
2007 JavaOneSM Conference | Session TS-6045 |

Session TS-6045

Web Algorithms
Jason Hunter

Principal Technlogist
Mark Logic
http://marklogic.com

2007 JavaOneSM Conference | Session TS-6045 | 2

Understand a few of the classic
algorithms we use everyday on the Web,
whether we realize it or not

Overarching Goal

2007 JavaOneSM Conference | Session TS-6045 | 3

The Algorithms

XOR Swap
Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

2007 JavaOneSM Conference | Session TS-6045 | 4

Puzzle #1

• How do you swap two variable values without
using a temporary variable?

http://www.flickr.com/photos/curveto/157107227/

2007 JavaOneSM Conference | Session TS-6045 | 5

• You can use the XOR Swap algorithm

• XOR is a bitwise “exclusive or”

• You can use the XOR Swap algorithm:

• XOR is a bitwise

Answer

x = x xor y
y = x xor y
x = x xor y

2007 JavaOneSM Conference | Session TS-6045 | 6

XOR Swap in the Java™
Programming Language

• XOR is performed in the Java programming
language using the carat

public class Swap {
public static void main(String[] args) {

int x = 34, y = 78;
x = x ^ y; // or x ^= y;
y = x ^ y; // or y ^= x;
x = x ^ y; // or x ^= y;
System.out.println(x + " " + y);

}
}

2007 JavaOneSM Conference | Session TS-6045 | 7

XOR Swap in the Java
Programming Language

• Here’s what happens at the bit level

• The “108” value is special because given X you
can find Y, and given Y you can find X

• We use that to pull the original values out

int x = 34; // 0b00100010
int y = 78; // 0b01001110
x = x ^ y; // 0b01101100 (108)
y = x ^ y; // 0b00100010 (34)
x = x ^ y; // 0b01001110 (78)

2007 JavaOneSM Conference | Session TS-6045 | 8

XOR Swap in the Java
Programming Language

• It’s easier to read if you don’t reuse names

int x = 34; // 0b00100010
int y = 78; // 0b01001110
a = x ^ y; // 0b01101100 (108)
y2 = a ^ y; // 0b00100010 (34)
x2 = a ^ x; // 0b01001110 (78)

2007 JavaOneSM Conference | Session TS-6045 | 9

Should You?

• Cool. Should you actually use XOR swap?
• No. Trust your compiler. Your compiler probably won’t

use XOR as it forces serialized execution
• Plus you need to watch for aliasing on languages that

support it (not Java programming language)

2007 JavaOneSM Conference | Session TS-6045 | 10

Add/Subtract Swap?

• Can you craft a version of the XOR Swap
using just addition and subtraction?

2007 JavaOneSM Conference | Session TS-6045 | 11

Add/Subtract Swap

• You sure can

• But you do have to worry about overflow!

x = x + y
y = x - y
x = x - y
int x = 34;
int y = 78;
x = x + y; // 112
y = x - y; // 34
x = x - y; // 78

2007 JavaOneSM Conference | Session TS-6045 | 12

The Algorithms

XOR Swap
Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

2007 JavaOneSM Conference | Session TS-6045 | 13

Puzzle #2

• How can you pre-check a credit card number
on a web form?

2007 JavaOneSM Conference | Session TS-6045 | 14

Answer

• You can use the Luhn algorithm
• A system that adds a “check digit” on the end of a

number sequence
• Used by most credit cards as well as

Canadian social insurance numbers
• Useful to catch errors quickly
• Ideal for client-side JavaScript™ programming

language

2007 JavaOneSM Conference | Session TS-6045 | 15

The Luhn Algorithm

• To check if a number passes the checksum
• Start with the right-most number (checksum)
• Move left, doubling every second digit
• For any digits over 10 add their digits,

so 6*2 = 12 becomes 3
• Sum the generated digits
• If the sum ends in 0, it’s valid. If not, invalid.

2007 JavaOneSM Conference | Session TS-6045 | 16

An Example

446-667-651

Digit Double Sum

1 1

5 10 1

6 6

7 14 5

6 6

6 12 3

6 6

4 8 8

4 4

40

2007 JavaOneSM Conference | Session TS-6045 | 17

Why Double?

