
2007 JavaOneSM Conference | Session TS-1589 |

Session TS-1589

Language-Oriented
Programming and Language
Workbenches: Building
Domain Languages Atop
Java™ Technology

Neal Ford

ThoughtWorker/Meme Wrangler
ThoughtWorks
www.thoughtworks.com

ThoughtThoughtWorksWorks

2007 JavaOneSM Conference | Session TS-1589 | 2

What This Session Covers

• Motivation
• Internal vs. external DSLs
• Building internal DSLs in

• Java technology
• Groovy
• Ruby (via JRuby)

• Building external DSLs
• DSL best practices

2007 JavaOneSM Conference | Session TS-1589 | 3

Questions

• Why is there so much XML mixed in with my
Java code?

• Why do we need things like aspects?
• Why won’t everyone shut up already about

Ruby on Rails?
• Is there an evolutionary step beyond object-

oriented programming?

2007 JavaOneSM Conference | Session TS-1589 | 4

Modeling the World With Trees

2007 JavaOneSM Conference | Session TS-1589 | 5

Modeling the Real World

2007 JavaOneSM Conference | Session TS-1589 | 6

Changing Abstraction Styles

• Layers of abstraction using language
• Not trees

• Trees and hierarchies still exist
• Underneath a stronger abstraction layer
• Objects, aspects, generics, et al become the

building blocks for DSLs
• Allows developers to work at a higher level

of abstraction
• Declarative vs. imperative programming

2007 JavaOneSM Conference | Session TS-1589 | 7

Why Use DSLs for Abstraction?

• “Iced decaf triple grande vanilla skim with
whip latte”

• “Scattered, smothered, covered”
• The Waffle House Hash Brown language has 8

keywords (all inflected verbs)
• Scattered, smothered, covered, chunked, topped,

diced, peppered, and capped
• “Route 66, swinging, easy on the chorus, extra

solo at the coda, and bump at the end”
• “OMFG D00d Bob is t3h UBER 1337

R0XX0RZ LOL”

2007 JavaOneSM Conference | Session TS-1589 | 8

Including Your Business

• Even if you are a Java technology ace
• You still have to learn the DSL for your

business on day 1
• This is the hardest part of your job

92007 JavaOneSM Conference | Session TS-1589 |

Observation
Every non-trivial human behavior has a
domain specific language.

2007 JavaOneSM Conference | Session TS-1589 | 10

Nomenclature

• Coined by Martin Fowler
• Domain-specific language

• A limited form of computer language designed for
a specific class of problems

• Language-oriented programming
• The general style of development which operates

about the idea of building software around a set of
domain specific languages

2007 JavaOneSM Conference | Session TS-1589 | 11

DSLs vs. APIs

• An API has an explicit context

Coffee latte = new Coffee(Size.VENTI);

latte.setFatContent(FatContent.NON_FAT);

latte.setWhip(Whip.NONE);

latte.setFoam(Foam.NONE);

latte.setTemperature(Temp.EXTRA_HOT);

latte.setStrength(5);

2007 JavaOneSM Conference | Session TS-1589 | 12

DSLs vs. APIs

• DSLs have an implicit context
• Consider the real-world examples

• The context is never mentioned
• Once a context is established, repeating it over and

over is just noise

Venti half-caf, non-fat, extra hot, no foam, no whip
latte

2007 JavaOneSM Conference | Session TS-1589 | 13

Internal vs. External DSLs

• Internal DSLs sit atop your base language
• Must follow the syntax rules of the base language
• Why Groovy and Ruby make better bases

• External DSLs
• Create a lexer and parser
• Can take on any syntax you like

• Let your imagination be your guide!
• Hard to create…

2007 JavaOneSM Conference | Session TS-1589 | 14

Fluent Interface

• Creating a readable model
• Convert APIs to English-like sentences

• Slightly harder to write
• Much easier to read

2007 JavaOneSM Conference | Session TS-1589 | 15

Car car = new CarImpl();
MarketingDescription desc = new

MarketingDescriptionImpl();
desc.setType("Box");
desc.setSubType("Insulated");
desc.setAttribute("length", "50.5");
desc.setAttribute("ladder", "yes");
desc.setAttribute("lining type", "cork");
car.setDescription(desc);

