JavaOne

Using Ajax With POJC
(Plain Old JavaServer'
Faces Components)

Craig McClanahan, Matthew Bohm,
NEVELL RYEEUEGETY

Sun Microsystems, Inc.

TS-9511

2007 JavaOne®M Conference | Session TS-9511 | java.sun.com/javaone



|]avaOne

Goal of this Talk

To answer the burning question...

How can | add Ajax behaviors to
my JavaServer™ Faces technology-
based application, without throwing
away my investment in existing
component libraries?

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 2 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues to Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 3 java.sun.com/javaone



JavaOne

The Problem Statement

What are we trying to accomplish?

- | have
. Existing Java technology-based web applications...
- Plus new applications on the drawing board...

- Based on existing JavaServer Faces
component libraries...

- In which | have a considerable investment

- | want
. To add Ajax functionality...
- To my existing applications as well as new ones...
- Without throwing away my existing libraries

- And it needs to work with my favorite IDEs too

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 4 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues to Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 5 java.sun.com/javaone



% E ac g groun%—!l avag erver

Faces Technology

Very brief introduction to JavaServer Faces technology

- JavaServer Faces technology is:

- A server-side user interface component framework

. Components modelled as Java objects
- Expressions bind components to values and methods

- Renderers emit HTML (or other markup) and/or
JavasScript™ technology

- Support for additional features less relevant to this discussion
- Converters, Validators, Navigation Handler

- A runtime front controller framework
- Well defined request processing lifecycle for HTTP POSTs
- Simple dependency injection mechanism (‘managed beans”)

- Original design centered on form submit handling

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 6 java.sun.com/javaone



“w~Background—JavaServer
Faces Technology

JavaServer Faces components
Server side components organized into a tree
Single root node provided by the framework
Content nodes assembled by the application developer

For HTML, the shape of the component tree is
generally the same as the resulting DOM tree

Many components write start and end elements
While delegating nested elements to child components

JavaServer Faces technology maintains the
state of the tree across HTTP requests

Simplifies applications—just react to events

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 7 java.sun.com/javaone



~~Background—JavaServer
Faces Technology

Component Representation In Source [JavaServer Pages™ (JSP™ pages)]:

<f:view>
<h:form id="logonForm”>
<h:panelGrid columns="2">
<h:outputlLabel for="username” value="Username:”/>
<h:inputText id="username”/>
<h:outputlLabel for="password” value="Password:”/>
<h:inputSecret id="password”/>
<h:outputText value=""/>
<h:commandButton id="logon” value="Log On”/>
</h:panelGrid>
</h:form>
</f:view>

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 8 java.sun.com/javaone



% ac %groung—!! avagerver

Faces Technology

Standard request processing life-cycle

Apply Request
Values

Process
Validations

Update Model
Values

Invoke
Application

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 9 java.sun.com/javaone



“Background—JavaServer
Faces Technology

JavaServer Faces technology today

A Java Community Process>M (JCP3M) Standard

Java Server Faces 1.2 technology
(April 2006)—

Required component of the Java Platform, Enterprise Edition
(Java EE 5 platform)

Basis for a rich marketplace of JavaServer Faces
component libraries

Commercial and open source
General purpose and very specialized

Supported by many popular IDEs

Coming Soon! JavaServer Faces 2.0 technology
Java Specificiation Request (JSR) to be filed

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 10 java.sun.com/javaone



JavaOne

Background—Ajax

Very brief introduction to Ajax
- Term created about two years ago

- To denote approaches to client-server interactions
without conventional page submissions

- “Sort of” an acronym:
. “Asynchronous JavaScript technology and XML”

- Underlying technical concepts are nothing new:

- Dynamic HTML modifies client-side DOM on the fly

- Asynchronous (to the user viewing a page) interactions
with the server

- Originally performed with tricks like hidden <IFRAME>s
- XMLHttpRequest introduced in IES, picked up by others

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 11 java.sun.com/javaone



JavaOne

Background—Ajax

Very brief introduction to Ajax

- What is new is a synergy:
Browser JSS+DHTML that does not crash once an hour

Increasing demand for better user experience:

. Zero install is a compelling advantage for web applications

- Rich client applications and OSs have raised expectations
Emergence of “Web 2.0” or next generation web
programming models:

- REST-based services

. Client side mashups
- Avalilability of client-side JavaScript technology
widget libraries:

- Similar in spirit to JavaServer Faces components

- Support for client-side events, asynchronous processing

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 12 java.sun.com/javaone



;

JavaOne

Background—Ajax

Ajax today

At the peak of a hype curve:
Beyond the early adopters, entered the mainstream
Beware of the “gulf of disillusionment”

Wide range of technology solutions:
JavaScript technology client-side only libraries
Independent of server implementation technology or language

Embedded in server-side technologies

PHP templates, Ruby on Rails helper methods, JSP
pages/JavaServer Faces technology tags

Complete end to end development platforms
Flash, Flex, Adobe, GWT, many others...

