@Sun

< NetBeans

JavaOne

Ruby Tooling:
State of the Art

Tor Norbye and Martin Krauskopf

Sun Microsystems
http://www.sun.com

Session TS-9972

2007 JavaOne®M Conference | Session TS-9972 | iava.sun.com/javaone

JavaOne

Goal

“'Sﬂ'ﬂ 2007 JavaOnes™ Conference | Session TS-9972 | 2 java.sun.com/javaone

JavaOne

Ruby Tooling: State of the Art

* Much of the work is not Ruby-specific
* The techniques apply to most other dynamic languages

» Expect similar tooling elsewhere

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 3 java.sun.com/javaone

JavaOne

Non-Goals

- Coverage of the latest type inference research
In academia

» This talk focuses on state of well-known Ruby tools
- Rapidly moving target!
» Discuss all aspects of Ruby development: Rails...

* Fair and balanced IDE shoot-out
- Editors: Textmate, Emacs, Vim

- Commercial IDEs: Intellid, “Ruby In Steel”, Komodo
IDE

* Free IDEs: Eclipse RDT, RadRails/Aptana and DLTK,
NetBeans™ IDE

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 4 java.sun.com/javaone

JavaOne

Agenda

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

@ Sun 2007 JavaOnes™ Conference | Session TS-9972 5 java.sun.com/javaone

@Sun

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

2007 JavaOnes™ Conference Session TS-9972

java.sun.com/javaone

JavaOne

“We Don’t Need No Stinking IDEs”

- You Java™ technology people need IDEs
to help you with all that boiler plate code;
my language is much cleaner than that”

* DRY principle—don’t repeat yourself
- Real programmers don’t use a crutch like an IDE

* | don’t need all that bloat—I| have Emacs!
- Eight Megabytes And Continually Swapping

@ Sun

2007 JavaOne®™ Conference | Session TS-9972 | 7 java.sun.com/javaone

Don’t Forget Vim!

2007 JavaOne®M Conference

Session TS-9972

JavaOne

Editor vs. Full-Blown IDE

- Emacs is an IDE
* For some, it’s a login shell, a mail tool...

- |IDE facilities

« Support for all coding related tasks

- Team collaboration: tight version control system
Integration, integrated chat and code sharing

« Tasks/TODO management, project system

- Debugging infrastructure: balloon eval, thread view...
* Plug-in management

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 9 java.sun.com/javaone

JavaOne

Local File Editing History Diff

testcase.rb Mar 5, 2007 3:44:02 PM 414 Current File
lule Unit 15 =5 i: require "test/unit/util/backtracefilter I~ u
16 1
Ties everything together. If you subclass and 17 ig m:;:lzegiit
test methods, it takes care of making them inf 18 16
wrapping those tests into a suite. It alsoc dod 19 § ;
nitty-gritty of actually running an individual 20 17 # Ties everythln? together. If you 59b01555 a?d adl
. . . ' 18 # test methods, it takes care of making them into | |=
collecting its results into a Test::Unit::Tes] 21 : : :
19 # wrapping those tests into a suite. It also does t
class TestCase 22 ; i : N
20 # nitty-gritty of actually running an individual te
include Assertions 23 .]] .
. N , 21 # collecting its results into a Test::Unit::TestRes
include Util::BacktraceFilter 24
a5 22 class Testlase
i 3 thod 23 &3 include NewAssertions
e : 0 = g? 24 include Assertions
STARTED = 4 "::STARTED" 28 g: include Uitil::BacktraceFilter
DUl — Gemis 5r B o DL gg ,//- 27 # Creates a new instance of the fixture for runni
28 # test represented by test method name.
Creates a new instance of the fixture for ri 31 — —
2 29 def initialize(methcd name)
test represented by test _method name. 32 —
30 unless (respond_teo? (method name) and
def initialize(test _method name) =5 33 H
31 {method (method_name).arity == 0 ||
unless(respond_to?(test method name) and 34 - :
: 32 method (method name).arity == -1}))
{method(test_method name).arity == 0 as 33 throw :invalid tost
method(test method name).arity == - 36 32 end ’ -
throw :invalid_test 37
- EE @method_name = method name
e 38 16 @test _passed = Erue
@method_name = Eest method name =% 39 / P
— = = a7 end
@test_passed = true 40 38
Saidd L 39 # Rolls up all of the test* methods in the fixtur
42 40 # one suite, creating a new instance of the fixtu
Rolls up all of the test* methods in the fi] 43 !
. . . 41 # each method.
one suite, creating a new instance of the f| 44 .
42 def self.suite
each metheod. 45 L
. 43 method names = public_instance_methods(true)
def self.suite 46 - = Ao
- 44 tests = method names.delete_ if {|method_name| m
method names = public instance_ methods(true 47 . -
— = e 45 suite = TestSuifte.new(name) e
tests = method names.delete if {|method nam 48 p]
N - 46 testa.sort.each de
suite = TestSuite.new(name) 49 a7 [test[L

