
2007 JavaOneSM Conference | Session TS-9861 |

TS-9861

Advanced Java™ Programming
Language Refactoring:
Pushing the Envelope
Tom Ball
Technical Director, Developer Products Group
Sun Microsystems, Inc.
http://www.netbeans.org/

2007 JavaOneSM Conference | Session TS-9861 | 2

Goal of This Talk

Learn how automated Java™
programming language refactoring
technology is improving, how it works,
and how your project can benefit.

What you will gain

2007 JavaOneSM Conference | Session TS-9861 | 3

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 4

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 5

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 6

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 7

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 8

Software Economics 101

● Software has an intrinsic value
● Software projects have unique half-lives
● Developers add value by changing software

● Adding features
● Improving quality, performance

● Changes have a cost
● Time to implement, deploy
● Developers are expensive
● Lost opportunities

● Changes must add more value than their cost

2007 JavaOneSM Conference | Session TS-9861 | 9

The Bad News

● The pace of software change is increasing:
● Release early and often
● Continuous betas
● New technology half-lives shrinking

● Developer costs are increasing:
● Project complexity increasing
● Baby boomers approaching retirement
● Yet CS majors continue to decline

● Existing methodologies aren’t scaling

2007 JavaOneSM Conference | Session TS-9861 | 10

The Good News

● Agile methodologies are gaining acceptance
● New frameworks are reducing costs of

client-server applications
● JavaServer™ Faces Technology
● Ruby on Rails™

● AJAX toolkits
● Development tools are becoming more capable

● IDEs all integrating refactoring
● Java technology defect analysis tools becoming

mainstream

2007 JavaOneSM Conference | Session TS-9861 | 11

Refactoring 1.0 Definition

●Refactoring is the process of changing
a software system in such a way that it

does not alter the external behavior
of the code yet improves its

internal structure.”
●

●Refactoring: Improving the Design of Existing Code
Martin Fowler, 1999

●“

2007 JavaOneSM Conference | Session TS-9861 | 12

1.0 Definition Limits

● A refactoring had to be in “the book”
● IDE menu entries reflected this:

● “Introduce Parameter Object”
● “Form Template Method”

● Terminology scares away new users
● Refactoring is done “in the small”

● Code hand-selected
● Refactoring invoked via menus
● Preview detailing every change
● Developer should review every change before commit

2007 JavaOneSM Conference | Session TS-9861 | 13

Refactoring 2.0

● Continually integrated into workflow
● “Just do it” smart editing
● Tools share rich model of projects
● Integrated defect detection

● Coupled with defect correction (when possible)
● Automated re-engineering

● Large-scale application of small refactorings
● API migration

2007 JavaOneSM Conference | Session TS-9861 | 14

Refactoring 2.0 Definition?

● “Refactoring is the process of
continually updating a software
system in such a way that it adds

significant value without incurring
major cost or risk.”

●

●

2007 JavaOneSM Conference | Session TS-9861 | 15

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 16

Java Technology
Model-Driven Editing

● All IDEs now use models of Java
technology projects
● Aids navigation

● Jump to definitions, parent classes and methods
● Find element references accurately
● Editor navigation aligns to developer’s map

● Error detection
● Type conflicts
● Invalid overriding, method and parameter names

● Richer models
● Lexical Syntactic Semantic
● More accurate model allows more safe capabilities

2007 JavaOneSM Conference | Session TS-9861 | 17

Java Technology Compiler
IDE Integration

● IDEs now use Java technology
compiler-generated ASTs
● Java programming language semantic modeling

very difficult
● Accurate type relationships hard
● Generic types much harder
● Let the compiler gurus figure it all out

● Error reporting fully synced to build messages
● New Java programming language features

quickly supported
● All Java IDEs will soon leverage compiler

2007 JavaOneSM Conference | Session TS-9861 | 18

Editor Tips

● Editor tips show suggested changes to source
● Based on problems found while editing

● Background compilation errors
● Independent model checks

● Many problems have direct solutions
● Tip suggests one or more refactoring solutions

● Accepting tip applies immediate refactoring
● Eliminates hand selection, manual approval of change

● Refactoring now rarely a separate activity
● Soon tests will be configurable, expandable

2007 JavaOneSM Conference | Session TS-9861 | 19

DEMO
Java Programming Language Editor Tips

2007 JavaOneSM Conference | Session TS-9861 | 20

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 21

What is Reengineering?

● Refactoring is not supposed to change behavior

but...

Sometimes program behavior needs changing

● Examples:
● Anti-pattern detection and correction
● Global refactoring and re-design
● API Migration

2007 JavaOneSM Conference | Session TS-9861 | 22

Anti-Patterns

● Best practices often have inverse anti-patterns
● Security anti-pattern examples

● Non-final public static variables
● Incorrect privileged code declaration and use

● Concurrency anti-pattern examples
● Overly broad synchronization
● Incorrect lock ordering

● Static analysis can detect and often fix errors

2007 JavaOneSM Conference | Session TS-9861 | 23

Jackpot Reengineering

● Jackpot executes custom queries
● Full access to complete Java language semantic model
● Scales to multiple, large projects

● Transformers can modify query matches
● Not limited to classic refactoring
● The only restriction is that result must compile

● Rule language
● Transforms statements and expressions
● Jackpot API for other transformations

● Engine integrated in NetBeans™ 6.0 IDE

2007 JavaOneSM Conference | Session TS-9861 | 24

DEMO
Jackpot Quick Look

2007 JavaOneSM Conference | Session TS-9861 | 25

Reengineering Uses

● API evolution
● Update genericized class clients
● Convert deprecated references

● API migration
● Service replacement
● Framework switching

● Evolve projects to meet current best practices
● Eliminate micro-optimizations
● Add annotations