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 13 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues to Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun

2007 JavaOneSM Conference | Session TS-9511 | 14 java.sun.com/javaone



JavaOne

Back to the Problem Statement

What are we trying to accomplish?

- I have
. Existing Java technology-based web applications...
- Plus new applications on the drawing board...

. Based on existing JavaServer Faces component
libraries...

- In which | have a considerable investment

- | want
. To add Ajax functionality...
- To my existing applications as well as new ones...
- Without throwing away my existing libraries

- And it needs to work with my favorite IDEs too

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 15 java.sun.com/javaone



E_a—\.

JavaOne

@ Sun

Out of Scope for this Discussion

Interesting problems for another session

Create Ajax enabled JavaServer
Faces components

TS-9516—Using Project jMaki In A Visual Development
Environment

TS-6178—Simplifying JavaServer Faces Component
Development

TS-9782—Ajax and JavaServer Faces Technology Tooling
in Eclipse

TS-6824—JavaServer Faces Technology, Ajax, and Portlets:
It’s Easy If You Know How

LAB-4460—Building Ajax-Enabled JavaServer Faces
Components and Web Applications With Project jMaki,
Dynamic Faces, and the NetBeans™ IDE

2007 JavaOne®M Conference | Session TS-9511 | 16 java.sun.com/javaone



JavaOne

In Scope for this Discussion
Interesting problems for this session
- Low level concerns:

. Triggering JavaScript technology events for client
side changes

- Performing asynchronous server interactions
- Dynamic updates to related client-side elements

- Medium level concerns:
- Modifying existing components for Ajax behaviors
- Synchronizing the server-side component state

- High level concermns:
- Performing partial page submit operations
- Performing partial page refresh operations

@ Sun 2007 JavaOneSM Conference | SessionTS-9511 | 17 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues to Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 18 java.sun.com/javaone



JavaOne

L.ow Level Concerns

Motivating example

- Let’s walk through a simple example use case:
. Coordinated dropdowns
- First dropdown—select a US state
. Second dropdown—select a large city from that state
- Use Ajax to dynamically change second dropdown
options when first dropdown value changes

- We will be using JavaServer Faces
standard components

- But techniques will work with most component libraries

@ Sun 2007 JavaOneSM Conference | SessionTS-9511 | 19 java.sun.com/javaone



JavaOne

Low Level Concerns

Triggering JavaScript technology events for client-side changes

- Problem:
- Need to gain control when interesting events occur

. Solution:
- HTML provides a rich variety of event attributes

- Most commonly used:
. onchange—value in an input element has changed
- onclick—element has been clicked
. onfocus—input element gains focus
. onblur—input element loses focus

- Most JavaServer Faces components provide
pass through attributes to add JavaScript
technology handlers

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 20 java.sun.com/javaone



JavaOne

Low Level Concerns

Triggering JavaScript technology events for client-side changes
<h:form id="forml”>

<h:selectOneMenu id="state” wvalue="#{MyBean.state}”
onchange="switchCities (this) ">
<f:selectItems value="#{MyBean.states}”/>
</h:selectOneMenu>

<h:selectOneMenu id="city” value="#{MyBean.city}”>
<f:selectlItems value="#{MyBean.cities}”/>
</h:selectOneMenu>

</h:form>

@.fin’.f._‘ 2007 JavaOne®M Conference | Session TS-9511 | 21 java.sun.com/javaone



JavaOne

Low Level Concerns
Performing asynchronous server interactions
- Problems:

- Initiate asynchronous callback to the server
- Map request URL to backing bean logic

. Solutions:
- Use XMLHttpRequest (directly or indirectly)
- We will utilize dojo.io.bind() to perform asynchronous I/O

- Map request URL to a Servlet or JavaServer Faces
technology handler

- We will use Shale Remoting
- Avoids requiring an explicit servlet mapping
. Leverages managed beans facility to invoke server logic

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 22 java.sun.com/javaone



JavaOne

@Sun

Low Level Concerns

Performing asynchronous server interactions

<script type="text/javascript”’>
function switchCities (state) {
// Flesh out JavaScript to:
// (a) compose URL .../MyBean/updateState
// with parameter for new state value
// (b) initiate asynchronous callback
// (c) delegate to updateCities()

