
2007 JavaOneSM Conference | Session TS-9667 |

TS-9667

Testing Java™ Code:
Beyond the IDE

Ian F. Darwin
RejmiNet Group Inc.
http://www.rejmi.net/

2007 JavaOneSM Conference | Session TS-9667 | 2

Goal of This Talk

Learn to improve Java™ technology
program correctness in one session!
● Beyond checking that Java

Development Kit (JDK™)/IDEs do
● Using free, open source tools

What You Will Learn

Partly drawn from my new O’Reilly e-book Checking Java Programs
http://cjp.darwinsys.com/

IDE = Integrated Development Environment

2007 JavaOneSM Conference | Session TS-9667 | 3

Because We Can, and Should
Why More Checking?
● Java platform’s original goals included reliability

● Why there is as much checking as there is
● Garbage collection, threading support, …
● Compile time and run time checking

● But it’s never enough
● Software still has bugs, right?
● Standard tools do not look at patterns, nor at many

potential sources of failure
● So we bring in extra tools
● Must couple with developer education!

2007 JavaOneSM Conference | Session TS-9667 | 4

What’s Wrong With This Code?
(Five Second Test)
// Part of SaveAction.actionPerformed()
if (fileName != null && !doingSaveAs) {

doSave(fileName);
return;

}
int returnVal = chooser.showOpenDialog(theFrame);
if (returnVal == JFileChooser.APPROVE_OPTION) {

File file = chooser.getSelectedFile();
if (file.exists() && doingSaveAs) {

int ret =
JOptionPane.showConfirmDialog(theFrame,

"File exists, overwrite?", "Overwrite?",
JOptionPane.YES_NO_OPTION);

if (ret != 0); // "Yes" is the 0th option...
return;

}
doSave(file);

}
Error here:

file does not get saved!

Developers can spend
up to 50% of their
time understanding code
before they can fix it…

2007 JavaOneSM Conference | Session TS-9667 | 5

My “Big Three” Add-On Tools
What Tools?
● PMD

● Source code analyzer
● FindBugs

● Class file analyzer
● NASA Java technology-based PathFinder (JPF)

● Runtime state verifier
● And a few more for good measure

2007 JavaOneSM Conference | Session TS-9667 | 6

Agenda
PMD
FindBugs
JPF
Other

2007 JavaOneSM Conference | Session TS-9667 | 7

PMD Checks Your
Java Source
● PMD reads source code looking for patterns
● Performs its own parsing to an AST (tree)

● Not a full compile, so can survive, e.g., missing imports
● Tests match patterns in the AST
● Extensible via XPath or Java code

● Can be run standalone, with Eclipse or
NetBeans™ IDE, Ant or Maven, and other tools
(even emacs!)

● Get PMD from:
● http://pmd.sourceforge.net/

Like the name ‘Java’, PMD is not an acronym.

2007 JavaOneSM Conference | Session TS-9667 | 8

Running PMD Interactively
● Use provided pmd.sh or pmd.bat

pmd.sh $home/javasrc html basic,unusedcode

● Script/batch or Ant task need three arguments:
● Directory or Java Archive (JAR) file (or one Java

class file)
● Ant more flexible: use standard <fileset>

● Report format: text, html, htmlsummary, xml
● Set of rules to run (e.g., “basic,imports,unusedcode”)

● Optional arguments: see documentation
● Ant also requires <taskdef>

2007 JavaOneSM Conference | Session TS-9667 | 9

PMD Works With Ant
// Part of cjp/build.xml
<target name="pmd">

<taskdef name="pmd"
classname="net.sourceforge.pmd.ant.PMDTask"
classpathref="full.classpath"/>

<pmd shortFilenames="true">
<ruleset>basic,imports</ruleset>
<formatter type="text"
toFile="pmd-results.txt"/>
<fileset dir="${src}">

<include name="**/*.java"/>
</fileset>

</pmd>
</target>
$ ant pmd; more pmd-results.txt
SaveAction.java:30 An empty statement (semicolon) not
part of a loop
SaveAction.java:30 Avoid empty if statements

2007 JavaOneSM Conference | Session TS-9667 | 10

PMD Works in Your IDE
● PMD under an IDE lets you run:

● On demand
● Automatically

● On-demand gives you more flexibility
● In Eclipse, shows own “Perspective” :-(

● Automatically is more reliable
● No “I forgot” excuses

2007 JavaOneSM Conference | Session TS-9667 | 11

PMD Warnings
● Run PMD on a large project

● Hundreds of warnings!
● Throttle back by:

● Options (GUI or CLI)
● Code Markers

● Code markers are:
● // NOPMD on the line that generates the warning
● @SuppressWarnings(“PMD.SomeWarningName”);

