
2007 JavaOneSM Conference | Session TS-9511 |

TS-9511

Using Ajax With POJC
(Plain Old JavaServer™

Faces Components)
Craig McClanahan, Matthew Bohm,
Jayashri Visvanathan

Sun Microsystems, Inc.

2007 JavaOneSM Conference | Session TS-9511 | 2

Goal of this Talk

How can I add Ajax behaviors to
my JavaServer™ Faces technology-
based application, without throwing
away my investment in existing
component libraries?

To answer the burning question…

2007 JavaOneSM Conference | Session TS-9511 | 3

Agenda
Problem Statement
Background
Issues to Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 4

What are we trying to accomplish?
The Problem Statement
● I have

● Existing Java technology-based web applications…
● Plus new applications on the drawing board…
● Based on existing JavaServer Faces

component libraries…
● In which I have a considerable investment

● I want
● To add Ajax functionality…
● To my existing applications as well as new ones…
● Without throwing away my existing libraries

● And it needs to work with my favorite IDEs too

2007 JavaOneSM Conference | Session TS-9511 | 5

Agenda
Problem Statement
Background
Issues to Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 6

Very brief introduction to JavaServer Faces technology

Background—JavaServer
Faces Technology
● JavaServer Faces technology is:

● A server-side user interface component framework
● Components modelled as Java objects
● Expressions bind components to values and methods
● Renderers emit HTML (or other markup) and/or

JavasScript™ technology
● Support for additional features less relevant to this discussion

● Converters, Validators, Navigation Handler
● A runtime front controller framework

● Well defined request processing lifecycle for HTTP POSTs
● Simple dependency injection mechanism (“managed beans”)

● Original design centered on form submit handling

2007 JavaOneSM Conference | Session TS-9511 | 7

JavaServer Faces components

Background—JavaServer
Faces Technology
● Server side components organized into a tree

● Single root node provided by the framework
● Content nodes assembled by the application developer

● For HTML, the shape of the component tree is
generally the same as the resulting DOM tree
● Many components write start and end elements
● While delegating nested elements to child components

● JavaServer Faces technology maintains the
state of the tree across HTTP requests
● Simplifies applications—just react to events

2007 JavaOneSM Conference | Session TS-9511 | 8

Component Representation In Source [JavaServer Pages™ (JSP™ pages)]:

Background—JavaServer
Faces Technology
<f:view>
<h:form id=”logonForm”>
<h:panelGrid columns=”2”>
<h:outputLabel for=”username” value=”Username:”/>
<h:inputText id=”username”/>
<h:outputLabel for=”password” value=”Password:”/>
<h:inputSecret id=”password”/>
<h:outputText value=””/>
<h:commandButton id=”logon” value=”Log On”/>

</h:panelGrid>
</h:form>

</f:view>

2007 JavaOneSM Conference | Session TS-9511 | 9

Standard request processing life-cycle

Background—JavaServer
Faces Technology

Request Restore
View

Response Render
Response

Apply Request
Values

Invoke
Application

Update Model
Values

Process
Validations

2007 JavaOneSM Conference | Session TS-9511 | 10

JavaServer Faces technology today

Background—JavaServer
Faces Technology
● A Java Community ProcessSM (JCPSM) Standard

● Java Server Faces 1.2 technology
(April 2006)—http://jcp.org/jsr/detail?id=252

● Required component of the Java Platform, Enterprise Edition
(Java EE 5 platform)

● Basis for a rich marketplace of JavaServer Faces
component libraries
● Commercial and open source
● General purpose and very specialized

● Supported by many popular IDEs
● Coming Soon! JavaServer Faces 2.0 technology

Java Specificiation Request (JSR) to be filed

2007 JavaOneSM Conference | Session TS-9511 | 11

Very brief introduction to Ajax
Background—Ajax
● Term created about two years ago

● To denote approaches to client-server interactions
without conventional page submissions

● “Sort of” an acronym:
● “Asynchronous JavaScript technology and XML”