}
</script>

2007 JavaOne®M Conference | Session TS-9511 | 23 java.sun.com/javaone



JavaOne

@ Sun

Low Level Concerns

Performing asynchronous server interactions
<!-- Managed Bean declaration in faces-config.xml -->

<managed-bean>
<managed-bean-name>MyBean</managed-bean-name>
<managed-bean-class>
mycompany . mypackage
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

2007 JavaOne®M Conference | Session TS-9511 | 24 java.sun.com/javaone



JavaOne

@ Sun

Low Level Concerns

Performing asynchronous server interactions

// Managed bean named MyBean (Page 1)
package mycompany.mypackage;
public class BackingBean {

// “state” -- currently selected state abbreviation
private String state;

public String getState() { return this.state; }
public void setState (String state) ({

this.state = state;
// Make getCities() return updated list

2007 JavaOne®M Conference | Session TS-9511 | 25 java.sun.com/javaone



JavaOne

Low Level Concerns

Performing asynchronous server interactions
// Managed bean named MyBean (Page 2)

// “city” -- currently selected city name
private String city;
public String getCity () { return this.city; }
public void setCity (String city) {

this.city = city;
}

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 26 java.sun.com/javaone



JavaOne

Low Level Concerns

Performing asynchronous server interactions
// Managed bean named MyBean (Page 3)

// “states” -- selection items for all states
public SelectItem[] getStates() { ... }
// “cities” -- selection items for all cities

// in the currently selected state
public SelectItem|[] getCities() { ... }

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 27 java.sun.com/javaone



JavaOne

Low Level Concerns

Performing asynchronous server interactions
// Managed bean named MyBean (Page 4)

// Update selected state and return revised set of
// cities to the client
public void updateState() {

// ... See next example

}

*.Ti,‘ﬂ 2007 JavaOne®M Conference | Session TS-9511 | 28 java.sun.com/javaone



JavaOne

Low Level Concerns
Dynamic updates to related client-side elements
- Problems:

- Respond with data or markup (or both)
- Translate into client-side DOM updates

» Solutions:

- Transfer data representing the new cities list
- We will use JavaScript Object Notation (JSON)

. Identify client-side DOM element to be updated

. Based on JavaServer Faces technology client id of the
destination element

- Transform data into new set of <option> elements

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 29 java.sun.com/javaone



JavaOne

Low Level Concerns

Dynamic updates to related client-side elements
// Backing Bean updateState() method (Page 1)

// Update selected state and return revised set of
// cities to the client
public void updateState() {

// Update the currently selected state
String state = ...;

setState (state) ;

// Get new list of related cities
SelectItem|[] cities = getCities();

@.fin’.f._‘ 2007 JavaOne®M Conference | Session TS-9511 | 30 java.sun.com/javaone



JavaOne

Low Level Concerns

Dynamic updates to related client-side elements
// Backing Bean updateState() method (Page 2)

// Acquire reference to ResponseWriter
// Render response as JSON structure
for (int 1 = 0; i1 < cities.length; i++) {

}

*.Ti,‘ﬂ 2007 JavaOne®M Conference | Session TS-9511 | 31 java.sun.com/javaone



JavaOne

Low Level Concerns

Dynamic updates to related client-side elements

<script type="text/javascript”’>
function updateCities(...) {
// extract JSON from response and eval
// remove old <option> elements
// dynamically create new ones

}
</script>

& Sun

2007 JavaOneSM Conference | Session TS-9511 | 32 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues to Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 33 java.sun.com/javaone



JavaOne

Medium Level Concerns
Modifying existing components for Ajax behaviors
- Is this idea cheating?

- We ruled creating new components out of scope...
- But extending existing components? Hmm

- Key to understanding:

. JavaServer Faces technology APIs are designed
to be extended

. At very fine grained levels

- Relevant extension points for Ajax:
. Tag class (to add properties)
- Renderer class (to add default and custom behavior)

@ Sun 2007 JavaOneSM Conference | SessionTS-9511 | 34 java.sun.com/javaone



;

JavaOne

Medium Level Concerns

Modifying existing components for Ajax behaviors

Example comes from the Java BluePrints
Solutions Catalog:

Compose an Ajaxified file upload component
Based on the standard UlIForm component
Leveraging the existing renderer for basic output

Configuring default property values for
extended behavior

Due to time constraints, we will not have time to
examine this solution in detail:

All the necessary code is available in the Java BluePrints
Solutions Catalog entry referenced above

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 35 java.sun.com/javaone



JavaOne

Medium Level Concerns

Synchronizing the server-side component state

Hey wait a minute!

There is a component tree on the server
(JavaServer Faces component)

There is a component tree on the client (DOM)
Shouldn’t they always be synchronized?