2007 JavaOneSM Conference | Session TS-9667 | 12

Extending PMD
● PMD has lots of rules already
● Easy to add your own in XPath or Java platform
● Has visual tool for exploring AST from code bits
● e.g., ban library code throwing SQLExceptionz
//MethodDeclaration/NameList/Name[@Image='SQLException']

● Embed in a 60-line XML file
● Download CJP book example (see last page)

2007 JavaOneSM Conference | Session TS-9667 | 13

PMD’s Weapon of
Mess Detection: CPD
● Copy-and-Paste bloats code, prevents reuse

● Easy to commit, hard to ferret out
● CPD finds it, even with variable name changes
● Example from JDK software:
Found a 294 line (531 tokens) duplication:

Starting at line 486 of src/java/lang/StrictMath.java

Starting at line 575 of src/java/lang/Math.java

public static int round(float a) {
return (int)floor(a + 0.5f);

}

...etc...

2007 JavaOneSM Conference | Session TS-9667 | 14

Running CPD
● Command line or Ant task
● Specify min tokens

● Too low matches getters
● Too high causes false negatives
● Start around 100 to avoid getter/setter

2007 JavaOneSM Conference | Session TS-9667 | 15

CPD Details
● Third implementation, uses Karp-Rabin algorithm

● Does JDK software classes source in
under 5 seconds

● Works on Java technology, JavaServer Pages™
(JSP™), C, C++, and PHP code
● Use -language option if not Java code

2007 JavaOneSM Conference | Session TS-9667 | 16

DEMO
PMD

2007 JavaOneSM Conference | Session TS-9667 | 17

Agenda
PMD
FindBugs
JPF
Other

2007 JavaOneSM Conference | Session TS-9667 | 18

FindBugs Digests
Your Class Files
● From University of Maryland
● Checks .class files (using Apache BCEL)
● Wide range of checks

● A few optionally examine source code
● Get FindBugs from:

● http://findbugs.sourceforge.net/

The name FindBugs and the FindBugs logo are trademarks of the University of Maryland.

2007 JavaOneSM Conference | Session TS-9667 | 19

Running FindBugs
● Choose level: low (most verbose), medium, high
● Run from:

● Command line (three dozen options!)
findbugs -medium -textui $HOME/javasrc

● Ant-Similar to PMD: taskdef, invoke it
● Eclipse; NetBeans IDE (3rd party)

● Automatic or on-demand; uses Java technology
Perspective; own marker

● Its own GUI
● Flexible runner GUI
● Can create project file for later use with CLI

2007 JavaOneSM Conference | Session TS-9667 | 20

Throttling Back FindBugs
● Use high priority option
● Use an XML excludes file

● Individual bugs
● Entire categories: Bad practice, correctness, etc.

● Use Annotations
● Has own @SuppressWarnings (in own package)

2007 JavaOneSM Conference | Session TS-9667 | 21

FindBugs Data Mining
● Supports storing longitudinal data in report files
● Allows for building reports; data for graphing

From the FindBugs web site, used under the Creative Commons Attribution License

2007 JavaOneSM Conference | Session TS-9667 | 22

DEMO
FindBugs

2007 JavaOneSM Conference | Session TS-9667 | 23

Interlude: PMD and FindBugs
● PMD checks source code, FindBugs checks

compiled .class files
● Overlap in what they find is only about 50%

● Worth running both

2007 JavaOneSM Conference | Session TS-9667 | 24

Agenda
PMD
FindBugs
JPF
Other

2007 JavaOneSM Conference | Session TS-9667 | 25

JPF Runs Your Code
● Developed at NASA for testing software used

in rocket control systems
● No margin for error!

● Dynamic state checker
● Can test all paths through code by “backing up and

trying again”
● Includes own Java Virtual Machine (JVM™)—

implemented in Java technology
● Get JPF from:

● http://javapathfinder.sourceforge.net/
The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-9667 | 26

JPF Finds Deadlocks
● Good news

● Can find threading deadlocks
● Can find “race conditions”

● Bad news
● JVM interface does not yet support AWT or sockets

● Rockets don’t have a GUI :-)

2007 JavaOneSM Conference | Session TS-9667 | 27

Running JPF
● Actually best to check out and build from svn
svn checkout https://svn.sf.net/svnroot/javapathfinder/trunk

build-tools/bin/ant run-tests jar

● Then run jpf shell script or batch file
● export CLASSPATH=myproject.jar
● jpf MyMainClass

2007 JavaOneSM Conference | Session TS-9667 | 28

JPF Ant
● Can run under Ant
● No taskdef—Just run java gov.nasa.jpf.JPF
● Must provide <classpath> including your

classes and JPF jars
● MUST specify fork=true

2007 JavaOneSM Conference | Session TS-9667 | 29

JPF IDE
● No IDE plug-ins at present
● SVN repository is an Eclipse project

● Just tell Eclipse about it
● Or even do initial checkout with SubClipse

● Advice: Use Eclipse “Variables” to refer to
“External JARs” from a normal project