• The doubling is designed to catch transpositions
• 1234 = 4+6+2+2 = 14
• 1243 = 3+8+2+2 = 15

• Hmm, 90 and 09 transpositions aren’t caught
• 1290 = 0+(18=9)+2+2 = 13
• 1209 = 9+0+2+2 = 13

2007 JavaOneSM Conference | Session TS-6045 | 18

Why So Simple?

• It was intended for a mechanical device
• Explained in Patent 2,950,048, titled

“Computer for Verifying Numbers”
• Filed in 1954, granted in 1960
• (Long ago expired)

2007 JavaOneSM Conference | Session TS-6045 | 19

Patent 2,950,048

2007 JavaOneSM Conference | Session TS-6045 | 20

Luhn Check
public static boolean checkNumber(int[] digits) {
int sum = 0;
boolean alt = false;
for (int i = digits.length - 1; i >= 0; i--) {
if (alt) {
int doubled = digits[i] * 2;
if (doubled > 9) {
doubled -= 9; // equiv to adding digits

}
sum += doubled;

}
else {
sum += digits[i];

}
alt = !alt;

}
return sum % 10 == 0;

}

2007 JavaOneSM Conference | Session TS-6045 | 21

Luhn Create
public static int createChecksum(int[] digits) {
int sum = 0;
boolean alt = true;
for (int i = digits.length - 1; i >= 0; i--) {
if (alt) {
int doubled = digits[i] * 2;
if (doubled > 9) {
doubled -= 9; // equiv to adding digits

}
sum += doubled;

}
else {
sum += digits[i];

}
alt = !alt;

}
return (10 - (sum % 10)) % 10;

}

2007 JavaOneSM Conference | Session TS-6045 | 22

Luhn Check in JavaScript
Programming Language
function checkNumber(number) {
if (/\D/.test(number)) return false;
digits = (number+'').split('');
var sum = 0; alt = false;
for (var i = digits.length - 1; i >= 0; i--) {
if (alt) {
doubled = parseInt(digits[i]) * 2;
if (doubled > 9) {
doubled -= 9; // equiv to adding digits

}
sum += doubled;

}
else {
sum += parseInt(digits[i]);

}
alt = !alt;

}
return sum % 10 == 0;

}

2007 JavaOneSM Conference | Session TS-6045 | 23

Other Checks

• Can you do other checks? Yes
• Visa cards begin with 4
• MasterCard cards begin with 51 thru 55
• AmEx cards begin with 34 or 37
• Discover cards begin with 6011

• Is it better to ask for type or recognize type?

2007 JavaOneSM Conference | Session TS-6045 | 24

The Algorithms

XOR Swap
Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

2007 JavaOneSM Conference | Session TS-6045 | 25

Puzzle #3

• How can you communicate securely over a
public network without pre-agreeing on a
shared secret?

2007 JavaOneSM Conference | Session TS-6045 | 26

Answer

• Using Public Key Cryptography
• The underpinnings of protocols like

https and SSH®

• I’ll give an overview, then look at RSA

2007 JavaOneSM Conference | Session TS-6045 | 27

Symmetry

• Symmetric encryption
• Use the same key to encrypt and decrypt
• DES and 3DES, Blowfish, AES (Rijndael)

• Asymmetric (public key) encryption
• One key to encrypt, another to decrypt
• RSA, ElGamal, DSA

2007 JavaOneSM Conference | Session TS-6045 | 28

Public Keys

• With asymmetric keys, I have one as public,
one as private
• I keep the private safe, maybe encrypted with a

symmetric key
• I share the public far and wide
• You can encrypt messages with my public key, and

only I can decrypt them

2007 JavaOneSM Conference | Session TS-6045 | 29

Trusting a Public Key

• How can you trust you have my genuine
public key?
• Talk to me and I'll confirm its fingerprint
• Or it could be signed by a Certificate Authority

(VeriSign, Thawte)
• Or it could be signed by someone you trust

(“web of trust”)

2007 JavaOneSM Conference | Session TS-6045 | 30

Signing

• How do I trust the message you sent was truly
from you?
• You encrypt the message with your private key as well

as my public key
• I decrypt with your public, then my private
• Provides “authenticity” and “confidentiality”

2007 JavaOneSM Conference | Session TS-6045 | 31

Performance

• Asymmetric algorithms are slower than symmetric
• So you don’t really encrypt whole messages
• You encrypt with a symmetric key and pass the key

using asymmetric keys
• To prove authorship you hash the message and

encrypt the hash
• That’s why you see: RSA, 3DES, SHA1

2007 JavaOneSM Conference | Session TS-6045 | 32

Uses

• Public Key Cryptography has lots of uses
• Prevent eavesdropping, tampering, and impersonation
• Secure communication on untrusted networks