When should we care about synchronization:
The user might press the browser reload button
Expectation—the current state of the page will be displayed

New components (and potentially new behavior)
have been dynamically added

Need to leverage existing components to process
part of the component tree

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 36

java.sun.com/javaone



JavaOne

Medium Level Concerns

Synchronizing the server-side component state

When should we not care about
synchronization?
Dynamic changes do not affect the set of components

Can deliver reload behavior without a
synchronization

Cannot afford the extra performance overhead

Performance overhead?

JavaServer Faces components processing
per Ajax call not just per POST

Entire component tree is restored

Perform life-cycle on portions of the component
tree

®sun RPo.rondor norfion'S ABFthaslicind YO M °7 java.sun.com/javacne



JavaOne

Medium Level Concerns
Synchronizing the server-side component state
- This is a test:

- In the coordinated dropdowns use case...

- Did we worry about synchronizing the server-side
component tree with changes in the client DOM?

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 38 java.sun.com/javaone



JavaOne

Medium Level Concerns
Synchronizing the server-side component state
- This is a test:

- In the coordinated dropdowns use case...

- Did we worry about synchronizing the server-side
component tree with changes in the client DOM?

- No—the component tree was noft restored

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 39 java.sun.com/javaone



JavaOne

Medium Level Concerns
Synchronizing the server-side component state
This is a test:
In the coordinated dropdowns use case...
Did we worry about synchronizing the server-side
component tree with changes in the client DOM?
No—the component tree was noft restored

Yes—server data behind view was
synchronized

Every change to first dropdown is sent to server
Server data is saved in session scope
A reload will render the current state and cities

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 40 java.sun.com/javaone



JavaOne

Medium Level Concerns

Synchronizing the server-side component state
But what if | need:

Partial page submit—gather up a particular set of
input element values, and send them to a bit of
server-side business logic

Partial page refresh—the business logic needs to
refresh the content of one or more subtrees of the
client-side DOM

Synchronization—the benefits of synchronizing the
server-side state

Don’t repeat yourself (DRY)—reuse existing
components and renderers for partial page updates

This constellation of needs is very common

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 41 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues to Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 42 java.sun.com/javaone



JavaOne

High Level Concerns

Very common requirements

JavaServer Faces technology is a component
oriented architecture

Common in component based applications:
Respond to a user interface event by...
Accumulating input values, then...

Performing some business logic, and...
Notifying view that state has changed, finally...
Asking the view to rerender itself

Traditionally, web Ul granularity was a page
With Ajax, web Ul granularity can be an event

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 43 java.sun.com/javaone



JavaOne

High Level Concerns

Very common requirements

Implementing this strategy can be
complicated

Likely to be a key component of JavaServer
Faces 2.0 technology

In the mean time, use an add on framework:

Ajax4JSF
Dynamic Faces

To provide Ajax functionality
Partial page submit
Partial page refresh

To plain old JavaServer Faces components

Ay
@ Sun /DAty 2007 JavaOneM Conference | Session TS-9511

com/javaone



JavaOne

High Level Concerns

Ajax4JSF

Exadel's Ajax4JSF open sourced on jboss.org
as JBoss Ajax4JSF

Component library that adds Ajax capability to
existing JSF applications

Without any Javascript code
Takes full advantage of benefits of JSF framework

Key benefits

Page-wide Ajax support instead of traditional
component wide support

Access to managed bean facility, server-side
convertors, validators etc.

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 45 java.sun.com/javaone



JavaOne

High Level Concerns
Ajax4JSF
- Two tags of interest for this talk
. <adj:support>
. <adj.rregion>
- Also includes other tags with built in Ajax
behavior
. <adj.commandLink>
. <adj.commandButton>
. <adj:poll>
. <adj.form>
- <adj.rrepeat>

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 46 java.sun.com/javaone



il

e

~Ajax4djst—Steps to Add Ajax

Behavior

Step 1: Add the required libraries
- oscache-2.3.2

- ajax4jsf-1.1.0

- commons-digester

- commons-collections
- commons-logging

- commons-beanutils

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 47 java.sun.com/javaone



&

=14
=

e
. Java

| Jjax4)ST—

@ Sun

eps to Add Ajax

Behavior
Step 2: Add the following to WEB-INF/web.xml

<filter>
<display-name>Ajax4jsf Filter</display-name>
<filter-name>ajax4jsf</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>
</filter>

<filter-mapping>
<filter-name>ajax4jsf</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>
</filter-mapping>

