
2007 JavaOneSM Conference | Session TS-9972 |

Session TS-9972

Ruby Tooling:
State of the Art
Tor Norbye and Martin Krauskopf

Sun Microsystems
http://www.sun.com

2007 JavaOneSM Conference | Session TS-9972 | 2

Goal

Demonstrate that full-fledged integrated
development environments (IDEs)
can significantly boost programmer
productivity for dynamic languages
such as Ruby.

2007 JavaOneSM Conference | Session TS-9972 | 3

Ruby Tooling: State of the Art

● Much of the work is not Ruby-specific
● The techniques apply to most other dynamic languages

● Expect similar tooling elsewhere

2007 JavaOneSM Conference | Session TS-9972 | 4

Non-Goals
● Coverage of the latest type inference research

in academia
● This talk focuses on state of well-known Ruby tools
● Rapidly moving target!

● Discuss all aspects of Ruby development: Rails…
● Fair and balanced IDE shoot-out

● Editors: Textmate, Emacs, Vim
● Commercial IDEs: IntelliJ, “Ruby In Steel”, Komodo

IDE
● Free IDEs: Eclipse RDT, RadRails/Aptana and DLTK,

NetBeans™ IDE

2007 JavaOneSM Conference | Session TS-9972 | 5

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 6

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 7

“We Don’t Need No Stinking IDEs”

● You Java™ technology people need IDEs
to help you with all that boiler plate code;
my language is much cleaner than that”
● DRY principle—don’t repeat yourself
● Real programmers don’t use a crutch like an IDE

● I don’t need all that bloat—I have Emacs!
● Eight Megabytes And Continually Swapping

“

2007 JavaOneSM Conference | Session TS-9972 | 8

Don’t Forget Vim!

Source: http://eigenclass.org/hiki/rcodetools-screenshots

2007 JavaOneSM Conference | Session TS-9972 | 9

Editor vs. Full-Blown IDE

● Emacs is an IDE
● For some, it’s a login shell, a mail tool…

● IDE facilities
● Support for all coding related tasks
● Team collaboration: tight version control system

integration, integrated chat and code sharing
● Tasks/TODO management, project system
● Debugging infrastructure: balloon eval, thread view…
● Plug-in management

2007 JavaOneSM Conference | Session TS-9972 | 10

Local File Editing History Diff

2007 JavaOneSM Conference | Session TS-9972 | 11

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 12

Tools Supporting Ruby Debugging

● CLI tools
● debug.rb, ruby-debug-cli gem, breakpointer

● Power editors
● Emacs, Textmate, (Vim?)

● IDEs
● Arachno, DLTK, FreeRIDE, Komodo, Mr. Guid,

Mondrian, NetBeans, RadRails, RDT, Ruby In Steel,...

2007 JavaOneSM Conference | Session TS-9972 | 13

CLI Tools

● debug.rb
● ruby -rdebug hello.rb

● Breakpointer
● <rails_app>/script/server
● <rails_app>/script/breakpointer
● breakpoint call

● ruby-debug-cli gem
● rdebug hello.rb

2007 JavaOneSM Conference | Session TS-9972 | 14

Tools Supporting Ruby Rebugging

● CLI tools
● debug.rb, ruby-debug-cli gem, breakpointer

● Power editors
● Emacs, Textmate, (Vim?)

● IDEs
● Arachno, DLTK, FreeRIDE, Komodo, Mr. Guid,

Mondrian, NetBeans, RadRails, RDT, Ruby In Steel...

2007 JavaOneSM Conference | Session TS-9972 | 15

Techniques

● Kernel#set_trace_func(event_handler)
● Kent Sibilev's ruby-debug-base

● Handler: at_line, at_breakpoint
at_catchpoint, at_tracing

● Native C Ruby extension
● Others (hacking interpreter)

2007 JavaOneSM Conference | Session TS-9972 | 16

Techniques

● Kernel#set_trace_func(event_handler)
● Kent Sibilev’s ruby-debug-base

● Handler: at_line, at_breakpoint
at_catchpoint, at_tracing

● Native C Ruby extension
● Others (hacking interpreter)

2007 JavaOneSM Conference | Session TS-9972 | 17

Techniques

● Kernel#set_trace_func(event_handler)
● Kent Sibilev’s ruby-debug-base

● Handler: at_line, at_breakpoint
at_catchpoint, at_tracing

● Native C Ruby extension
● Others (hacking interpreter)