● Underlying technical concepts are nothing new:
● Dynamic HTML modifies client-side DOM on the fly
● Asynchronous (to the user viewing a page) interactions

with the server
● Originally performed with tricks like hidden <IFRAME>s
● XMLHttpRequest introduced in IE5, picked up by others

2007 JavaOneSM Conference | Session TS-9511 | 12

Very brief introduction to Ajax
Background—Ajax
● What is new is a synergy:

● Browser JS+DHTML that does not crash once an hour
● Increasing demand for better user experience:

● Zero install is a compelling advantage for web applications
● Rich client applications and OSs have raised expectations

● Emergence of “Web 2.0” or next generation web
programming models:
● REST-based services
● Client side mashups

● Availability of client-side JavaScript technology
widget libraries:
● Similar in spirit to JavaServer Faces components
● Support for client-side events, asynchronous processing

2007 JavaOneSM Conference | Session TS-9511 | 13

Ajax today
Background—Ajax
● At the peak of a hype curve:

● Beyond the early adopters, entered the mainstream
● Beware of the “gulf of disillusionment”

● Wide range of technology solutions:
● JavaScript technology client-side only libraries

● Independent of server implementation technology or language
● Embedded in server-side technologies

● PHP templates, Ruby on Rails helper methods, JSP
pages/JavaServer Faces technology tags

● Complete end to end development platforms
● Flash, Flex, Adobe, GWT, many others…

2007 JavaOneSM Conference | Session TS-9511 | 14

Agenda
Problem Statement
Background
Issues to Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 15

What are we trying to accomplish?
Back to the Problem Statement
● I have

● Existing Java technology-based web applications…
● Plus new applications on the drawing board…
● Based on existing JavaServer Faces component

libraries…
● In which I have a considerable investment

● I want
● To add Ajax functionality…
● To my existing applications as well as new ones…
● Without throwing away my existing libraries

● And it needs to work with my favorite IDEs too

2007 JavaOneSM Conference | Session TS-9511 | 16

Interesting problems for another session
Out of Scope for this Discussion
● Create Ajax enabled JavaServer

Faces components
● TS-9516—Using Project jMaki In A Visual Development

Environment
● TS-6178—Simplifying JavaServer Faces Component

Development
● TS-9782—Ajax and JavaServer Faces Technology Tooling

in Eclipse
● TS-6824—JavaServer Faces Technology, Ajax, and Portlets:

It’s Easy If You Know How
● LAB-4460—Building Ajax-Enabled JavaServer Faces

Components and Web Applications With Project jMaki,
Dynamic Faces, and the NetBeans™ IDE

2007 JavaOneSM Conference | Session TS-9511 | 17

Interesting problems for this session
In Scope for this Discussion
● Low level concerns:

● Triggering JavaScript technology events for client
side changes

● Performing asynchronous server interactions
● Dynamic updates to related client-side elements

● Medium level concerns:
● Modifying existing components for Ajax behaviors
● Synchronizing the server-side component state

● High level concerns:
● Performing partial page submit operations
● Performing partial page refresh operations

2007 JavaOneSM Conference | Session TS-9511 | 18

Agenda
Problem Statement
Background
Issues to Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 19

Motivating example
Low Level Concerns
● Let’s walk through a simple example use case:

● Coordinated dropdowns
● First dropdown—select a US state
● Second dropdown—select a large city from that state
● Use Ajax to dynamically change second dropdown

options when first dropdown value changes
● We will be using JavaServer Faces

standard components
● But techniques will work with most component libraries

2007 JavaOneSM Conference | Session TS-9511 | 20

Triggering JavaScript technology events for client-side changes
Low Level Concerns
● Problem:

● Need to gain control when interesting events occur
● Solution:

● HTML provides a rich variety of event attributes
● Most commonly used:

● onchange—value in an input element has changed
● onclick—element has been clicked
● onfocus—input element gains focus
● onblur—input element loses focus