(https, SSH®, encrypted email)
• Electronic signatures
• Digital cash

2007 JavaOneSM Conference | Session TS-6045 | 33

RSA

• The concept of public key crypto was invented by
Diffie, Hellman, and Markle

• The marquee implementation was invented in
1977 by Rivest, Shamir, and Adleman at MIT

• Patent 4,405,829 (now expired)
• http://www.ladlass.com/intel/archives/010256.html

2007 JavaOneSM Conference | Session TS-6045 | 34

The Basic Math

• Choose two large primes, “p” and “q”
• Multiply to produce a product, “n”
• (It’s believed hard to calculate p and q given just

n if n is large, ~2048 bits or higher)

2007 JavaOneSM Conference | Session TS-6045 | 35

The Basic Math

• Choose an encryption component, “e”
• Often 65537 (216 + 1)

• Calculate a decryption component, “d”
• To calculate “d” you need “e”, “p”, and “q”
• d*e mod (p-1)(q-1) must be 1
• d = e-1 mod (p-1)(q-1)

2007 JavaOneSM Conference | Session TS-6045 | 36

Encrypt/Decrypt

• C is the ciphertext, M is the message
• C = Me mod n
• M = Cd mod n

• Proving this involves Fermat’s little theorem and
the Chinese remainder theorem

2007 JavaOneSM Conference | Session TS-6045 | 37

Example

• p = 61, q = 53
• n = 61*53 = 3233
• Choose e = 17
• Calculate d = 2753

• Yes, 2753*17 mod 3120 = 1

2007 JavaOneSM Conference | Session TS-6045 | 38

Example

• Message is “123”
• C = 12317 mod 3233 = 855
• M = 8552753 mod 3233 = 123

• Knowing 17 and 3233 you can’t get 2753
• Knowing 2753 and 3233 you can’t get 17

2007 JavaOneSM Conference | Session TS-6045 | 39

Example in the Java
Programming Language

// http://www.cs.princeton.edu/introcs/79crypto/RSA.java.html

public class RSA {
private static BigInteger one = new BigInteger("1");
private static SecureRandom random = new SecureRandom();
private BigInteger privateKey, publicKey, modulus;

// Generate an N-bit (roughly) public and private key
RSA(int n) {

BigInteger p = BigInteger.probablePrime(n/2, random);
BigInteger q = BigInteger.probablePrime(n/2, random);
BigInteger phi = (p.subtract(one)).multiply(q.subtract(one));
modulus = p.multiply(q);
publicKey = new BigInteger("65537");
privateKey = publicKey.modInverse(phi);

}

2007 JavaOneSM Conference | Session TS-6045 | 40

Example in the Java
Programming Language

BigInteger encrypt(BigInteger message) {
return message.modPow(publicKey, modulus);

}
BigInteger decrypt(BigInteger encrypted) {
return encrypted.modPow(privateKey, modulus);

}

public static void main(String[] args) {
int n = Integer.parseInt(args[0]); // key size
RSA key = new RSA(n);

// create random message, encrypt and decrypt
BigInteger message = new BigInteger(n-1, random);
BigInteger encrypt = key.encrypt(message);
BigInteger decrypt = key.decrypt(encrypt);

}

2007 JavaOneSM Conference | Session TS-6045 | 41

The Algorithms

XOR Swap
Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

2007 JavaOneSM Conference | Session TS-6045 | 42

Puzzle #4

• Why does 2,000,000,000 + 2,000,000,000
equal -294,967,296?