2007 JavaOneSM Conference | Session TS-9972 | 18

Techniques

● Kernel#set_trace_func(event_handler)
● Kent Sibilev’s ruby-debug-base

● Handler: at_line, at_breakpoint
at_catchpoint, at_tracing

● Native C Ruby extension
● Others (hacking interpreter)

2007 JavaOneSM Conference | Session TS-9972 | 19

Implementing frontend

● From scratch
● Choose technique

● ruby-debug-base for C Ruby
● set_trace_func for JRuby

● Communication protocol
● etc.
● Reinventing the wheel
● Slow progress of Ruby debugging

2007 JavaOneSM Conference | Session TS-9972 | 20

Solution: Debug-Commons

● Open source rubyforge.org project
● Common effort
● RDT, NetBeans
● Nice contribution from Markus Barchfeld (RDT)
● DLTK and others?

● IDE-independent
● Language-independent

2007 JavaOneSM Conference | Session TS-9972 | 21

Future Works, Aims
● debug-commons

● frontend entry point
● Debugging standard in the future (as Java’s JPDA)
● A lot of work requires more people to get involved
● Gain for community as well as for all frontend

implementers
● jruby-debug (fast debugging for JRuby)
● Cross-language debugging

2007 JavaOneSM Conference | Session TS-9972 | 22

Summary

● Ruby debugging quickly becoming mature
● Full-fledged and fast debuggers frontends

are available
● Cooperation is working well
● Join the debug-commons project
● Still a lot of work to be done

2007 JavaOneSM Conference | Session TS-9972 | 23

For More Information

● Debug Commons
● http://debug-commons.rubyforge.org/
● http://debug-commons.rubyforge.org/misc/ruby-

debugging.html
● Ruby-debug

● http://www.datanoise.com/ruby-debug/
● http://rubyforge.org/projects/ruby-debug/

2007 JavaOneSM Conference | Session TS-9972 | 24

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 25

IDEs and Boilerplate
● Java IDE: add a private field foo and apply encapsulate

field refactoring or quick fix
● IDE generates getter and setter methods
● IDE can collate these into a logical property

in navigator
● Ruby: add attr_accessor :foo and the

language/runtime provides getter and setter methods
● However, you still have to code…

● Lots of common idioms
● Rails has a large body of popular templates

2007 JavaOneSM Conference | Session TS-9972 | 26

Code Templates and Snippets

● Live code templates
● Linked substitution of related and logical variables
● With “DRY”, related variables not as common in Ruby

● Semantic information helps:
● Choose variable names guaranteed to be unique:

no accidental aliasing or side effects
● Templates referring to existing variables can

automatically use the right one
● For example, a template referencing a hash can expand to

using a hash present in the local scope

2007 JavaOneSM Conference | Session TS-9972 | 27

Live Template Example

Linked logical variable: o

hashkeys:
${name type=”Hash”}.each_key { |${o new}| yield(${o}) }

def foo
 o = 50
 new_topic_values = { :title => "AnotherTopic" }
 new_array = [1,2,3]

 # Expand template hashkeys
 new_topic_values.each_key { |p| yield(p) }

end

2007 JavaOneSM Conference | Session TS-9972 | 28

Code Templates and Snippets
● ${param_name type="Fixnum"}

● Requires parameter type to be of a specific type
● This may help the IDE match an existing variable

with this parameter
● ${param_name new}

● The variable name will be a new, unique local variable
● There are similar variables for fields, classes,

constants, etc.
● ${param_name default=”file”}

● Specify a default name to be used

2007 JavaOneSM Conference | Session TS-9972 | 29

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 30

Static Typing vs. Dynamic Typing
Example 1:

public List javaUnmodifiableList(List list) {
 return new Ar<complete> ==> ArrayList

def ruby_unmodifiableList(list)
 return Ar<complete> ==> ?

Example 2:

public void javaTrim(String s) {
 return s.tr<complete> ==> s.trim()

def ruby_chomp(s) {
 return s.ch<complete> ==> ?

2007 JavaOneSM Conference | Session TS-9972 | 31

Code Completion

● Not the same as automatic { and } pair matching,
inserting a matching “end” for a “begin”, etc.

