@Sun

MIALR K

LOGIC

JavaOne

Jason Hunter

Principal Technlogist
Mark Logic

http://marklogic.com

Session TS-6045

2007 JavaOne®M Conference | Session TS-6045 | iava.sun.com/iavaone

Overarching Goal

2007 JavaOneSM Conference | Session TS-6045 | 2 java.sun.com/javaone

JavaOne

The Algorithms

XOR Swap

Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

@.ﬁ'uu 2007 JavaOneSM Conference Session TS-6045

JavaOne

Puzzle #1

* How do you swap two variable values without
using a temporary variable?

http://www.flickr.com/photos/curveto/157107227/

D Sun 2007 JavaOneSM Conference | Session TS-6045 | 4 java.sun.com/javaone

JavaOne

Answer

* You can use the XOR Swap algorithm:

X XOr y
X XOr y
X XOr y

X
i nu

+ XOR is a bitwise “exclusive or”

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 5 java.sun.com/javaone

" XOR Swap in the Java™
Programming Language

- XOR is performed in the Java programming
language using the carat

public class Swap {
public static void main(String[] args) {
int x = 34, y = 78;

X =x "y, // or x *=y;
y =x " y; // or y "= x;
X =x "y, // or x *=y;

System.out.println(x + " " + y);

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 6 java.sun.com/javaone

o XOR Swap in the Java
Programming Language

- Here's what happens at the bit level

int x = 34; // 0b00100010
int y = 78; // 0b01001110
x=x"y; // 0b01101100 (108)
y =x ~y; // 0000100010 (34)
x =x "~y; // 0001001110 (78)

- The “108” value is special because given X you
can find Y, and given Y you can find X

» We use that to pull the original values out

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 7 java.sun.com/javaone

" XOR Swap in the Java
Programming Language

* It's easier to read if you don’t reuse names

int x 34; // 0b00100010
int y = 78; // 0b01001110
a =x V' // 0b01101100 (108)
y2 =a ~y; // 0b00100010 (34)
x2 a ~ x; // 0b01001110 (78)

> I N

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 8 java.sun.com/javaone

JavaOne

Should You?

» Cool. Should you actually use XOR swap?

* No. Trust your compiler. Your compiler probably won't
use XOR as it forces serialized execution

+ Plus you need to watch for aliasing on languages that
support it (not Java programming language)

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 9 java.sun.com/javaone

JavaOne

Add/Subtract Swap?

» Can you craft a version of the XOR Swap
using just addition and subtraction?

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 10 java.sun.com/javaone

JavaOne

Add/Subtract Swap
* You sure can

X=X +y

Y =X "-Y

X =X -y

int x = 34;

int y = 78;

X =X +Yy; // 112

y =x-y;, [/ 34

X =X - Y; // 718

» But you do have to worry about overflow!

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 11 java.sun.com/javaone

JavaOne

The Algorithms

XOR Swap

Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

@.ﬁ'uu 2007 JavaOneSM Conference Session TS-6045

JavaOne

Puzzle #2

* How can you pre-check a credit card number
on a web form?

EEE——
————

==
4600, 001253456 %99)

N 06/00% 5 00/00" Y
GARDHOLDERTNANE

D Sun 2007 JavaOneSM Conference | Session TS-6045 | 13 java.sun.com/javaone

JavaOne

Answer

* You can use the Luhn algorithm

- A system that adds a “check digit” on the end of a
number sequence

- Used by most credit cards as well as
Canadian social insurance numbers

- Useful to catch errors quickly

- ldeal for client-side JavaScript™ programming
language

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 14 java.sun.com/javaone

The Luhn Algorithm

» To check if a number passes the checksum

& Sun

Start with the right-most number (checksum)
Move left, doubling every second digit

For any digits over 10 add their digits,
S0 6*2 = 12 becomes 3

Sum the generated digits
If the sum ends in O, it's valid. If not, invalid.

2007 JavaOneSM Conference | Session TS-6045 | 15 java.sun.com/javaone

JavaOne

An Example

1 1

5 10 1

6 6

7 14 5

6 6

446-667-651 5 2 3
6 6

4 8 8

4 4
40

©Sun 2007 JavaOneSM Conference | Session TS-6045

java.sun.com/javaone

JavaOne

Why Double?