Car API

2007 JavaOneSM Conference | Session TS-1589 | 16

Car Fluent Interface
Car car = new CarImpl().withMarketingDescriptionOf(

new MarketingDescriptionImpl("Box", "Insulated”�).

andAttributeOf("length", "50.5").

andIncludesA("ladder").

andAttributeOf("lining type", "cork"));

172007 JavaOneSM Conference | Session TS-1589 |

Existing Fluent Interfaces

2007 JavaOneSM Conference | Session TS-1589 | 18

Fluent Interface: Hamcrest

• Hamcrest is an open source library from Google
that creates fluent interfaces around JUnit
matchers

assertThat(theBiscuit, equalTo(myBiscuit));

assertThat(theBiscuit, is(equalTo(myBiscuit)));

assertThat(theBiscuit, is(myBiscuit));

2007 JavaOneSM Conference | Session TS-1589 | 19

Fluent Interface: Mocks

• JMock
class PublisherTest extends MockObjectTestCase {

public void testOneSubscriberReceivesAMessage() {
Mock mockSubscriber = mock(Subscriber.class);
Publisher publisher = new Publisher();
publisher.add((Subscriber) mockSubscriber.proxy());
final String message = "message";
// expectations
mockSubscriber.expects(once()).

method("receive").with(eq(message));
// execute
publisher.publish(message);

}
}

202007 JavaOneSM Conference | Session TS-1589 |

Building Internal DSLs
In Java Technology

2007 JavaOneSM Conference | Session TS-1589 | 21

Example: Logging Configuration

• Logger setup is ugly
• Very API-ish
• Uses

• A properties file
• Code
• An XML file

• Demo
• LoggingConfiguration.java

2007 JavaOneSM Conference | Session TS-1589 | 22

Fluent Interface: Wrapping iBatis

• Humane interfaces improve the readability
of any code

• You can wrap existing APIs in fluent interfaces
• Example

• iBatis is an open source O/R mapping tool
• It drips of API style of coding
• Wrapping iBatis access in a fluent interface
• Demo

• EventPersisterImpl.java

2007 JavaOneSM Conference | Session TS-1589 | 23

Java Technology: A Calendar DSL

• Goal
• Create a calendar application in Java technology

using DSL techniques
• Primarily uses fluent interface
• Demo

• Appointment.java
• AppointmentCalendar.java
• CalendarDemo.java

242007 JavaOneSM Conference | Session TS-1589 |

Building Internal DSLs
In Groovy

2007 JavaOneSM Conference | Session TS-1589 | 25

Internal DSLs in Groovy

• Groovy makes a better base for DSLs
• Open classes via categories
• Closures
• Looser syntax rules
• Dynamic typing

2007 JavaOneSM Conference | Session TS-1589 | 26

Building Blocks: Closures

• Closures mimic scope capturing
method pointers

• Like a method, a closure defines a scope
• Can still reference variables from the

enclosing scope
• Accepts parameters
• Allows “with” semantics with categories

• In a DSL, provides containership semantics

2007 JavaOneSM Conference | Session TS-1589 | 27

Building Blocks: Open Classes

• Open Classes via categories
• Groovy allows you to attach methods to an

existing class
• Either Groovy or Java Development Kit (JDK™)
• Yes, you can add methods to String

• Categories are classes with static methods
• Each method’s first parameter is self
• Fake object-orientation

• Category demo => Adding methods to String

2007 JavaOneSM Conference | Session TS-1589 | 28

Time DSL in Groovy

• The goal: create a fluent interface around time
spans and calendars

• Target syntax

• Returns a calendar for that date and time
• Demo

• IntegerWithTimeSupport.groovy
• CalendarDsl.groovy
• TestTime.groovy
• CalendarDslDemo.groovy

2.days.fromToday.at(4.pm)

2007 JavaOneSM Conference | Session TS-1589 | 29

Who Returns What?