● Goal: Determine the exact set of applicable
methods, instance variables, class variables,
classes, or modules under the cursor

● Many uses in the IDE—not about keystrokes
● Completion pop-up, parameter help,

documentation pop-up
● Goto declaration
● Rename refactoring, other refactorings

2007 JavaOneSM Conference | Session TS-9972 | 32

Completion Scenarios

● Exploring an unfamiliar class
● Exploring available modules and classes
● Learning or confirming method parameter usage
● Learning the language

● Completion on %: show and describe %q, %Q, %r,…
● Completion on $: describe globals - $*, $<,…
● Completion in \ in regexps: describe \A, \S, \w,…
● Completion on Ruby keywords: explain yield,

unless…

2007 JavaOneSM Conference | Session TS-9972 | 33

Completion Usage Example

2007 JavaOneSM Conference | Session TS-9972 | 34

The Index

● Completion prerequisite: global knowledge
● Know about user classes
● Know about libraries: Ruby built-in libraries AND gems
● This is typically what separates editors from IDEs

● Index allows fallback mechanism: prefix matching
● unknown.descr matches

● OCI8:describe(name)
● Exception::describe_blame
● Generators::HtmlMethod::description

2007 JavaOneSM Conference | Session TS-9972 | 35

The NetBeans IDE Ruby Lucene Index

2007 JavaOneSM Conference | Session TS-9972 | 36

Singleton Method Completion

● Singleton method completion
● File.exi => File.exists, String.ne => String.new

● Algorithm
● Index knows about singleton methods from parse trees
● Determine the exact class on the left hand side
● May involve looking at require statements transitively
● Add all its methods known to be singleton methods
● Iterate recursively up the chain to include inherited

methods from superclasses and module mixins

2007 JavaOneSM Conference | Session TS-9972 | 37

Object Literal Completion

● Literal method completion
● “foo”.gs => String.gsub, 5.ea => Fixnum.each,…

● Completion algorithm
● Look at lexical tokens, determine corresponding type
● Hashes, arrays, numbers, strings, regular expressions,

symbols, nil/true/false,…
● Use corresponding built-in type for literals (Hash,

Array, String, Fixnum, Regexp, etc.) and apply same
algorithm as for singleton method completion

● This time, don’t exclude instance methods

2007 JavaOneSM Conference | Session TS-9972 | 38

Inherited Method Completion

● Inherited method completion
● Within a class extending TestCase: as => assert_*

● Completion algorithm
● Look at the enclosing class to determine supertype
● Add methods from superclasses and mixins
● This time, don’t filter out private or protected methods

2007 JavaOneSM Conference | Session TS-9972 | 39

Variable Completion

● Track variable types in local scope
 def block_scanf(fstr,&b)
 fs = Scanf::FormatString.new(fstr)
 str = self.dup
 final = []
 begin
 current = str.scanf(fs)
 final.push(yield(current)) unless current.empty?
 str = fs.string_left
 end until current.empty? || str.empty?
 return final
 end

2007 JavaOneSM Conference | Session TS-9972 | 40

Tracking Variable Types

● If we see an assignment where we know the
expression type, record it
● x = Foo::Bar.new => x is now of type Foo::Bar

y = /whatever/ => y is now of type Regexp
x = foobar() => x is now unknown again

● Completion algorithm
● Track variables up to the completion point
● For known types, apply normal instance completion

2007 JavaOneSM Conference | Session TS-9972 | 41

Dealing With Uncertainty

● Works for instance vars, class vars, globals too
● Unless intermediate calls have side effects

 def block_scanf(fstr,&b)
 @fs = Scanf::FormatString.new(fstr)
 @str = self.dup
 final = []
 begin
 current = str.scanf(@fs)
 final.push(yield(current)) unless current.empty?
 str = @fs.string_left
 end until current.empty? || str.empty?
 return final
 end

2007 JavaOneSM Conference | Session TS-9972 | 42

Dealing With Uncertainty

● Let the user decide or interpret the results
● For example, show best guesses first, then list

all matches

2007 JavaOneSM Conference | Session TS-9972 | 43

Enhanced Variable Tracking

● Compute expression types: x = foo().bar()
● Store return types in the index and use these to

compute expression types—when possible
● Return type is frequently not known

● Suppose String#chomp always returns a String,
and String#count always returns a Fixnum:
x = “foo\n”.chomp().count()
● We now know that x is of type Fixnum
● Local variable tracking can proceed