2007 JavaOneSM Conference | Session TS-6045 | 43

Answer

• Because of overflow and the details involved
with two’s complement notation

2007 JavaOneSM Conference | Session TS-6045 | 44

Integers

• Computers may represent integers in several
different ways, including
• Sign-and-magnitude
• Ones’ complement
• Two’s complement

2007 JavaOneSM Conference | Session TS-6045 | 45

Sign-and-Magnitude

• Sign-and-magnitude uses one bit to represent the
sign and the remaining bits represent the
magnitude (absolute value)
• It’s a lot like how humans write: +5, -5
• Sign bit of 0 is positive, 1 is negative
• Used on early binary computers (IBM 7090)
• Has both positive and negative 0

2007 JavaOneSM Conference | Session TS-6045 | 46

4-Bit Integers
Decimal Sign and Magnitude

+7 0111

+6 0110

+5 0101

+4 0100

+3 0011

+2 0010

+1 0001

+0 0000

-0 1000

-1 1001

-2 1010

-3 1011

-4 1100

-5 1101

-6 1110

-7 1111

-8 N/A

2007 JavaOneSM Conference | Session TS-6045 | 47

One’s Complement

• One’s complement represents negative numbers
as the bitwise not of the positive
• Still a sign bit, still two values of 0
• Used by PDP-1 and Univac 1100/2200
• Named for subtracting from a long string of ones

(0b1111-0b0010 = 0b1101)
• A “bitwise not”

2007 JavaOneSM Conference | Session TS-6045 | 48

4-Bit Integers
Decimal Sign and Magnitude Ones' Complement

+7 0111 0111

+6 0110 0110

+5 0101 0101

+4 0100 0100

+3 0011 0011

+2 0010 0010

+1 0001 0001

+0 0000 0000

-0 1000 1111

-1 1001 1110

-2 1010 1101

-3 1011 1100

-4 1100 1011

-5 1101 1010

-6 1110 1001

-7 1111 1000

-8 N/A N/A

2007 JavaOneSM Conference | Session TS-6045 | 49

Two’s Complement

• Two’s Complement represents negative numbers
as one’s complement plus one
• Still a sign bit, no negative zero, one extra

negative value
• By far the most common today
• Named for subtracting from 2n

(which is 10000000, or one larger than n-many ones)

2007 JavaOneSM Conference | Session TS-6045 | 50

4-Bit Integers
Decimal Sign and Magnitude Ones' Complement Two's Complement

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+1 0001 0001 0001

+0 0000 0000 0000

-0 1000 1111 N/A

-1 1001 1110 1111

-2 1010 1101 1110

-3 1011 1100 1101

-4 1100 1011 1100

-5 1101 1010 1011

-6 1110 1001 1010

-7 1111 1000 1001

-8 N/A N/A 1000

2007 JavaOneSM Conference | Session TS-6045 | 51

Neat Trick

• You can convert a two’s complement number to
decimal by adding its bits, assigning a negative
value to the highest bit

• 0b11111011 as an 8-bit number
= -128+64+32+16+8+0+2+1
= -5

2007 JavaOneSM Conference | Session TS-6045 | 52

Why So Common?

• Two’s Complement is ubiquitous because
addition and subtraction operations can be
unified, plus there’s no weird -0 value
• Consider 3+1 and 3+(-1) using 4-bit numbers

(Note: You only include the last 4 bits)

1111 (carry)
0b0011 + (3)
0b1111 (-1)
============
0b0010 (2)

11 (carry)
0b0011 + (3)
0b0001 (1)
============
0b0100 (4)

2007 JavaOneSM Conference | Session TS-6045 | 53

Overflow

• Integer.MAX_VALUE is 2,147,483,647
• Integer.MIN_VALUE is -2,147,483,648
• Integer.MAX_VALUE + 1 = Integer.MIN_VALUE
• And 2,000,000,000 + 2,000,000,000 is negative

111 111 11 1 11 1 1 (carry)
0b01110111001101011001010000000000 + (2,000,000,000)
0b01110111001101011001010000000000 (2,000,000,000)
==========
0b11101110011010110010100000000000 (-294,967,296)

2007 JavaOneSM Conference | Session TS-6045 | 54

Catching Overflow

• Why does the Java programming language
ignore overflow?
• Because most hardware doesn’t efficiently detect it and

some can’t at all
• The runtime would have to explicitly test for it on every

add, subtract, and multiply
• Use BigInteger if you might overflow

• C#, in contrast, has overflow detection as a
debug runtime option

2007 JavaOneSM Conference | Session TS-6045 | 55

The Algorithms

XOR Swap
Credit Card Validation
Public Key Cryptography
Two’s Complement
Google MapReduce

2007 JavaOneSM Conference | Session TS-6045 | 56

Puzzle #5

• How can Google scale to such heights?

