internet Threat Model
Browser Security Model
Vulnerabilities, Attacks, Countermeasures
Secure Software-Development Process
Summary
Q&A

2007 JavaOneSM Conference | Session TS-6014 |

Exposure of Internal Details

• Profiling
GET /somepage HTTP/1.1

HTTP 200 /somepage

• What’s new in Web 2.0?
• Better Tools
• Firebug

● View DOM tree
● Put breakpoints
● Alter values

● Watir
● Ruby-based tool

● Selenium
● Java technology-
based Tool

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Exposure of Internal Details

• What’s new in Web 2.0?
• Much more client-side code for hacker to view and dissect
• Potentially more client-side comments for hacker to view
• Better social community (blogs, newsgroups, forums)
• Hackers’ knowledge has increased

• Application architecture/design details
• Program business/logic flow details
• Function names, variable names, return types
• Helps build a footprint of the web application

• Direct API access
• Developers encouraged to expose more web services
• Attacker calls your backend functions directly
• Bypasses logic in the client side
• Calls functions out of order

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Exposure of Internal Details

• Do not give out unnecessary information
• Remove comments from HTML/JavaScript

technology code
• Developer names, design details, notes, build numbers
• Use build-time tools to remove comments

• Turn off WSDL for your web services
• Many tools auto generate WSDLs—turn them off
• No need to expose all services, inputs, and types

to users

Countermeasures

2007 JavaOneSM Conference | Session TS-6014 |

Exposure of Internal Details

• Is AJAX the appropriate technology?
• Use traditional web-application technology where security is a high priority

• Obfuscate your JavaScript technology code

Countermeasures

function helloWorld(name) {

alert("Hello World " + name + "!");

}

eval(function(p,a,c,k,e,d){while(c--){if(k[c]){p=p.replace(new
RegExp('\\b'+c+'\\b','g'),k[c])}}return p}('5 3(0){2("4 1

"+0+"!")}',6,6,'name|World|alert|helloWorld|Hello|function'.split('
|')))

• Note: obfuscation is not fool-proof

2007 JavaOneSM Conference | Session TS-6014 |

...
<h1>Hello <%= request.getParameter(“name”) %></h1>
...

http://www.hackmebank.com/welcome.jsp?name=john

http://www.hackmebank.com/welcome.jsp?name=<i>CSS%20Vulnerable</i>

http://www.hackmebank.com/welcome.jsp
?name=<script>alert("You%20are%20a%20Donkey");</script>

Cross-Site Scripting

• Accomplished by code injection (HTML, JavaScript technology)

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Cross-Site Scripting

• JavaScript Technology
Object Poisoning

• Manipulate the fields
• Manipulate the functions
• Same applies for Arrays

• JSON Poisoning
• Poison data in server
• Poison data in other server
• Man in the middle attack can
inject poison data

acct = {
number : 1234,
balance : 99.99,
name : "John Doe",
update : function(){ … },
delete : function(){ … }
};

acct.update = function() {// malicious
code }

temp = acct.delete;

acct.delete = acct.update;

acct.update = acct.delete;

Mysite server

(AJAX Engine)

Othersite server

• What’s new in Web 2.0?
Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Cross-Site Scripting
Vulnerabilities
• Presentation/View Poisoning

• Attacker does not attack the logic
• Manipulates the CSS objects
• Changes labels, re-skinning and

repositioning UI components

• SCRIPT Injection
• Injects malicious <SCRIPT> tag
• New scripts
• Invoke back-end functions
• Make existing functions invalid

2007 JavaOneSM Conference | Session TS-6014 |

Cross-Site Scripting
• Practice input validation!
• Practice output encoding

• HTML encoding when sending output to browser
to avoid XSS

• Practice JavaScript technology encoding to
neutralize XSS

Countermeasures

2007 JavaOneSM Conference | Session TS-6014 |

Cross-Site Request Forgery
Vulnerabilities
• Also known as XSRF and CSRF and Cross-Site

Reference Forgery
• Works by exploiting a trust that a user

has in the application
•
•<script src="http://host/command">
•<iframe src="http://host/command">
•<script>

var foo = new Image();
foo.src = "http://host/command";

</script>

• What’s new Web 2.0?
•Use XMLHttpRequest object to perform
CSRF requests

•Exposed web services amplify this attack
•Better control over the request that can be sent

• Can send HTTP headers, and make GET/POST request
• Can receive HTTP status code, headers, and response data

Server

JavaScript Technology
Logic Layer

(AJAX Engine)

2007 JavaOneSM Conference | Session TS-6014 |

Cross-Site Request Forgery
Countermeasures
• Common Misconceptions About Cross-Site Request Forgery

• It is only exploitable in browser-based applications
• Scripts embedded into Word, Flash, Movie, RSS, or Atom web feed

• It is not exploitable in POST-based services
• <FORM> tag can be used to submit POST requests

• It can be prevented by implementing Referer header checking
• Referer header can be spoofed by using XMLHttpRequest

• It can be prevented by using the “one time token” pattern
• Attacker can use existing XSS flaw to grab the token