2007 JavaOneSM Conference | Session TS-9972 | 44

Indexing Return Types

● When indexing code, look for return statements
and last expressions

● If the type is known, record it
● This method returns AssertionMessage

def build_message(head, template=nil, *arguments)
 template &&= template.chomp
 return AssertionMessage.new(head, template, arguments)
end

2007 JavaOneSM Conference | Session TS-9972 | 45

Multiple Return Types

● A method can have multiple return types
● If the number is small—record all, and let

completion include all possibilities
● This method returns {FalseClass,TrueClass}:
 def has_expires?
 @hash.each do |k, v|
 v.each do |tuple|
 return true if tuple.expires
 end
 end
 false
 end

2007 JavaOneSM Conference | Session TS-9972 | 46

Full Class Scope Type Tracking

● Track all assignments to class instance variables
and class variables

● If there are no unknown type assignments
● We can deduce the possible types of the symbol
● More than one is okay—completion can use a union
class Foo
 def whatever(x)
 @state = 0
 end
 def whatever(x)
 @state = “Error:” + x.to_s
 end
 # @state is Fixnum or String

2007 JavaOneSM Conference | Session TS-9972 | 47

Call Site Tracking

● def make_sound(duck)
 duck.qu^
end

● Usually think of “duck” as unknowable since
there is no type information here—any duck
will do

● We are already tracking method references
(for refactoring purposes)

● What if we know that make_sound is called only
once—with a known type?

2007 JavaOneSM Conference | Session TS-9972 | 48

Call Site Tracking (Cont.)

● More calls yields better accuracy
● Each additional call type constrains parameter methods
● Eventually, only “quack” may be present in all call types
● def swap(a,b)
 return b,a
end
swap(5,10);swap(“x”,”y”);swap(/r/,/s/)

● The only method available on a and b above is to_s
(other than the methods on Object and Class)

● This approach doesn’t work well when you write
methods before calling them (which is common…)

2007 JavaOneSM Conference | Session TS-9972 | 49

Parameter Usage Analysis

● We can also look at the actual operations
performed on the parameters
● def rotate_log(age)
 age.downto(0) do |i|
 ...

● Without looking at any uses of this method, we
can deduce that the type of age is either Integer
or Date, the only known classes which provide a
downto method

● (Unless the program is relying on method_missing)

2007 JavaOneSM Conference | Session TS-9972 | 50

Parameter Usage Analysis (Cont.)

● It’s not as simple as it sounds
● You have to know that the parameter value is still

being used at the time of the method reference
(back to local variable type tracking)

● Control flow can introduce complications:
 def combine(s)
 if (foo())
 s.downto(0)
 …

● Here we can’t conclude that s is an Integer because
the call to foo() could have let other types legally
bypass the downto call

2007 JavaOneSM Conference | Session TS-9972 | 51

Type Hints and Type Assertions

● Before annotations in Java™ code, JavaDoc™

tool markers were used to store metadata for
tool use

● We can do the same with Ruby comments
● Record parameter types and return values

in the RDoc

2007 JavaOneSM Conference | Session TS-9972 | 52

FXRuby

Source: FXRuby-1.6.5/lib/fox16/core.rb from http://www.fxruby.org

#
Draw a circle centered at (_x_, _y_), with radius r.
#
=== Parameters:
#
+x+:: x-coordinate of the circle's center [Integer]
+y+:: y-coordinate of the circle's center [Integer]
+r+:: radius of the circle, in pixels [Integer]
#
See also #fillCircle.
#
def drawCircle(x, y, r)
 drawArc(x-r, y-r, 2*r, 2*r, 0, 360*64)
end

2007 JavaOneSM Conference | Session TS-9972 | 53

Ruby In Steel” IDE

Source: http://www.sapphiresteel.com/onlinehelp/Type%20Assertions.html

#:return:=>Array

#:arg:names=>Array

#:arg:aName=>String

def addName(names, aName)

 return names << aName

end

“

2007 JavaOneSM Conference | Session TS-9972 | 54

Type Hints

● We need an agreed upon convention
● Possibly one which allows multiple allowed types,

multiple possible return values, or even specific
required “quack” methods

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338

2007 JavaOneSM Conference | Session TS-9972 | 55

Flame War Alert!

● Type hinting is a highly controversial topic!
● Inserting actual type “constraints” into the source

files defeats the purpose of dynamic languages
● “Sorry, that’s not Ruby!”