- The doubling is designed to catch transpositions
* 1234 = 4+6+2+2 = 14
+ 1243 = 3+8+2+2 =15

> Hmm, 90 and 09 transpositions aren’t caught
- 1290 = 0+(18=9)+2+2 = 13
+ 1209 = 9+0+2+2 =13

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 17 java.sun.com/javaone

JavaOne

Why So Simple?

» |t was intended for a mechanical device

- Explained in Patent 2,950,048, titled
“Computer for Verifying Numbers”

+ Filed in 1954, granted in 1960
* (Long ago expired)

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 18 java.sun.com/javaone

JavaOne

& Sun

Patent 2,950,048

United States Patent Office . 2%00s

Patented Aug. 23, 1960

1

2,950,048
" COMPUTER FOR VERIFYING NUMBERS
Hans P. Lubm, Armonk, N.Y., assignor to_International
Bostaes Wechines G pessenor o Ine NY,a
<corporation of New York

Filed Jan. 6, 1954, Ser. No. 402,491
S Claims. (Cl. 235—61)

This invention relates to a band computer for com-
puting a check digit for numbers or for verifying numbers
which already have a check digit appended.

The principal object of the invention is to provide a
simple, inexpensive and portable computer for computing
check digits and to provide a simple device for verifying
numbers which have a check digit appended.

A further object of the invention is to provide appara-
tus for computing, in a fast and simple manner, check
digits to append to the numbers or to verify numbers
with check digits attached.

Pursuant to the invention, a visual check is provided
for use at the time of verification. Stamping means is
also preferably provided for recording the verified .num-
ber and for preserving the visual check, which may be
appended to the number.

invention is used in a checking
ligit numbers to indicate whether, in
transmitting a number, an error has been made, such as a
transposition of the digits. It may be used, for example,
where a great many parts are ordered, manufactured,
invoiced, shipped, and billed by multidigit numbers,
When a number is first assigned o a new part a check
digit is computed, as will be explained hereinafter, and
this check digit is appended to the righthand end of the
part number. Thereafter whenever the correctness of
that part number is in question the number can always
be easily and quickly verified by my invention,
particular mathematical system of number check-
ing preferably embodied in my invention is one in which
a single digit, called the check digit, is appended to the
vighthand end of the original or true number. The value
of this check digit is so computed that in verifying the
number by cross addition of the multiple digits of the
number and the check digit, in accordance with a rule
of substitution, the result will be a zero. This zero will
appear as such on the computer. If the stamping or
printing means of my device is utilized, a check mark may
be wsed to indicate that the number is correct,
Specific illustrations of my invention are shown in the
is Wi.l!ss il ing two bodil
the invention, and in which;
Figure 1 is a front perspective view of one of the said
embodiments of my device;
Figure 2 is a front clevation of one of the said embodi-
ments partially in cross section; .
Figure 3 is a crosssection of one of the said embodi-
ments on the line 3—3 in Figure 2;
Figure 4 is a perspective view of & portion of the
same, partly in cross section;
Figure § is a front elevation of another embodiment
of my invention; and
Figure 6 is a sectional view taken on the line 6—6
in Figure 5.
For convenience of description, the operation of the
apparatus of my invention, first in computing a check
it and secondly in verifying a number with a check
digit appended, will be set forth to facilitate a complete

2
understanding of the function and purpose of the ap-
paratus. This will be followed by a description of the
apparatus and its operation.
It is commonly known that in copying a number com-
§ prised of a plurality of digits it often happens that an
error occurs by transposing two of the digits. This com-
mon error is detected by the invention herein deseribed
by the cross addition of digits, the alternate digits being
replaced by “substitute” digits, prior to the cross addi-
10 tion. It should be understood that other systems of cross
addition checking could be utilized but the system used
herein is described as a practical example. In such a
method of cross addition for checking a number, it is
readily seen that the straight cross addition of the original
15 digits of a number would fail to give any information
concerning erroneous transposition because the sum would
be the same regardiess of the relative placement of the
digits. However, if every other digit is a substitute digit
in accordance with the system herein set forth, such an
20 error will be detected.