Ir(_hn.ﬂ.l'.a_znr.f_n.nah_dn_’ - = 2? a8 .'(- y y= -

#.‘fig‘ﬂ 2007 JavaOne®™ Conference | Session TS-9972 | 10 java.sun.com/javaone

@Sun

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

2007 JavaOnes™ Conference Session TS-9972

uuuuuuuuuuuuu

aaaaaaa

JavaOne

Tools Supporting Ruby Debugging

- CLI tools
« debug.rb, ruby-debug-cli gem, breakpointer

- Power editors
- Emacs, Textmate, (Vim?)

- IDEs

* Arachno, DLTK, FreeRIDE, Komodo, Mr. Guid,
Mondrian, NetBeans, RadRails, RDT, Ruby In Steel,...

¢.':}m 2007 JavaOneSM Conference | Session TS-9972 | 12 java.sun.com/javaone

JavaOne

CLI Tools

- debug.rb
- ruby -rdebug hello.rb

- Breakpointer
- <rails app>/script/server
» <rails app>/script/breakpointer
« breakpoint call
* ruby-debug-cli gem
« rdebug hello.rb

#.‘fi_.‘a_’._’ 2007 JavaOne®™ Conference | Session TS-9972 | 13 java.sun.com/javaone

JavaOne

Tools Supporting Ruby Rebugging

» CLI tools
* debug.rb, ruby-debug-cli gem, breakpointer

* Power editors
- Emacs, Textmate, (Vim?)

* IDEs

* Arachno, DLTK, FreeRIDE, Komodo, Mr. Guid,
Mondrian, NetBeans, RadRails, RDT, Ruby In Steel...

¢.':}m 2007 JavaOnesM™ Conference | Session TS-9972 | 14 java.sun.com/javaone

JavaOne

Techniques

» Kernel#set trace func(event handler)
- Kent Sibilev's ruby-debug-base

- Handler: at line, at breakpoint
at catchp01nt at tracing

* Native C Ruby extension
Others (hacking interpreter)

¢.':}m 2007 JavaOneSM Conference | Session TS-9972 | 15 java.sun.com/javaone

JavaOne

Techniques

* Kernel#set_trace_func(event_handler)
- Kent Sibilev’'s ruby-debug-base

- Handler: at line, at breakpoint
at catchpoint, at tracing

* Native C Ruby extension
» Others (hacking interpreter)

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 16 java.sun.com/javaone

JavaOne

Techniques

» Kernel#set trace func(event handler)
- Kent Sibilev’s ruby-debug-base

- Handler: at line, at breakpoint
at catchpoint, at tracing

* Native C Ruby extension
» Others (hacking interpreter)

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 17 java.sun.com/javaone

JavaOne

Techniques

» Kernel#set trace func(event handler)
- Kent Sibilev’'s ruby-debug-base

- Handler: at line, at breakpoint
at catchp01nt at tracing

* Native C Ruby extension
Others (hacking interpreter)

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 18 java.sun.com/javaone

JavaOne

Implementing frontend

* From scratch

» Choose technique
* ruby-debug-base for C Ruby
- set trace func for JRuby

» Communication protocol

- efc.

Reinventing the wheel

Slow progress of Ruby debugging

¢.':}m 2007 JavaOnesM™ Conference | Session TS-9972 | 19 java.sun.com/javaone

JavaOne

Solution: Debug-Commons

» Open source rubyforge.org project
« Common effort
- RDT, NetBeans
* Nice contribution from Markus Barchfeld (RDT)
* DLTK and others?