● Most JavaServer Faces components provide
pass through attributes to add JavaScript
technology handlers

2007 JavaOneSM Conference | Session TS-9511 | 21

Low Level Concerns
<h:form id=”form1”>

...
<h:selectOneMenu id=”state” value=”#{MyBean.state}”

onchange=”switchCities(this)”>
<f:selectItems value=”#{MyBean.states}”/>

</h:selectOneMenu>
...
<h:selectOneMenu id=”city” value=”#{MyBean.city}”>

<f:selectItems value=”#{MyBean.cities}”/>
</h:selectOneMenu>
...

</h:form>

Triggering JavaScript technology events for client-side changes

2007 JavaOneSM Conference | Session TS-9511 | 22

Performing asynchronous server interactions
Low Level Concerns
● Problems:

● Initiate asynchronous callback to the server
● Map request URL to backing bean logic

● Solutions:
● Use XMLHttpRequest (directly or indirectly)

● We will utilize dojo.io.bind() to perform asynchronous I/O
● Map request URL to a Servlet or JavaServer Faces

technology handler
● We will use Shale Remoting

● Avoids requiring an explicit servlet mapping
● Leverages managed beans facility to invoke server logic

2007 JavaOneSM Conference | Session TS-9511 | 23

Performing asynchronous server interactions
Low Level Concerns
<script type=”text/javascript”>

function switchCities(state) {
... // Flesh out JavaScript to:
... // (a) compose URL .../MyBean/updateState
... // with parameter for new state value
... // (b) initiate asynchronous callback
... // (c) delegate to updateCities()

}
</script>

2007 JavaOneSM Conference | Session TS-9511 | 24

Performing asynchronous server interactions
Low Level Concerns
<!-- Managed Bean declaration in faces-config.xml -->
<managed-bean>

<managed-bean-name>MyBean</managed-bean-name>
<managed-bean-class>

mycompany.mypackage
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>

</managed-bean>

2007 JavaOneSM Conference | Session TS-9511 | 25

Performing asynchronous server interactions
Low Level Concerns
// Managed bean named MyBean (Page 1)
package mycompany.mypackage;
public class BackingBean {

// “state” -- currently selected state abbreviation
private String state;
public String getState() { return this.state; }
public void setState(String state) {

this.state = state;
... // Make getCities() return updated list

}

...

2007 JavaOneSM Conference | Session TS-9511 | 26

Performing asynchronous server interactions
Low Level Concerns
// Managed bean named MyBean (Page 2)

// “city” -- currently selected city name
private String city;
public String getCity() { return this.city; }
public void setCity(String city) {

this.city = city;
}

...

2007 JavaOneSM Conference | Session TS-9511 | 27

Performing asynchronous server interactions
Low Level Concerns
// Managed bean named MyBean (Page 3)

// “states” -- selection items for all states
public SelectItem[] getStates() { ... }

// “cities” -- selection items for all cities
// in the currently selected state
public SelectItem[] getCities() { ... }

...

2007 JavaOneSM Conference | Session TS-9511 | 28

Performing asynchronous server interactions
Low Level Concerns
// Managed bean named MyBean (Page 4)

// Update selected state and return revised set of
// cities to the client
public void updateState() {

// ... See next example ...
}

}

2007 JavaOneSM Conference | Session TS-9511 | 29

Dynamic updates to related client-side elements
Low Level Concerns
● Problems:

● Respond with data or markup (or both)
● Translate into client-side DOM updates

● Solutions:
● Transfer data representing the new cities list

● We will use JavaScript Object Notation (JSON)
● Identify client-side DOM element to be updated

● Based on JavaServer Faces technology client id of the
destination element

● Transform data into new set of <option> elements

2007 JavaOneSM Conference | Session TS-9511 | 30

Dynamic updates to related client-side elements
Low Level Concerns
// Backing Bean updateState() method (Page 1)

// Update selected state and return revised set of
// cities to the client
public void updateState() {

// Update the currently selected state
String state = ...;
setState(state);
// Get new list of related cities
SelectItem[] cities = getCities();

...