The substitute digit equals twice the origianl digit plus
an end around carry (an end around carry in this system
means the addition of any digit standing in the tens posi-
tion to the digit standing in the units position in the dou-

5 bled number, as shown below). Thus the substitute digit
for 2n original ~3— is —6—(~2-X—3-=-6-). The substi-
tute digit for an original ~6—, illustrating the end arouad
CaTTY, is =3—(-2-X—6-=-12-=—]—tf 2 =_3),

The foliowing table gives the substitute for each digit

30 according to this system,

e

Applying this system of substitute digits to determine
the check digit for a number of seven digits (which is
the number of digits provided for in the particlnar em-
bodiment of the invention hereinafter described), such
a3 —4872148-, first a check digit will be determined, and
secondly the number with the check digit appended will
40 be verified. In accordance with the substitution system

utilized in my invention, the first digit of the number
reading from left to right is a substitute digit, the second
digit is an original digit and then this order is repeated
until all of the digits have been accounted for. The
first digit of the example number, the original 4, is
5 seplaced by its substitute digit, an -8, This 5 is
added to the next digit ~8—, an original digit, resulting
in the sum of -16- which becomes & —6— by casting out
tens in the usual manner, The next digit is an original
5o ~1~ Which is replaced by its substitute digit, a ~5—. This
—5-is added to the —6-resuiting in a—1-. This cross ad-
dition, if continued in accordance with the above, across
the remaining four digits of the sample number would
result in a sum of —6-. This can be determined from the
5 following table giving the original and alternate substitute
digits for the number in question.
Original ... e ~4 B 7 21 4 8-
Alternate Substitute .. =8B 542424t T = 6

Once this sum of —6- has been computed the check
digit to be appended is derived by adding to this sum
its tens complement or in this case the digit —4, this
being the amount to be added to -6~ to produce ten.
I this - is added 1o the sum —6- as an original num-
g5 D°% the total in the last column will be -0~ The

significance of this particular end result will become ap-

perent in the explanation of the verification of 2 num-
‘ber having a check digit appended.

It should be realized that the check digit should be

70 2dded in as an original number. ‘This is accomplished

by starting out by using either the original or the sub-

stitute digit for the first digit of the alternate substitute

g

60

2007 JavaOneSM Conference | Session TS-6045 | 19

Aug. 23, 1960 H. P. LUHN 2,950,048
COMPUTER FOR VERIFYING NUMBERS

Filed Jan. 6, 1954 3 Sheets-Sheet 1

6\

e R Y
a5
§
H

FIG. |

7

)

T

!

P K

SRR RS
of |o| |o| jof |o] |0} |o| |&
ot o175t 3a - tof 1ol lol- lo - 13
ol lol o 0 lof lat_lo| 1 “
o| [o| ol le! | of |o
ol o] ot ol |o o| o
o] io| io! lor |o o
ol oot o el ol g4Il FIG.2
ol 10! 0! o 0| 1l 24
o| 105701 |o 3
it
o| (o} 10! |o] [df
[P
ol lof io; loi |o o
H 1
I . 2
2
= | 32 A3l 30
28
T H T T “1=HE |s
- INVENTOR,
5 FHawns P Lunws
BY
1811 0./ 23253}‘_

ATTORNEYS

java.sun.com/javaone

JavaOne

& Sun

Luhn Check

public static boolean checkNumber (int[] digits) {

int sum = 0;
boolean alt = false;
for (int i = digits.length - 1; i >= 0; i--) {
if (alt) {
int doubled = digits[i] * 2;
if (doubled > 9) {
doubled -= 9; // equiv to adding digits
}
sum += doubled;
}
else {
sum += digits[i];
}
alt = lalt;
}

return sum $ 10 == 0;

2007 JavaOneSM Conference | Session TS-6045 | 20 java.sun.com/javaone

JavaOne

Luhn Create

public static int createChecksum(int[] digits) {
int sum = 0;
boolean alt = true;
for (int i = digits.length - 1; i >= 0; i--) {
if (alt) {
int doubled = digits[i] * 2;
if (doubled > 9) {
doubled -= 9; // equiv to adding digits
}
sum += doubled;
}
else {
sum += digits[i];
}
alt = lalt;

}
return (10 - (sum % 10)) % 10;

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 21 java.sun.com/javaone

S,
=
JEVE]