2007 JavaOne®M Conference | Session TS-9511 | 48 java.sun.com/javaone



S,

jau'ei

javaone /1 Jax ]ST—

Behavior
Step 3: Import ajax4jsf tag library in your JSP page

eps to Add Ajax

<%@ taglib uri="https://ajax4jsf.dev.java.net/ajax"
prefix="a4j"3%>

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 49 java.sun.com/javaone



Jav

javaone /1 JaX ]ST—

Behavior
Step 4: Use the tags in your JSP page

eps to Add Ajax

<f:view>
<h:form>
<h:inputText value="#{bean.text}">
<adj:support event="onkeyup" reRender="rep"/>
</h:inputText>

<h:outputText value="#{bean.text}" id="rep"/>

</h:form>
</f:view>

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 50 java.sun.com/javaone



JavaOne

Ajax4JSF Example

2007 JavaOne®M Conference | Session TS-9511| 51 java.sun.com/javaone



;

JavaOne

High Level Concerns

Dynamic Faces
Part of the JavaServer Faces Extensions
project
Adds Ajax support to JavaServer Faces

Easily configure Ajax calls, specifying:
Web page inputs to send
Server-side nodes over which to execute
Web page DOM nodes to re-render

Mechanisms of interest:
AjaxZone component
DynaFaces.fireAjaxTransaction JavaScript function
AjaxTransaction component (visual web complib only)

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 52 java.sun.com/javaone



- —_ =

JavaOne

High Level Concerns

Dynamic Faces—AjaxZone component
Container component

Renders JavaScript that “arms” particular children

<input>, <option>, <button> armed by default (this is
customizable)

Default event type is “click” (this is customizable)

Default interactions (all are customizable):
Send inputs within this zone only
Execute over inputs in this zone only
Re-render this zone only

A good solution when the elements to arm and
the inputs to send can share a common parent

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 53 java.sun.com/javaone



High Level Concerns

Dynamic Faces—AjaxZone component

- Properties of interest:
- inspectElement (children to arm)
- eventType (what triggers Ajax call)
- collectPostData (inputs to send)

. execute (server-side nodes over which
to execute)

- render (DOM nodes to re-render)
- replaceElement (re-rendering behavior)

- postReplace (behavior after
re-rendering occurs)

Source: jsf-extensions.dev.java.net

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 54 java.sun.com/javaone



JavaOne

High Level Concerns

Dynamic Faces—fireAjaxTransaction/AjaxTransaction

fireAjaxTransaction JavaScript function
Makes an Ajax call when invoked—no “arming” of
components ahead of time

Great for easily configuring virtual any Ajax operation—
IS not based on containment

AjaxTransaction component
Component version of fireAjaxTransaction

Value proposition: visually configure the inputs to
send and DOM nodes to re-render via design time
color coding

Makes an Ajax call when DynaFaces.Tx.fire is
invoked, which invokes fireAjaxTransaction

@ Sun 2007 JavaOne®M Conference | Session TS-9511 | 55 java.sun.com/javaone



JavaOne

Dynamic Faces Examples

2007 JavaOne®M Conference | Session TS-9511| 56 java.sun.com/javaone



JavaOne

Agenda

Problem Statement

Background

Issues To Be Addressed
Low Level Concerns

Medium Level Concerns
High Level Concerns

Summary and Q&A

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 57 java.sun.com/javaone



JavaOne

@ Sun

Summary

. JavaServer Faces applications abound:
- Initially designed around HTML “page” paradigm
- Increasing desire to incorporate Ajax functionality

- Existing investment in JavaServer Faces component
libraries

. Cannot afford to throw away and start over

- Techniques to add Ajax functionality
. Low level—handwritten JavaScript technology
- Medium level—extend existing components
- High level—partial page submit/update frameworks

- Future JavaServer Faces technology versions will
standardize here

2007 JavaOne®M Conference | Session TS-9511 | 58 java.sun.com/javaone



JavaOne

Resources

- JavaServer Faces technology

- Apache Shale

- Java blueprints solutions catalog
. https://bpcatalog.dev.java.net/

. Ajax4JSF

- Dynamic Faces

@ Sun 2007 JavaOneSM Conference | Session TS-9511 | 59 java.sun.com/javaone



JavaOne

Craig McClanahan, Matthew Bohm, Jayashri
Visvanathan

2007 JavaOne®M Conference | Session TS-9511| 60 java.sun.com/javaone



JavaOne

Using Ajax With POJC
(Plain Old JavaServer'
Faces Components)

Craig McClanahan, Matthew Bohm,
NEVELL RYEEUEGETY

Sun Microsystems, Inc.

TS-9511

2007 JavaOne®M Conference | Session TS-9511 | java.sun.com/javaone