2007 JavaOneSM Conference | Session TS-6045 | 57

Answer

• With the help of MapReduce, a toolkit that
simplifies the distribution of “parallelizable” work
across hundreds or thousands of machines

• http://labs.google.com/papers/mapreduce.html

2007 JavaOneSM Conference | Session TS-6045 | 58

MapReduce

• The programmer specifies a “Map” rule and
a “Reduce” rule

• Map: takes input key-value pairs and generates
intermediate key-value pairs

• Reduce: consolidates intermediate pairs
sharing the same key to a single set of values
(usually one)

• Inspired by map and reduce in LISP

2007 JavaOneSM Conference | Session TS-6045 | 59

Distributed Grep

• Map
• (line-number, line-string) →

(line-number, line-string) or empty
• Emit the number/string pair if it matches the

pattern, otherwise ignore the pair
• Reduce

• Identity function, just copy to output

2007 JavaOneSM Conference | Session TS-6045 | 60

Inverted Index

• Map
• (document, words) → (word, document-id) as a series
• From each document create a long list of

word/document-id pairings
• Reduce

• (word, list(document-id))
• Gathers and sorts all refs to each word

2007 JavaOneSM Conference | Session TS-6045 | 61

Why?

• Why use MapReduce?
• To operate beyond the CPU, memory, and disk limits

of a single box
• To abstract from the programmer the distribution logic
• As well as fault handling, scheduling, monitoring
• Let developers focus on the real problem

2007 JavaOneSM Conference | Session TS-6045 | 62

Implementations

• MapReduce was implemented by Google in C++
with Java programming language and Python
language bindings
• Runs on commodity Linux boxes with normal CPU and

memory, local IDE disks
• Google Filesystem (GFS) manages the data

• Apache Lucene has a Java programming
language version called Hadoop
• Uses the Hadoop Distributed FS (HDFS)

2007 JavaOneSM Conference | Session TS-6045 | 63

Execution Overview

• There’s a master process to oversee a pool
of workers

• Input gets split into chunks
• Chunks are assigned to workers, each worker

performs the map logic on each pair found in
the chunk

• Results are written locally and completed status is
reported to the master

2007 JavaOneSM Conference | Session TS-6045 | 64

Execution Overview

• The master assigns keys to reducers
• Partitioning dictates which reducer gets which key

(i.e., a hash of the key)
• The reducer pulls the results using an iterator,

sorts them, runs the reduce logic, and produces
the “final” output

• Results are written to GFS
• Sometimes output goes through again

2007 JavaOneSM Conference | Session TS-6045 | 65

Distributed Grep Performance

• Scan 1010 100-byte records searching for a rare
3-character pattern (92,337 hits)
• Input split into 64 MB pieces, 15K chunks
• Output all into a single file, one reducer

2007 JavaOneSM Conference | Session TS-6045 | 66

Distributed Grep

• Takes 150 seconds, with a peak input of
30G/sec when 1764 workers are assigned

• One minute of overhead, shuffling data

2007 JavaOneSM Conference | Session TS-6045 | 67

Redundant Execution

• A single slow worker, if it’s doing the last job
(and it will be since it’s slow), can lengthen the
completion time

• So near the end, spawn backup copies of tasks
First worker to finish wins

• Testing shows times 30% speedup with this
singular feature

2007 JavaOneSM Conference | Session TS-6045 | 68

Combiner Functions

• Programs like word-counting don’t need to send
a pile of “1” values to the reducer

• Each map worker could reduce partially internally
• To do this you code a “combiner function”,

usually the same as the reduce, but run on the
map worker

• Huge speed up when semantics allow

2007 JavaOneSM Conference | Session TS-6045 | 69

Does Google
Really Use MapReduce?

2007 JavaOneSM Conference | Session TS-6045 | 70

Links

• http://labs.google.com/papers/mapreduce.html
• http://lucene.apache.org/hadoop/about.html
• http://www.cs.vu.nl/~ralf/MapReduce/paper.pdf

2007 JavaOneSM Conference | Session TS-6045 | 71

Conclusion

• So now you can...
• Swap values like a crazy person
• Validate credit cards in the browser
• Explain how RSA, 3DES, and SHA1 work
• Work down deep in the bits of numbers
• Or up high in massive parallel operations

2007 JavaOneSM Conference | Session TS-6045 | 72

Q&A
Jason Hunter

2007 JavaOneSM Conference | Session TS-6045 |

Session TS-6045

Web Algorithms
Jason Hunter

Principal Technlogist
Mark Logic
http://marklogic.com