JavaOne

Luhn Check in JavaScript
Programming Language

function checkNumber (number) {
if (/\D/.test(number)) return false;
digits = (number+'') .split('');
var sum = 0; alt = false;
for (var i = digits.length - 1; i >= 0; i--) {
if (alt) {
doubled = parseInt(digits[i]) * 2;
if (doubled > 9) {
doubled -= 9; // equiv to adding digits
}
sum += doubled;
}
else {
sum += parselInt(digits[i]);
}
alt = lalt;
}

return sum % 10 == 0;

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 22

java.sun.com/javaone

JavaOne

Other Checks

- Can you do other checks? Yes
 Visa cards begin with 4
» MasterCard cards begin with 51 thru 55
- AmEXx cards begin with 34 or 37
- Discover cards begin with 6011

- Is it better to ask for type or recognize type?

& Sun

2007 JavaOneSM Conference | Session TS-6045 | 23 java.sun.com/javaone

JavaOne

The Algorithms

XOR Swap

Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

@.ﬁ'uu 2007 JavaOneSM Conference Session TS-6045

JavaOne

Puzzle #3

* How can you communicate securely over a
public network without pre-agreeing on a
shared secret?

[& 2

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 25 java.sun.com/javaone

JavaOne

Answer

+ Using Public Key Cryptography

» The underpinnings of protocols like
https and SSH®

* I'll give an overview, then look at RSA

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 26 java.sun.com/javaone

JavaOne

Symmetry

* Symmetric encryption

- Use the same key to encrypt and decrypt
- DES and 3DES, Blowfish, AES (Rijndael)

- Asymmetric (public key) encryption

* One key to encrypt, another to decrypt
- RSA, ElGamal, DSA

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 27 java.sun.com/javaone

JavaOne

Public Keys

- With asymmetric keys, | have one as pubilic,
one as private

| keep the private safe, maybe encrypted with a
symmetric key

| share the public far and wide

* You can encrypt messages with my public key, and
only | can decrypt them

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 28 java.sun.com/javaone

JavaOne

Trusting a Public Key

* How can you trust you have my genuine
public key?
+ Talk to me and I'll confirm its fingerprint

» Or it could be signed by a Certificate Authority
(VeriSign, Thawte)

+ Or it could be signed by someone you trust
(“web of trust”)

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 29 java.sun.com/javaone

JavaOne
Signing

* How do | trust the message you sent was truly
from you??

* You encrypt the message with your private key as well
as my public key

| decrypt with your public, then my private
+ Provides “authenticity” and “confidentiality”

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 30 java.sun.com/javaone

Performance

- Asymmetric algorithms are slower than symmetric
+ So you don’t really encrypt whole messages

* You encrypt with a symmetric key and pass the key
using asymmetric keys

» To prove authorship you hash the message and
encrypt the hash

- That's why you see: RSA, 3DES, SHA1

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 31 java.sun.com/javaone

JavaOne

Uses

* Public Key Cryptography has lots of uses
* Prevent eavesdropping, tampering, and impersonation

» Secure communication on untrusted networks
(https, SSH®, encrypted email)

- Electronic signatures
- Digital cash

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 32 java.sun.com/javaone

JavaOne

RSA

The concept of public key crypto was invented by
Diffie, Hellman, and Markle

The marquee implementation was invented In
1977 by Rivest, Shamir, and Adleman at MIT

Patent 4,405,829 (now expired)
http://www.ladlass.com/intel/archives/010256.html

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 33 java.sun.com/javaone

JavaOne

The Basic Math

(1P} (1P

» Choose two large primes, “p” and “q

(11 ”

- Multiply to produce a product, "n

 (It's believed hard to calculate p and q given just
n if nis large, ~2048 bits or higher)

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 34 java.sun.com/javaone

JavaOne

The Basic Math

- Choose an encryption component, “e”
- Often 65537 (216 + 1)

 Calculate a decryption component, “d”
- To calculate “d” you need “e”, “p”, and “q”
- d*e mod (p-1)(g-1) must be 1

* d=e-1mod (p-1)(g-1)

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 35 java.sun.com/javaone

JavaOne

Encrypt/Decrypt

+ C is the ciphertext, M is the message
+ C=Memodn
* M=Cdmod n

* Proving this involves Fermat’s little theorem and
the Chinese remainder theorem