• Potential Solutions
• Implement POST-based service and Referer header checking and

token approach
• Prompt the user with PIN or strong CAPTCHA before each important action
• Set a short time period for user sessions
• Prevent XSS flaw

2007 JavaOneSM Conference | Session TS-6014 |

Improper Validation
Vulnerability
• Application accepts invalid/malicious input

• SQL Injection, XSS, Parameter Tampering

• What’s new in Web 2.0?
• Validation confusion

• Where is the validation done (client/server/both)?
• With Sophisticated drag and drop IDEs, validation details are hidden

• Complexity of data has increased
• Lack of good toolkits/regular expressions available to validate these types of input

• What input gets validated?
• Developers usually validate GET/POST parameters
• Developers often forget about HTTP Headers
• Developers forget about file input (images, audio, video)

• Trusting data from B2B partners
• Mashups are bringing data from non-validated sources

2007 JavaOneSM Conference | Session TS-6014 |

Improper Validation
Countermeasures
• Never trust the client!
• Validate all input data to the application
• Use strong validation techniques

• Correctness, type, format, length, range,
and context

• Use white-listing instead of Black-listing
• Escaping input if possible

• Always validate on the server side
• Server-side validation = data integrity and security

• Client-side validation as a subset of server side
• Client-side validation = usability and performance

• For mashups, never trust the external server

2007 JavaOneSM Conference | Session TS-6014 |

Exploit Broken Authentication
• Authentication

• Act of proving who
you say you are

• Methods
• User Name and Password
• Certificate

• Broken Authentication
leads to:
• Identity theft
• Session hijacking
• Loss of data

• Attack types
• Man-in-the-middle attack
• Replay attack

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Exploit Broken Authentication
• What’s new in Web 2.0?

• Most Web 2.0 applications are HTTP-based community sites
• Scenario—HTTP AJAX application with HTTPS authentication

Vulnerabilities

http://www.mysite.com/homepage

http Home page response returned

https://www.mysite.com/login

http://www.mysite.com/homepage

http Home page response returned

http://www.mysite.com/login

• What do developers typically do?
• Use HTTP for entire AJAX application

2007 JavaOneSM Conference | Session TS-6014 |

Exploit Broken Authentication

• Option 1: Use HTTPS for the entire Web 2.0
application
• Does address the “Same Origin” Policy
• Hacker cannot sniff any packets
• Frequent SSL handshakes is expensive

• Full or partial SSL handshake is dependent on the browser

Countermeasures

https://www.mysite.com/homepage

Home page response returned

https://www.mysite.com/login

Logged in page

2007 JavaOneSM Conference | Session TS-6014 |

Authentication Issues
• Option 2: Use HTTP with the “Direct Login” AJAX pattern

• Addresses the “Same Origin” Policy
• Does not incur the HTTPS cost
• Requires encrypting password so it cannot be decoded or replayed

• Use server one-time random challenge token
• Use of double-hashed password

Countermeasures

http://www.mysite.com/homepage

Home page with challenge token

Hash ((hash(password)) + challenge token)
http://www.mysite.com/login

Calculates double-hashed password and compare
and Return Success

2007 JavaOneSM Conference | Session TS-6014 |

Authentication Issues
• Option 3: Use traditional HTTPS login page with redirect

to HTTP AJAX application
• Can use plain HTTP for AJAX application
• Can use a secure transport when passing user credentials
• Simpler than the “Direct Login” AJAX pattern

Countermeasures

http://www.mysite.com/homepage

Home page response returned

https://www.mysite.com/login

Logged in; send http redirect

http://www.mysite.com/logged-in-homepage

Logged AJAX application

2007 JavaOneSM Conference | Session TS-6014 |

Exploit Broken Access Control
• Access Control is also called Authorization
• Implementing correct access control is not trivial
• Broken Access Control leads to:

• Unauthorized access to sensitive data
• Unauthorized users executing illegal transactions

• What’s new in Web 2.0?
• Authorization logic can be exposed in the client

• Exposure of Role names
• Exposure of unauthorized functions
• Hacker can by-pass client-side authorization logic

• Increased number of services that need to be protected
• Hackers can obtain the services from the client-side code
• Hackers can guess the names of services from the client-side code
• Hackers can obtain the services from published WSDLs
• Hackers can call services out-of-order

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Exploit Broken Access Control
• Minimize exposure of authorization logic in the AJAX client!