2007 JavaOneSM Conference | Session TS-9511 | 31

Dynamic updates to related client-side elements
Low Level Concerns
// Backing Bean updateState() method (Page 2)

// Acquire reference to ResponseWriter
...

// Render response as JSON structure
for (int i = 0; i < cities.length; i++) {

...
}

}

2007 JavaOneSM Conference | Session TS-9511 | 32

Dynamic updates to related client-side elements
Low Level Concerns
<script type=”text/javascript”>

function updateCities(...) {
... // extract JSON from response and eval
... // remove old <option> elements
... // dynamically create new ones

}
</script>

2007 JavaOneSM Conference | Session TS-9511 | 33

Agenda
Problem Statement
Background
Issues to Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 34

Modifying existing components for Ajax behaviors
Medium Level Concerns
● Is this idea cheating?

● We ruled creating new components out of scope…
● But extending existing components? Hmm

● Key to understanding:
● JavaServer Faces technology APIs are designed

to be extended
● At very fine grained levels

● Relevant extension points for Ajax:
● Tag class (to add properties)
● Renderer class (to add default and custom behavior)

2007 JavaOneSM Conference | Session TS-9511 | 35

Modifying existing components for Ajax behaviors
Medium Level Concerns
● Example comes from the Java BluePrints

Solutions Catalog:
● https://blueprints.dev.java.net/bpcatalog/ee5/ajax/extendingRenderFunctionality.html

● Compose an Ajaxified file upload component
● Based on the standard UIForm component
● Leveraging the existing renderer for basic output
● Configuring default property values for

extended behavior

● Due to time constraints, we will not have time to
examine this solution in detail:
● All the necessary code is available in the Java BluePrints

Solutions Catalog entry referenced above

2007 JavaOneSM Conference | Session TS-9511 | 36

Synchronizing the server-side component state
Medium Level Concerns
● Hey wait a minute!

● There is a component tree on the server
(JavaServer Faces component)

● There is a component tree on the client (DOM)
● Shouldn’t they always be synchronized?

● When should we care about synchronization:
● The user might press the browser reload button

● Expectation—the current state of the page will be displayed
● New components (and potentially new behavior)

have been dynamically added
● Need to leverage existing components to process

part of the component tree

2007 JavaOneSM Conference | Session TS-9511 | 37

Synchronizing the server-side component state
Medium Level Concerns
● When should we not care about

synchronization?
● Dynamic changes do not affect the set of components
● Can deliver reload behavior without a

synchronization
● Cannot afford the extra performance overhead

● Performance overhead?
● JavaServer Faces components processing

per Ajax call not just per POST
● Entire component tree is restored
● Perform life-cycle on portions of the component

tree
● Re-render portions of the client DOM

2007 JavaOneSM Conference | Session TS-9511 | 38

Synchronizing the server-side component state
Medium Level Concerns
● This is a test:

● In the coordinated dropdowns use case…
● Did we worry about synchronizing the server-side

component tree with changes in the client DOM?

2007 JavaOneSM Conference | Session TS-9511 | 39

Synchronizing the server-side component state
Medium Level Concerns
● This is a test:

● In the coordinated dropdowns use case…
● Did we worry about synchronizing the server-side

component tree with changes in the client DOM?
● No—the component tree was not restored

2007 JavaOneSM Conference | Session TS-9511 | 40

Synchronizing the server-side component state
Medium Level Concerns
● This is a test:

● In the coordinated dropdowns use case…
● Did we worry about synchronizing the server-side

component tree with changes in the client DOM?
● No—the component tree was not restored
● Yes—server data behind view was

synchronized
● Every change to first dropdown is sent to server
● Server data is saved in session scope
● A reload will render the current state and cities