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 36 java.sun.com/javaone

Example
- p=61,q=53
* n=61*53 = 3233
* Choose e =17
- Calculate d = 2753

> Yes, 275317 mod 3120 = 1

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 37 java.sun.com/javaone

JavaOne

Example

Message is “123”
C =123 mod 3233 = 855
M = 8552753 mod 3233 = 123

Knowing 17 and 3233 you can't get 2753
Knowing 2753 and 3233 you can’'t get 17

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 38 java.sun.com/javaone

" Example in the Java
Programming Language

// http://www.cs.princeton.edu/introcs/79crypto/RSA.java.html

public class RSA {
private static BigInteger one = new BigInteger("1");
private static SecureRandom random = new SecureRandom() ;
private BigInteger privateKey, publicKey, modulus;

// Generate an N-bit (roughly) public and private key

RSA (int n) {
BigInteger p = BigInteger.probablePrime (n/2, random) ;
BigInteger g = BigInteger.probablePrime(n/2, random) ;
BigInteger phi = (p.subtract(one)) .multiply(g.subtract(one));
modulus = p.multiply(q) ;
publicKey = new BigInteger ("65537") ;
privateKey = publicKey.modInverse (phi) ;

}

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 39 java.sun.com/javaone

<
e
~ Java

JavaOne

Example in the Java
Programming Language

BigInteger encrypt (BigInteger message) ({
return message.modPow (publicKey, modulus) ;

}

BigInteger decrypt(BigInteger encrypted) ({
return encrypted.modPow (privateKey, modulus) ;

public static void main(String[] args) ({
int n = Integer.parseInt(args[0]); // key size
RSA key = new RSA(n);

// create random message, encrypt and decrypt
BigInteger message = new BigInteger (n-1, random) ;
BigInteger encrypt = key.encrypt (message) ;
BigInteger decrypt = key.decrypt (encrypt) ;

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 40 java.sun.com/javaone

JavaOne

The Algorithms

XOR Swap

Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

@.ﬁ'uu 2007 JavaOneSM Conference Session TS-6045

JavaOne

Puzzle #4

* Why does 2,000,000,000 + 2,000,000,000
equal -294,967,2967

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 42 java.sun.com/javaone

JavaOne

Answer

- Because of overflow and the details involved
with two’s complement notation

D Sun 2007 JavaOneSM Conference | Session TS-6045 | 43 java.sun.com/javaone

JavaOne

Integers

- Computers may represent integers in several
different ways, including

+ Sign-and-magnitude
+ Ones’ complement
+ Two’s complement

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 44 java.sun.com/javaone

Sign-and-Magnitude

+ Sign-and-magnitude uses one bit to represent the
sign and the remaining bits represent the
magnitude (absolute value)

 It's a lot like how humans write: +5, -5

- Sign bit of 0 is positive, 1 is negative

+ Used on early binary computers (IBM 7090)
» Has both positive and negative 0O

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 45 java.sun.com/javaone

JavaOne

@ Sun

4-Bit Integers

+7 0111
+6 0110
+5 0101
+4 0100
+3 0011
+2 0010
+1 0001
+0 0000
-0 1000
-1 1001
-2 1010
-3 1011
-4 1100
-5 1101
-6 1110
-7 1111
-8 N/A

2007 JavaOneSM Conference | Session TS-6045

46

java.sun.com/javaone

& Sun

One’s Complement

- One’s complement represents negative numbers
as the bitwise not of the positive

- Still a sign bit, still two values of 0
» Used by PDP-1 and Univac 1100/2200

- Named for subtracting from a long string of ones
(Ob1111-0b0010 = 0b1101)

+ A “bitwise not”

2007 JavaOneSM Conference | Session TS-6045 | 47 java.sun.com/javaone

JavaOne

4-Bit Integers

+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
+0 0000 0000
-0 1000 1111
-1 1001 1110
-2 1010 1101
-3 1011 1100
-4 1100 1011
-5 1101 1010
-6 1110 1001
-7 1111 1000
-8 N/A N/A

D Sun 2007 JavaOneSM Conference | Session TS-6045 | 48 java.sun.com/javaone

JavaOne

Two’s Complement

- Two’'s Complement represents negative numbers
as one’s complement plus one

- Still a sign bit, no negative zero, one extra
negative value

- By far the most common today

- Named for subtracting from 2"
(which is 10000000, or one larger than n-many ones)