● C Ruby relies on comment conventions to
document the libraries
● /* call-seq:

 * Time.at(seconds [, microseconds]) => time
 */ static VALUE time_s_at(argc, argv, klass)

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338

2007 JavaOneSM Conference | Session TS-9972 | 56

Type Hints

● Comments can lie
● So can type constraints expressed in comments
● Like comments, type hints express intent, not reality

● IDEs can help detect violations of the type
constraints, a la Java code’s FindBugs tool

● Parameter hints are not just for type inference
● Tooltip pop-ups on parameters
● Improved description of current entry during parameter

code completion

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338

2007 JavaOneSM Conference | Session TS-9972 | 57

Known Types

● JRuby bridges the Java technology and
Ruby worlds

● In the following we know everything about frame
and we can do accurate completion

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338

require 'java'

JFrame = javax.swing.JFrame
frame = JFrame.new("Hello Swing")
button = javax.swing.JButton.new("Click Me!")
frame.getContentPane.add button

2007 JavaOneSM Conference | Session TS-9972 | 58

Recorded Types

● Ruby encourages unit tests with a built-in testing
framework (Test::Unit)

● Ruby on Rails takes this even further
● Tools may run unit tests automatically after edits
● With some hooks, unit test execution can record

and attribute types for the user program
● Similar to, and perhaps performed by, code

coverage tools
● These are some of the parameter’s types, not all

● “Sampling”—types may depend on the input data

2007 JavaOneSM Conference | Session TS-9972 | 59

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 60

Goto Declaration

● Quick navigation (ctrl-click hyperlinks in
NetBeans IDE) to declaration point

● Relies on resolving types
● Tricky in Ruby because of “open classes”

● The “Test::Unit::TestCase” class is defined in many
places: test/unit/testcase.rb, active_record/fixtures.rb,
action_controller/test_process.rb,
action_web_service/test_invoke.rb,...

● “Goto the TestCase Declaration”—which one?

2007 JavaOneSM Conference | Session TS-9972 | 61

Heuristics

● If the reference includes the module qualifier,
we’re closer—if we know we’re looking for
Test::Unit::TestCase we can skip
RUNIT::TestCase

● Prefer documented versions of the class over
undocumented
● TestCase in testcase.rb matches; fixtures.rb does not
● Not enough: File is documented at length in both

ftools.rb and the standard Ruby library

2007 JavaOneSM Conference | Session TS-9972 | 62

Heuristics (Cont.)

● Uses of the class near the reference helps
disambiguate—match with methods in each file
● File.makedirs implies we are looking for File in ftools.rb

● Prefer matches in files that are required
● Require ‘ftools’
● May have to look transitively: If resolving “Context”:

require ‘irb’ will recursively require ‘irb/context’ which
defines IRB::Context

● May have to look at requires in parent classes as well

2007 JavaOneSM Conference | Session TS-9972 | 63

Heuristics (Cont.)

● Prefer “built-in” classes over other ones
● Unless they are defined in the user’s own project files
● e.g., prefer the built-in “File” over the ftools.rb File
● Stdlib matching is based on C comment signatures…

● When going to method declarations, additional
criteria are available
● Arity (number of arguments) matching
● Look in super classes and mixins for matching

inherited methods

2007 JavaOneSM Conference | Session TS-9972 | 64

Arity Matching

● #1: def method(arg1, arg2)
#2: def method(arg1, arg2, arg3=50)
#3: def method(arg1, arg2, *arg3)

● method(1) matches none of these methods
● method(x,y) matches #1, #2 and #3
● method(x,y,z) matches #2 and #3
● method(x,y,z,w) matches #3
● Used for occurrences highlighting, Goto Decl,…

2007 JavaOneSM Conference | Session TS-9972 | 65

Other Semantic Editing Features

● Smart selection: select progressively larger
surrounding logical code blocks: statement,
block, method, class…

● Find usages
● Including current class—can be split over multiple files

● Semantic highlighting
● Highlight unused local variables
● Highlight potentially accidental variable aliasing

in blocks
● Highlight other occurrences of current symbol

2007 JavaOneSM Conference | Session TS-9972 | 66

Agenda

Editors vs. IDEs
Debugging
Code Templates
Code Completion and Type Attribution
Goto Declaration
Refactoring
Demo