• 4.pm => Integer
• At

• Accepts Integer
• => Calendar

• fromToday => Calendar
• Days => Integer
• 2 => Integer

2.days.fromToday.at(4.pm)

2007 JavaOneSM Conference | Session TS-1589 | 30

Builders in Groovy

• Builders make it much easier to build
structures
• XML documents
• Swing user interfaces

• Built using a fluent interface
• Demo

• Generating XML schema and POJO from
a database schema

2007 JavaOneSM Conference | Session TS-1589 | 31

Groovy: Calendar

• The goal
• Create an appointment calendar using DSLs
• Demonstrates

• Open classes
• Closures
• Loose syntax rules

• Demo
• Appointment.groovy
• AppointmentCalendar.groovy
• IntegerWithTimeSupport.groovy
• AppointmentCalendarDemo.groovy

322007 JavaOneSM Conference | Session TS-1589 |

Building Internal DSLs
In Ruby

2007 JavaOneSM Conference | Session TS-1589 | 33

Ruby

• Ruby allows you to take DSL writing
much further

• Ruby features that enable DSLs
• True open classes
• Closures
• Really flexible syntax rules

2007 JavaOneSM Conference | Session TS-1589 | 34

Time DSL in Ruby

• Goal
• Support time ranges in Ruby

• Demo
• time_dsl.rb
• time_dsl_test.rb

2007 JavaOneSM Conference | Session TS-1589 | 35

Ruby Calendar

• Our calendar example in Ruby
• Demo

• calendar_fluent.rb
• Functionally the same as the Groovy one
• Cleaner syntax

• Less cruft
• True open classes

362007 JavaOneSM Conference | Session TS-1589 |

Building External DSLs

2007 JavaOneSM Conference | Session TS-1589 | 37

Language Workbenches

• A language workbench is a tool that supports
Language oriented programming

• Today’s language workbenches
• Intentional Software (developed by Simonyi)
• Software factories (developed by Microsoft)
• Meta Programming System (developed by

JetBrains)

2007 JavaOneSM Conference | Session TS-1589 | 38

Compilation Cycle (Since CS-101)

2007 JavaOneSM Conference | Session TS-1589 | 39

“Post-IntelliJ” IDEs

• First tool that allowed you to edit against
the abstract syntax tree instead of text

• How refactoring and other intelligent
support works

2007 JavaOneSM Conference | Session TS-1589 | 40

Workbenches

2007 JavaOneSM Conference | Session TS-1589 | 41

Language Workbenches

• Editable representation is a projection of the
abstract representation

• Abstract representation has to be comfortable
with errors and ambiguities

2007 JavaOneSM Conference | Session TS-1589 | 42

JetBrains MPS

432007 JavaOneSM Conference | Session TS-1589 |

DSL Best Practices

2007 JavaOneSM Conference | Session TS-1589 | 44

Start with the End

• When using a flexible base language,
envision the perfect result

• The Rake napkin

2007 JavaOneSM Conference | Session TS-1589 | 45

Test, Test, Test!

• Writing the DSL is the tricky part
• Using it should be easy
• Otherwise you’ve made some mistakes

• Test all the small parts

2007 JavaOneSM Conference | Session TS-1589 | 46

The Problem Domain

• Keep it as cohesive as possible
• Don’t try to write the entire universe in your DSL
• Better off using a bunch of very specific DSLs
• JetBrains and the way they are using MPS

2007 JavaOneSM Conference | Session TS-1589 | 47

DSLs

• A huge competitive advantage
• All your code is abstracted at the problem domain
• Harder to write, easier to maintain
• Show your code to your business analysts for

verification

2007 JavaOneSM Conference | Session TS-1589 |

Neal Ford
www.nealford.com
nford@thoughtworks.com
memeagora.blogspot.com

Questions?
Samples and slides at www.nealford.com

This work is licensed under a Creative Commons
Attribution-ShareAlike 2.5 License:
http://creativecommons.org/licenses/by-sa/2.5/