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 49 java.sun.com/javaone

JavaOne

@ Sun

4-Bit Integers

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 1000 1111 N/A
-1 1001 1110 1111
-2 1010 1101 1110
-3 1011 1100 1101
-4 1100 1011 1100
-5 1101 1010 1011
-6 1110 1001 1010
-7 1111 1000 1001
-8 N/A N/A 1000

2007 JavaOneSM Conference | Session TS-6045 |

50

java.sun.com/javaone

JavaOne

Neat Trick

* You can convert a two’s complement number to
decimal by adding its bits, assigning a negative
value to the highest bit

« 0b11111011 as an 8-bit number
= -128+64+32+16+8+0+2+1
=-5

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 51 java.sun.com/javaone

JavaOne

Why So Common?

- Two’s Complement is ubiquitous because
addition and subtraction operations can be
unified, plus there’s no weird -0 value

» Consider 3+1 and 3+(-1) using 4-bit numbers

1111 (carry) 11 (carry)
0b0011 + (3) 0b0011 + (3)
Obl1l1l1l (-1) 0b0001 (1)
0b0010 (2) 0b0100 (4)

(Note: You only include the last 4 bits)

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 52 java.sun.com/javaone

JavaOne

Overflow

* Integer.MAX VALUE is 2,147,483,647
* Integer.MIN_VALUE is -2,147,483,648
* Integer.MAX_VALUE + 1 = Integer.MIN_VALUE
And 2,000,000,000 + 2,000,000,000 is negative

111 111 11 1 11 11 (carry)
0b01110111001101011001010000000000 + (2,000,000,000)
0b01110111001101011001010000000000 (2,000,000,000)

0b11101110011010110010100000000000 (-294,967,296)

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 53 java.sun.com/javaone

S,
=
_ Java

JavaOne

D Sun

Catching Overflow

- Why does the Java programming language
ignore overflow?

- Because most hardware doesn’t efficiently detect it and
some can't at all

- The runtime would have to explicitly test for it on every
add, subtract, and multiply

- Use Biglnteger if you might overflow

+ CH#, in contrast, has overflow detection as a
debug runtime option

2007 JavaOneSM Conference | Session TS-6045 | 54 java.sun.com/javaone

JavaOne

The Algorithms

XOR Swap

Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

@.ﬁ'uu 2007 JavaOneSM Conference Session TS-6045

JavaOne

Puzzle #5

- How can Google scale to such heights?

%/_/.,V 200
\/VJJ 100
]]]
2005 2006

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 56 java.sun.com/javaone

JavaOne

Answer

- With the help of MapReduce, a toolkit that
simplifies the distribution of “parallelizable™ work
across hundreds or thousands of machines

* http://labs.google.com/papers/mapreduce.html

& Sun

2007 JavaOneSM Conference | Session TS-6045 | 57 java.sun.com/javaone

S,
=
. Java

JavaOne

D Sun

MapReduce

The programmer specifies a “Map” rule and
a "“Reduce’ rule

Map: takes input key-value pairs and generates
intermediate key-value pairs

Reduce: consolidates intermediate pairs
sharing the same key to a single set of values
(usually one)

Inspired by map and reduce in LISP

2007 JavaOneSM Conference | Session TS-6045 | 58 java.sun.com/javaone

JavaOne

Distributed Grep

- Map

* (line-number, line-string) —
(line-number, line-string) or empty

- Emit the number/string pair if it matches the
pattern, otherwise ignore the pair

* Reduce
- |dentity function, just copy to output

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 59 java.sun.com/javaone

JavaOne

Inverted Index

- Map
* (document, words) — (word, document-id) as a series

* From each document create a long list of
word/document-id pairings

* Reduce
* (word, list(document-id))
- Gathers and sorts all refs to each word

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 60 java.sun.com/javaone

JavaOne

Why?

* Why use MapReduce?