2007 JavaOneSM Conference | Session TS-9972 | 67

Refactoring

● Rename
● “Killer app”
● Complicated by metaprogramming

def def_method(mod, methodname, fname='(ERB)')
 mod.module_eval("def #{methodname}\n" + self.src +
 "\nend\n", fname, 0)
end

2007 JavaOneSM Conference | Session TS-9972 | 68

Refactoring

● Local variable/parameter rename
● Trivial (with a parse tree), and often quite handy
● Not the same as Search/Replace

● The third reference to foo below is a separate symbol

 def parse_mode(m)
 result = 0
 (1..9).each do |foo|
 result = 2*result + ((m[foo]==?-) ? 0 : 1)
 end
 foo = count(result)
 end

2007 JavaOneSM Conference | Session TS-9972 | 69

Example: Extract Method

● Move a selected chunk of text within a method
into its own method

● The IDE looks for local variables used within the
block, and converts these into parameters

● The IDE also replaces the selection with a call to
the new method

● The IDE may look for other code fragments that
can be converted to a call

● New variables created within the block and
referenced outside are converted to return values

2007 JavaOneSM Conference | Session TS-9972 | 70

Ruby Specific Refactorings

● Merge class parts
● Ruby classes are open and can span many files: this

merges them all (or portions of the class) into one
● Extract mixin

● Move features common to several classes into its own
module and add include it as a mixin

● Remove unused scope
● Remove unnecessary begin/end blocks

● Combine redundant exception handlers
● Handlers that do the same can be shared

2007 JavaOneSM Conference | Session TS-9972 | 71

Other Refactorings

● The usual OO-language refactorings also apply
● Extract Superclass, Convert local variable to a field,

Pull Up, Encapsulate Field, Inline Class/Method, move
Field/Method/Class, etc.

● Some of these refactorings can take advantage
of Ruby techniques
● Decorator pattern allows us to implement only the

unique methods and use a single method_missing to
dispatch everything else to the original decorated class

● Ruby-oriented refactoring books in the works

2007 JavaOneSM Conference | Session TS-9972 | 72

Multi-Language Editing

● Support “languages” like RDoc, Quoted Strings,
Regular Expressions, Ruby Within Strings
● Nested lexing, etc.

● Support RHTML/Eruby: Ruby within
HTML markup
● Full type attribution is necessary such that refactoring,

code completion, goto declaration and friends all work
● More complicated—not well supported anywhere yet*

● *At the time of this writing, probably obsolete when this is read

2007 JavaOneSM Conference | Session TS-9972 | 73

DEMO
NetBeans IDE + Ruby Support

2007 JavaOneSM Conference | Session TS-9972 | 74

Future Directions

● New and better Refactoring operations
● Smarter” code completion based on

improved heuristics
● Static analysis incorporating runtime logs

and statistics
● Perhaps the other way around as well—during a run

the debugger can poke the live object hierarchies and
perform checks traditionally done by tools like Findbugs

● Incorporate research: “Success Typings” type
inference algorithm, etc.

“

2007 JavaOneSM Conference | Session TS-9972 | 75

Summary

● Dynamic languages can benefit from features
typically available in Java IDEs

● Full-fledged Ruby IDEs in particular are
available now

● There is a lot of development in this area

2007 JavaOneSM Conference | Session TS-9972 | 76

For More Information
● http://wiki.netbeans.org/wiki/view/Ruby
● Ruby related sessions and BOFs:

● TS-9370: JRuby on Rails: Agility for the Enterprise
● TS-6503: JRuby; Rails; and Java™ Platform, Enterprise Edition

(Java™ EE)
● TS-9535: Comparing the Developer Experience of Java EE 5.0,

Ruby on Rails, and Grails: Lessons Learned
● TS-9294: Exploiting JRuby: Building Domain-Specific Languages

for the Java™ Virtual Machine (JVM™)
● BOF-9179: Java Platform Web Applications Versus Ruby on Rails:

This Time with Tools
● BOF-2958: Dynamic Scripting Languages BOF
● BOF-5122: JRubME Is JRuby on Java™ Platform, Micro Edition

(Java™ ME)

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

2007 JavaOneSM Conference | Session TS-9972 | 77

Q&A

2007 JavaOneSM Conference | Session TS-9972 |

Session TS-9972

Ruby Tooling:
State of the Art
Tor Norbye and Martin Krauskopf
Senior Staff Engineer
Sun Microsystems
http://www.sun.com