2007 JavaOneSM Conference | Session TS-9667 | 30

JPF and States
● Every method calls potentially changes state
● Assume you call Random nextInt(10)

● Has 10 possible outcomes; might be used in switch
● Normal testing (JUnit?) will exercise only one

● JPF provides custom API for this:
● Verify.random(10);
● Under JPF will enumerate all states
● Run under “normal” JVM software will act like

nextInt(10)

2007 JavaOneSM Conference | Session TS-9667 | 31

JPF and Thread Deadlocks
● Assignment

● On paper or on your laptop, write a very short
program that will result in a thread deadlock
● Condition when no non-daemon threads are runnable

public class InstantDeadlock {
public static void main(String[] args)
throws Exception {

Thread.currentThread().join();
}

}

2007 JavaOneSM Conference | Session TS-9667 | 32

Finding Thread Deadlocks
● That one’s easy to find

● Unless buried in 150KLOC
● Real-world thread deadlocks much harder to find
● JPF catches them quickly

2007 JavaOneSM Conference | Session TS-9667 | 33

Thread Deadlock Found
==================================== snapshot #1
thread index=0,name=main,status=WAITING,this=java.la

ng.Thread@3,target=null,priority=5,lockCount=1
waiting on: java.lang.Thread@3
call stack:

at java.lang.Object.wait(Object.java:474)
at java.lang.Thread.join(Thread.java:190)
at InstantDeadlock.main(InstantDeadlock.java

:8)
=== results
error #1: gov.nasa.jpf.jvm.NotDeadlockedProperty

2007 JavaOneSM Conference | Session TS-9667 | 34

JPF Summary
● Good tool for finding certain classes of errors

at runtime
● State enumeration provides coverage
● Deadlock checking useful in Threads

● Requires more setup than PMD, FindBugs
● Majorly extensible and configurable

● Not in a 50-minute talk—see documentation

2007 JavaOneSM Conference | Session TS-9667 | 35

Agenda
PMD
FindBugs
JPF
Other

2007 JavaOneSM Conference | Session TS-9667 | 36

Pushing Javac
● Standard javac does checking required by JLS
● More semi-supported warnings with -Xlint
● e.g, javac -Xlint:path

● Warn about non-existent JARs on classpath!
● Half a dozen others (some toggles)

● Read current JDK software doc for details!

2007 JavaOneSM Conference | Session TS-9667 | 37

Pushing the IDE
● Eclipse, NetBeans IDE can do

considerable checking
● Eclipse

● Enable project-specific settings
● Eclipse will save these settings to project

CVS/SVN

2007 JavaOneSM Conference | Session TS-9667 | 38

“Never…have so many owed so much to so few lines of code”
JUnit
● JUnit is the best-known Unit Testing framework

for Java technology; every coder should use it
● I would love to talk about it for an hour, or for

two days
● If you don’t already use JUnit, download it

fromhttp://www.junit.org/ and order a copy of J.B.
Rainsberger’s JUnit In Action
● Just do it!

Churchill paraphrase is by Martin Fowler

2007 JavaOneSM Conference | Session TS-9667 | 39

No Shortage of Other Tools
● Jlint

● Venerable code analyzer
● VerifyDesign

● Checks that code only uses allowed type
● Supporting program-to-interface

● Jikes
● IBM open source compiler with lots of warnings

● More!
● See http://pmd.sourceforge.net/similar-projects.html

2007 JavaOneSM Conference | Session TS-9667 | 40

For More Information
See also:

● Related sessions
● Vast literature on software quality!
● My book: Checking Java Programs

(O’Reilly “Short Cut” series)
● See http://cjp.darwinsys.com/ for examples download
● http://www.oreilly.com/catalog/9780596510237

● PMD: http://pmd.sourceforge.net/
● FindBugs: http://findbugs.sourceforge.net/
● JPF: http://javapathfinder.sourceforge.net/
● JUnit: http://www.junit.org/

2007 JavaOneSM Conference | Session TS-9667 | 41

Summary
● PMD: Static source code checker
● FindBugs: Static byte-code checker
● JPF: Dynamic model checker
● More important: Tool builder/explorer mindset!

May the Source be with
you.But not the bugs!

2007 JavaOneSM Conference | Session TS-9667 | 42

Q&A
Ian Darwin
http://cjp.darwinsys.com/

2007 JavaOneSM Conference | Session TS-9667 |

TS-9667

Testing Java Code:
Beyond the IDE

Ian F. Darwin
RejmiNet Group Inc.
http://www.rejmi.net/