- |IDE-independent
- Language-independent

@ Sun 2007 JavaOnes™ Conference | Session TS-9972 | 20 java.sun.com/javaone

JavaOne

Future Works, Aims

* debug-commons
* frontend entry point

* Debugging standard in the future (as Java’s JPDA)
+ A lot of work requires more people to get involved

» Gain for community as well as for all frontend
Implementers

* jruby-debug (fast debugging for JRuby)
» Cross-language debugging

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 21 java.sun.com/javaone

JavaOne

Summary

Ruby debugging quickly becoming mature

* Full-fledged and fast debuggers frontends
are available

Cooperation is working well
Join the debug-commons project
Still a lot of work to be done

@ Sun 2007 JavaOnes™ Conference | Session TS-9972 | 22 java.sun.com/javaone

JavaOne

For More Information

* Debug Commons
* http://debug-commons.rubyforge.org/

 http://debug-commons.rubyforge.org/misc/ruby-
debugging.html

* Ruby-debug
* http://www.datanoise.com/ruby-debug/
* http://rubyforge.org/projects/ruby-debug/

’SE,‘H 2007 JavaOne® Conference | Session TS-9972 | 23 java.sun.com /javaone

@Sun

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

2007 JavaOnes™ Conference Session TS-9972

uuuuuuuuuuuuu

aaaaaaa

JavaOne

IDEs and Boilerplate

- Java IDE: add a private field foo and apply encapsulate
field refactoring or quick fix

- IDE generates getter and setter methods

- |IDE can collate these into a logical property
In navigator

* Ruby: add attr accessor :foo and the
language/runtime provides getter and setter methods

- However, you still have to code...
* Lots of common idioms
* Rails has a large body of popular templates

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 25 java.sun.com/javaone

JavaOne

Code Templates and Snippets

» Live code templates
* Linked substitution of related and logical variables
- With “DRY?, related variables not as common in Ruby

» Semantic information helps:

» Choose variable names guaranteed to be unique:
no accidental aliasing or side effects

* Templates referring to existing variables can
automatically use the right one

« For example, a template referencing a hash can expand to
using a hash present in the local scope

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 26 java.sun.com/javaone

JavaOne

Live Template Example

hashkeys:

${name type="Hash”}.each key { |${o new}| yield(S${o}) }

def foo
o =50 Linked logical variable: o
new_topic values = { :title => "AnotherTopic" }
new array = [1,2,3]

Expand template hashkeys
new topic values.each key { |p| yield(p) 1}

end

#.‘fig‘ﬂ 2007 JavaOne®™ Conference | Session TS-9972 | 27 java.sun.com/javaone

JavaOne

Code Templates and Snippets

- ${param name type="Fixnum"}

* Requires parameter type to be of a specific type

« This may help the IDE match an existing variable
with this parameter

* ${param name new}

* The variable name will be a new, unique local variable

» There are similar variables for fields, classes,
constants, etc.

- ${param name default="file”}
« Specify a default name to be used

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 28 java.sun.com/javaone

@Sun

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

2007 JavaOne®M Conference Session TS-9972 29 javasun.com/

aaaaaaa

JavaOne

Static Typing vs. Dynamic Typing

Example 1:

public List javaUnmodifiableList(List list) {
return new Ar<complete> ==> ArrayList

def ruby unmodifiableList(list)
return Ar<complete> ==> ?

Example 2:

public void javaTrim(String s) {
return s.tr<complete> ==> s.trim()

def ruby chomp(s) {
return s.ch<complete> => 7

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 30 java.sun.com/javaone

E_a—\.

JavaOne

Code Completion

Not the same as automatic { and } pair matching,
inserting a matching “end” for a “begin”, etc.

Goal: Determine the exact set of applicable
methods, instance variables, class variables,
classes, or modules under the cursor

Many uses in the IDE—not about keystrokes

Completion pop-up, parameter help,
documentation pop-up

Goto declaration
Rename refactoring, other refactorings

@ Sun 2007 JavaOne®™ Conference | Session TS-9972 | 31 java.sun.com/javaone

JavaOne

@ Sun

Completion Scenarios

Exploring an unfamiliar class
Exploring available modules and classes
Learning or confirming method parameter usage

Learning the language

« Completion on %: show and describe %q, %Q, %r,...
- Completion on $: describe globals - $*, $<,...

- Completion in \ in regexps: describe \A, \S, \w,...

- Completion on Ruby keywords: explain yield,
unless...