2007 JavaOneSM Conference | Session TS-9861 | 26

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 27

Model-Driven Tool Ingredients

● Project definition
● Complete source file list
● Libraries, dependencies
● Build settings

● Parse trees
● Type hierarchy
● Element (symbol) hierarchy
● Model-based source rewriter

} analyze only

2007 JavaOneSM Conference | Session TS-9861 | 28

Useful Java Platform, Standard
Edition (Java SE Platform) v.6 API

● javac Compiler API
● com.sun.source.*
● Parse tree classes, utilities

● Java Specification Request (JSR) 269
● javax.lang.model.*
● Type and element classes, utilities

● JSR 199
● javax.tools.*
● Compiler invocation

2007 JavaOneSM Conference | Session TS-9861 | 29

Useful NetBeans 6.0 IDE API

● Java Source API
● org.netbeans.api.java.source.*
● Compiler integration
● References database
● Source code editing

● Jackpot API
● org.netbeans.api.jackpot.*
● Reengineering command, UI support

● Other modules
● Lots of reference code for different tasks

2007 JavaOneSM Conference | Session TS-9861 | 30

Anatomy of a Model-Driven Task

● Create Java Source instance
● Source file list
● Sourcepath, classpath and boot classpath
● Build settings
● Class, package indices

● Execute one or more tasks with it
● runUserActionTask() for queries
● runModificationTask() for refactorings

● Commit ModificationResult to change source

2007 JavaOneSM Conference | Session TS-9861 | 31

Task Skeleton
// define visitor to be executed
TreeScanner scanner = new TreeScanner() { ... };

// define task to execute
CancellableTask task =

new CancellableTask<WorkingCopy>(){
public void run(WorkingCopy wc) {

wc.toPhase(Phase.RESOLVED);
wc.getCompilationUnit().accept(visitor);

}
public void cancel() { ... }

}
// execute task and commit its modifications

javaSource.runModificationTask(task).commit();

2007 JavaOneSM Conference | Session TS-9861 | 32

Basic Concepts

● Access parse trees using visitor pattern
● Don’t assume parent/child node types
● Parse trees may change
● Visitors make for tighter code

● Fewer corner cases to worry about
● Parse trees only persist per source file

● Do not hold references
● Parse trees, types, elements are immutable

● Submit replacement tree to rewrite

2007 JavaOneSM Conference | Session TS-9861 | 33

Example: Add @Override Annotation
// create Override annotation tree
TypeElement override =
 elements.getTypeElement("java.lang.Override");
AnnotationTree ann = make.Annotation(
 make.QualIdent(override), Collections.emptyList());

// create new modifiers tree with annotation
List<AnnotationTree> newAnns =
 new ArrayList<AnnotationTree>();
newAnns.addAll(mods.getAnnotations());
newAnns.add(ann);
ModifiersTree newMods = make.Modifiers(mods, newAnns);

// tell Java Source to substitute old modifiers for new
workingCopy.rewrite(mods, newMods);

2007 JavaOneSM Conference | Session TS-9861 | 34

What This Talk Will Cover

Refactoring 2.0?
Integrated Refactoring
Java Technology Reengineering
How It’s Done, How to Do It Yourself
Getting Radical: What’s Coming Soon

2007 JavaOneSM Conference | Session TS-9861 | 35

Upgrade to New Language Features

● Generify references
● Inspects client usage of generic classes
● Determines closest type parameters
● Reports suspicious use

● Convert for statements to enhanced for
● Convert interface constants to Enum
● Eliminate primitive wrappers for collections
● Convert parameter array to varargs
● Add @Overrides annotations

2007 JavaOneSM Conference | Session TS-9861 | 36

Concurrency Anti-Patterns

● Find unsafe construction
● Report ways partial objects can be published

● Wrap lock use in try/finally block
● Transform double-checked locking

● Replace with static lazy initialization
● Convert synchronized variable to atomic
● Narrow lock scope
● Remove unnecessary synchronization

2007 JavaOneSM Conference | Session TS-9861 | 37

Metrics-Driven Refactoring

● Metrics are related to code value
● Complexity measures
● Class coupling

● There are no absolute metric values, but…
● Lowering metrics increase value

● Reduced complexity/coupling == lower maintenance
● Move method to best place

● Moves method to class with highest coupling
● Split large method

2007 JavaOneSM Conference | Session TS-9861 | 38

Profiler-Driven Refactoring

● Static analysis cannot analyze all problems
● So add execution data to model
● Replace collection type

● Monitor collection use
● Match use to best algorithm

● Exclusive lock to ReadWriteLock
● Used for frequent, mostly read access

● Reduce lock granularity
● Introduce lock splitting, striping

2007 JavaOneSM Conference | Session TS-9861 | 39

Summary

● Java technology is taking lead in
refactoring technology

● Refactoring is now deeply integrated into IDEs
● Public APIs allow any developers to define

new refactorings
● Powerful Java technology refactorings are just

beginning to emerge

2007 JavaOneSM Conference | Session TS-9861 | 40

For More Information

Projects
● NetBeans 6.0 IDE: new model-driven Java code editor

● http://www.netbeans.info/downloads/dev.php
● Locksmith: concurrency refactorings for IntelliJ IDEA

● http://www.sixthandredriver.com/locksmith.html
● Sorcerer: AST-based source code references browser

● https://sorcerer.dev.java.net/

URLs
● Jackpot: http://jackpot.netbeans.org

2007 JavaOneSM Conference | Session TS-9861 | 41

Q&A

2007 JavaOneSM Conference | Session TS-9861 |

TS-9861

Advanced Java™ Programming
Language Refactoring:
Pushing the Envelope
Tom Ball
Technical Director, Developer Products Group
Sun Microsystems, Inc.
http://www.netbeans.org/