• Always check authorization on the server

• Java Platform security model still applies (declarative and programmatic)

Countermeasures

<security-constraint>
<web-resource-collection>

…
<url-pattern>services/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>manager</role-name>
</auth-constraint>

</security-constraint>

if(!request.isUserInRole("manager")) {
throw new UnAuthorizedException();

}

2007 JavaOneSM Conference | Session TS-6014 |

Denial of Service

• Attack by which a hacker prevents legitimate
users of a service from using that service

• Misconception is DOS and DDOS are primarily
network-level attacks and not application attacks

• What’s new in Web 2.0?
• Attacks against the client:

• Can tie up client host CPU with infinite loop
• Can use window.setInterval()

command to avoid being shutdown
• Can take advantage of

browser bugs
• Can inject bad data to make

browser crash

Vulnerabilities

Mysite server

(AJAX Engine)

2007 JavaOneSM Conference | Session TS-6014 |

Denial of Service

• What’s new in Web 2.0? (Cont.)
• Attacks against the server

• Directly call exposed web services uncontrollably
• Insert malicious scripts to invoke services uncontrollably
• Call exposed web services out of order
• Insert malicious scripts that spread over time
• For example, Samy worm

Mysite server

(AJAX Engine)

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Denial of Service

• What’s new in Web 2.0? (Cont.)
• Attacks against the server’s server

• Also called “smashing the mashup”
• Attacks the proxy bridge to attack the “other site”
• Takes advantage of trust between B2B
• Takes advantage of the resource capabilities in B2B applications
• Difficult for the “other site” to distinguish normal usage vs. an attack

Mysite server

(AJAX Engine)

Othersite server

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Denial of Service

• Since most of the DOS is caused by code injection, cross-site
scripting bugs need to be eradicated

• Validate input data effectively
• Practice output encoding

• Rate-limit requests in B2C and B2B services
• Limit Number of requests in a given period (by minute, hour, day)
• Implement Dynamic bandwidth limitation

• Decrease bandwidth with increased volume
• Prevent automation

• Use CAPTCHA schemes
• Use “one time token” design pattern

• Have good monitoring, real-time analysis, and alert
systems in place

• Tune system for “at most” performance (CPU, Java Virtual
Machine (JVM™), network, ...)

• Over-provision your system

Countermeasures

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-6014 |

Code Complexity Issues

• Already developers have to master a lot!
• If the technology is not well understood the risk of

introducing vulnerabilities increases

• What’s new in Web 2.0?
• Now there are even more technologies to master!
• JavaScript technology is playing a bigger role

• Dynamic language (RTTI, dynamic types, closures)
• Dynamic code generation and execution using eval()
• Most errors happen at runtime
• Not only master new concepts, but how they interact
• Thread-safety issues

Vulnerabilities

2007 JavaOneSM Conference | Session TS-6014 |

Code Complexity Issues

• Education, Education, Education!
• Learn JavaScript technology!
• Pass this security presentation around in your group

• Practice unit testing for JavaScript technology
code too

• Understand issues related to AJAX concurrency
• Both client and server side
• Understand that browsers launch requests

simultaneously
• Potentially synchronize on session object in servlets

• Build time in schedule for developers to ramp up

Countermeasures

2007 JavaOneSM Conference | Session TS-6014 |

Agenda
Internet Threat Model
Browser Security Model
Vulnerabilities, Attacks, and
Countermeasures
Secure Software-Development Process
Summary
Q&A

2007 JavaOneSM Conference | Session TS-6014 |

Seven Steps of DOOM
Step 1:Develop Software w/o security

Step 2: Get hacked

Step 3: Discover flaws that were
introduced in step 1 that

caused step 2

Step 5: Wait

Step 7: Get hacked again

Step 6: Find out that while waiting in
step 5, another new hack was developed

Step 4: Fix bug

2007 JavaOneSM Conference | Session TS-6014 |

Steps to Success

• Secure design
• Secure development
• Secure testing
• Secure deployment

and operations
• Audit process

Think about security

Build software with
security in mind

Continue thinking
about security

Security in Software-Development Life Cycle

2007 JavaOneSM Conference | Session TS-6014 |

Application Security Review

1. Identify assets
2. Create a security architecture
3. Identify and document vulnerabilities
4. Assess your risk
5. Plan for risk mitigation

Security in Software-Development Life Cycle

2007 JavaOneSM Conference | Session TS-6014 |

Summary
• AJAX is a powerful suite of technologies

• AJAX can improve user experience

• But, be aware of security risks
• Creates new ways to attack via old vulnerabilities

• Always keep security in mind when building
applications

2007 JavaOneSM Conference | Session TS-6014 |

Research Contributors

• David Smith
• Engineer—VeriSign, Inc.
• dsmith@verisign.com

• Rajesh Badam
• Engineer—VeriSign, Inc.
• rbadam@verisign.com

• Satish Dandu
• Engineer—VeriSign, Inc.
• sdandu@verisign.com

2007 JavaOneSM Conference | Session TS-6014 |

For More Information

• http://www.youarehacked.com
• http://www.owasp.org
• http://www.cgisecurity.com/
• http://www.webhackingexposed.com/

• TS-6536
• Enabling Identity 2.0 in Java Technology URLs

2007 JavaOneSM Conference | Session 6014 |

Q&A
Karthik Shyamsunder James Gould
Principal Engineer Principal Engineer
VeriSign, Inc. VeriSign, Inc.

2007 JavaOneSM Conference | Session TS-6014 |

Karthik Shyamsunder James Gould

Principal Engineer Principal Engineer
VeriSign, Inc. VeriSign, Inc.

TS-6014

You Are Hacked : AJAX
Security Essentials for
Enterprise Java™ Technology
Developers