To operate beyond the CPU, memory, and disk limits
of a single box

To abstract from the programmer the distribution logic
As well as fault handling, scheduling, monitoring
Let developers focus on the real problem

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 61 java.sun.com/javaone

JavaOne

D Sun

Implementations

MapReduce was implemented by Google in C++
with Java programming language and Python
language bindings
Runs on commodity Linux boxes with normal CPU and
memory, local IDE disks

Google Filesystem (GFS) manages the data

Apache Lucene has a Java programming
language version called Hadoop

Uses the Hadoop Distributed FS (HDFS)

2007 JavaOneSM Conference | Session TS-6045 | 62 java.sun.com/javaone

D Sun

Execution Overview

There’s a master process to oversee a pool
of workers

Input gets split into chunks

Chunks are assigned to workers, each worker
performs the map logic on each pair found in
the chunk

Results are written locally and completed status is
reported to the master

2007 JavaOneSM Conference | Session TS-6045 | 63 java.sun.com/javaone

JavaOne

D Sun

Execution Overview

The master assigns keys to reducers

Partitioning dictates which reducer gets which key
(i.e., a hash of the key)

The reducer pulls the results using an iterator,
sorts them, runs the reduce logic, and produces
the “final” output

Results are written to GFS
Sometimes output goes through again

2007 JavaOneSM Conference | Session TS-6045 | 64 java.sun.com/javaone

JavaOne

Distributed Grep Performance

- Scan 10'% 100-byte records searching for a rare
3-character pattern (92,337 hits)

 Input split into 64 MB pieces, 15K chunks
- Output all into a single file, one reducer

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 65 java.sun.com/javaone

JavaOne

Distributed Grep

- Takes 150 seconds, with a peak input of
30G/sec when 1764 workers are assigned

* One minute of overhead, shuffling data

Input (MB/s)
—] Lad
s § ¢
| | |

=
|

' ' ' 1
20 40 60 80 100

@Sun 2007 JavaOneSM Conference | Session TS-6045 | 66 java.sun.com/javaone

z

L H
= |

m

Redundant Execution

- A single slow worker, if it's doing the last job
(and it will be since it's slow), can lengthen the
completion time

+ S0 near the end, spawn backup copies of tasks
First worker to finish wins

+ Testing shows times 30% speedup with this
singular feature

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 67 java.sun.com/javaone

S,
=
_ Java

JavaOne

D Sun

Combiner Functions

Programs like word-counting don’t need to send
a pile of “1” values to the reducer

Each map worker could reduce partially internally

To do this you code a “combiner function”,
usually the same as the reduce, but run on the
map worker

Huge speed up when semantics allow

2007 JavaOneSM Conference | Session TS-6045 | 68 java.sun.com/javaone

JavaOne

Does Google
Really Use MapReduce?

Number of jobs 29,423
Average job completion time 634 secs
Machine days used 79,186 days
Input data read 3,288 TB
Intermediate data produced 758 TB
QOutput data written 193 TB
Average worker machines per job 157
Average worker deaths per job 1.2
Average map tasks per job 3,351
Average reduce tasks per job 55
Unique map i]Ilplf:]IlEI-ltatiDIlS 395
Unique reduce implementations 269
Uniqua map/reduce combinations 426

Table 1: MapReduce jobs run in August 2004

& Sun

2007 JavaOneSM Conference | Session TS-6045 | 69

Number of instances in source tree

5

800

200

eV 00T

QOve00T
6O/e00T
C1/e00T
EVFOOT
OO/F00T
6O/H00T

Figure 4: MapReduce instances over time

java.sun.com/javaone

JavaOne

Links

* http://labs.google.com/papers/mapreduce.html
* http://lucene.apache.org/hadoop/about.html
* http://www.cs.vu.nl/~ralf/MapReduce/paper.pdf

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 70 java.sun.com/javaone

JavaOne

Conclusion

* S0 now you can...

- Swap values like a crazy person
Validate credit cards in the browser
Explain how RSA, 3DES, and SHA1 work
Work down deep in the bits of numbers
Or up high in massive parallel operations

@ Sun 2007 JavaOneSM Conference | Session TS-6045 | 71 java.sun.com/javaone

JavaOne

Q&A

Jason Hunter

2007 JavaOne®M Conference | Session TS-6045 | 72 iaua.sun.com/iauaone

@Sun

MIALR K

LOGIC

JavaOne

Jason Hunter

Principal Technlogist
Mark Logic

http://marklogic.com

Session TS-6045

2007 JavaOne®M Conference | Session TS-6045 | iava.sun.com/iavaone