2007 JavaOneSM Conference | Session TS-9511 | 41

Synchronizing the server-side component state
Medium Level Concerns
● But what if I need:

● Partial page submit—gather up a particular set of
input element values, and send them to a bit of
server-side business logic

● Partial page refresh—the business logic needs to
refresh the content of one or more subtrees of the
client-side DOM

● Synchronization—the benefits of synchronizing the
server-side state

● Don’t repeat yourself (DRY)—reuse existing
components and renderers for partial page updates

● This constellation of needs is very common

2007 JavaOneSM Conference | Session TS-9511 | 42

Agenda
Problem Statement
Background
Issues to Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 43

Very common requirements
High Level Concerns
● JavaServer Faces technology is a component

oriented architecture
● Common in component based applications:

● Respond to a user interface event by…
● Accumulating input values, then…
● Performing some business logic, and…
● Notifying view that state has changed, finally…
● Asking the view to rerender itself

● Traditionally, web UI granularity was a page
● With Ajax, web UI granularity can be an event

2007 JavaOneSM Conference | Session TS-9511 | 44

Very common requirements
High Level Concerns
● Implementing this strategy can be

complicated
● Likely to be a key component of JavaServer

Faces 2.0 technology
● In the mean time, use an add on framework:

● Ajax4JSF
● Dynamic Faces

● To provide Ajax functionality
● Partial page submit
● Partial page refresh

● To plain old JavaServer Faces components
(POJC)

2007 JavaOneSM Conference | Session TS-9511 | 45

Ajax4JSF
High Level Concerns
● Exadel's Ajax4JSF open sourced on jboss.org

as JBoss Ajax4JSF
● Component library that adds Ajax capability to

existing JSF applications
● Without any Javascript code
● Takes full advantage of benefits of JSF framework

● Key benefits
● Page-wide Ajax support instead of traditional

component wide support
● Access to managed bean facility, server-side

convertors, validators etc.

2007 JavaOneSM Conference | Session TS-9511 | 46

High Level Concerns
● Two tags of interest for this talk

● <a4j:support>
● <a4j:region>

● Also includes other tags with built in Ajax
behavior
● <a4j:commandLink>
● <a4j:commandButton>
● <a4j:poll>
● <a4j:form>
● <a4j:repeat>

Ajax4JSF

2007 JavaOneSM Conference | Session TS-9511 | 47

Step 1: Add the required libraries

Ajax4jsf—Steps to Add Ajax
Behavior
● oscache-2.3.2
● ajax4jsf-1.1.0
● commons-digester
● commons-collections
● commons-logging
● commons-beanutils

2007 JavaOneSM Conference | Session TS-9511 | 48

Step 2: Add the following to WEB-INF/web.xml

Ajax4jsf—Steps to Add Ajax
Behavior
<filter>
<display-name>Ajax4jsf Filter</display-name>
<filter-name>ajax4jsf</filter-name>
<filter-class>org.ajax4jsf.Filter</filter-class>

</filter>

<filter-mapping>
<filter-name>ajax4jsf</filter-name>
<servlet-name>Faces Servlet</servlet-name>
<dispatcher>REQUEST</dispatcher>
<dispatcher>FORWARD</dispatcher>
<dispatcher>INCLUDE</dispatcher>

</filter-mapping>

2007 JavaOneSM Conference | Session TS-9511 | 49

Step 3: Import ajax4jsf tag library in your JSP page

Ajax4jsf—Steps to Add Ajax
Behavior

<%@ taglib uri="https://ajax4jsf.dev.java.net/ajax"
prefix="a4j"%>

2007 JavaOneSM Conference | Session TS-9511 | 50

Step 4: Use the tags in your JSP page

Ajax4jsf—Steps to Add Ajax
Behavior

<f:view>
<h:form>
<h:inputText value="#{bean.text}">

<a4j:support event="onkeyup" reRender="rep"/>
</h:inputText>

<h:outputText value="#{bean.text}" id="rep"/>
</h:form>

</f:view>

2007 JavaOneSM Conference | Session TS-9511 | 51

DEMO
Ajax4JSF Example

2007 JavaOneSM Conference | Session TS-9511 | 52

Dynamic Faces
High Level Concerns
● Part of the JavaServer Faces Extensions

project
● Adds Ajax support to JavaServer Faces
● Easily configure Ajax calls, specifying:

● Web page inputs to send
● Server-side nodes over which to execute
● Web page DOM nodes to re-render

● Mechanisms of interest:
● AjaxZone component
● DynaFaces.fireAjaxTransaction JavaScript function
● AjaxTransaction component (visual web complib only)

2007 JavaOneSM Conference | Session TS-9511 | 53

Dynamic Faces—AjaxZone component
High Level Concerns
● Container component
● Renders JavaScript that “arms” particular children

● <input>, <option>, <button> armed by default (this is
customizable)

● Default event type is “click” (this is customizable)
● Default interactions (all are customizable):

● Send inputs within this zone only
● Execute over inputs in this zone only
● Re-render this zone only

● A good solution when the elements to arm and
the inputs to send can share a common parent

2007 JavaOneSM Conference | Session TS-9511 | 54

High Level Concerns
● Properties of interest:

● inspectElement (children to arm)
● eventType (what triggers Ajax call)
● collectPostData (inputs to send)
● execute (server-side nodes over which

to execute)
● render (DOM nodes to re-render)
● replaceElement (re-rendering behavior)
● postReplace (behavior after

re-rendering occurs)
Source: jsf-extensions.dev.java.net

Dynamic Faces—AjaxZone component

2007 JavaOneSM Conference | Session TS-9511 | 55

Dynamic Faces—fireAjaxTransaction/AjaxTransaction
High Level Concerns
● fireAjaxTransaction JavaScript function

● Makes an Ajax call when invoked—no “arming” of
components ahead of time

● Great for easily configuring virtual any Ajax operation—
is not based on containment

● AjaxTransaction component
● Component version of fireAjaxTransaction
● Value proposition: visually configure the inputs to

send and DOM nodes to re-render via design time
color coding

● Makes an Ajax call when DynaFaces.Tx.fire is
invoked, which invokes fireAjaxTransaction

2007 JavaOneSM Conference | Session TS-9511 | 56

DEMO
Dynamic Faces Examples

2007 JavaOneSM Conference | Session TS-9511 | 57

Agenda
Problem Statement
Background
Issues To Be Addressed

Low Level Concerns
Medium Level Concerns
High Level Concerns

Summary and Q&A

2007 JavaOneSM Conference | Session TS-9511 | 58

Summary
● JavaServer Faces applications abound:

● Initially designed around HTML “page” paradigm
● Increasing desire to incorporate Ajax functionality

● Existing investment in JavaServer Faces component
libraries
● Cannot afford to throw away and start over

● Techniques to add Ajax functionality
● Low level—handwritten JavaScript technology
● Medium level—extend existing components
● High level—partial page submit/update frameworks

● Future JavaServer Faces technology versions will
standardize here

2007 JavaOneSM Conference | Session TS-9511 | 59

Resources
● JavaServer Faces technology

● http://java.sun.com/javaee/javaserverfaces/
● Apache Shale

● http://shale.apache.org/
● Java blueprints solutions catalog

● https://bpcatalog.dev.java.net/
● Ajax4JSF

● http://labs.jboss.com/portal/jbossajax4jsf
● Dynamic Faces

● https://jsf-extensions.dev.java.net/

2007 JavaOneSM Conference | Session TS-9511 | 60

Q&A
Craig McClanahan, Matthew Bohm, Jayashri
Visvanathan

2007 JavaOneSM Conference | Session TS-9511 |

TS-9511

Using Ajax With POJC
(Plain Old JavaServer™

Faces Components)
Craig McClanahan, Matthew Bohm,
Jayashri Visvanathan

Sun Microsystems, Inc.