2007 JavaOne®™ Conference | Session TS-9972 | 32 java.sun.com/javaone

JavaOne

Completion Usage Example

(ymatch(str) Regexp

Return only the latest partial gmattr_accessor Module
def latest_partials({gemdir) (ymattr_reader Module
latest = {} () mattr writer Module

all _partials(gemdir).each do |
base = File.basename(gp) Press 'Ctrl+Alt+5Space’ for All itemns, 'Ctrl+5Shift+5pace’ for Smart itermns
matches = f{.%)={({\d+\.)*\d+} /"

end H =

latest.collect { |k,v| w[1l] }

end match{str)

Expand each partial gem path w rxXp.match{str) => matchdata or nil

specified in the Gem spec. Eai

def each_leoad path(partials) Returns a Matchpata object describing the match, or nil if there was no
partials.each do |gp| match. This is equivalent to retrieving the value of the special variable $~

bage = Pile.basename(gp) " following a normal match.
specin = File.join(dir, "spe
if File.exist?(specin)
spec = eval(File.read(spec:
gepec.reguire paths.each deo
yvield(File.join({gp, rp))
end

J0.30.)(.)/.match{"abec")[2] #=> "b"

Q.‘fi_.‘a_’._’ 2007 JavaOne®™ Conference | Session TS-9972 | 33 java.sun.com/javaone

JavaOne

The Index

» Completion prerequisite: global knowledge
- Know about user classes
* Know about libraries: Ruby built-in libraries AND gems
- This is typically what separates editors from IDEs

- Index allows fallback mechanism: prefix matching

- unknown.descr matches
- OCIl8:describe(name)
- Exception::describe blame
» Generators::HtmIMethod::description

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 34 java.sun.com/javaone

JavaOne

The NetBeans IDE Ruby Lucene Index

806

Luke - Lucene Index Toolbox, v 0.6 (2005-02-16)

File Tools Settings Help

Overview | [y Documents | 3] Search| [] Files | S5 Plugins |

Number of fields: 15
Number of documents: 2110
Mumber of terms: 12584
Has deletions?: No

Index name: [Users /tor/netbeans /work/nbbuild/testuserdir/var/cache/gsf-index/0.106/53 [gsf

Index version: 1173819481142
Last modified: Tue Mar 20 12:31:35 PDT 2007
Directory Implementation: org.apache.lucene.store.FSDirectory

Select fields from the list below, and press button to view top terms in these fields. No selection means all fields.
Hint: use Shift-Click to select ranges, or Ctrl-Click to select multiple fields (or unselect all).
Available Fields: Top ranking terms. (Right-click for more options)

<attribute> |~ No Rank ~ [Field Text

<attrs> 1 47 <attribute> name |
<class> 2 12 <atrribute> type =
<class-ig> 3 11 <attribute> parent B
<constant> | | Show top terms -> | 4 9 <attribute> comment

<extends> Number of top terms: 5 9 <attribute> encodingstyle

<field> mg 6 9 <attribute> soapaction

<fgn= | 7 9 <attrribute> port

<in> 8 8 <attribute> attributes

<includes> 9 8 <attribute> address

<method> [+ 10 8 <attribute> value

Al][> 11 8 <attribute> body

Index name: (Users/tor/netbeans/work/nbbuild /testuserdir/var/cache/gsf-index/0.106 [s3 /gsf |

@Sun

2007 JavaOne®™ Conference | Session TS-9972 | 35

k...I T‘

java.sun.com/javaone

;

JavaOne

Singleton Method Completion

Singleton method completion
File.exi => File.exists, String.ne => String.new

Algorithm
Index knows about singleton methods from parse trees
Determine the exact class on the left hand side
May involve looking at require statements transitively
Add all its methods known to be singleton methods

Iterate recursively up the chain to include inherited
methods from superclasses and module mixins

@ Sun 2007 JavaOneS™ Conference | Session TS-9972 | 36 java.sun.com/javaone

;

JavaOne

Object Literal Completion

Literal method completion
“foo”.gs => String.gsub, 5.ea => Fixnum.each,...

Completion algorithm
Look at lexical tokens, determine corresponding type

Hashes, arrays, numbers, strings, regular expressions,
symbols, nil/true/false,...

Use corresponding built-in type for literals (Hash,
Array, String, Fixnum, Regexp, etc.) and apply same
algorithm as for singleton method completion

This time, don’t exclude instance methods

@Sun 2007 JavaOneS™ Conference | Session TS-9972 | 37 java.sun.com/javaone

= Java

JavaOne

Inherited Method Completion

* Inherited method completion
« Within a class extending TestCase: as => assert_*

» Completion algorithm
* Look at the enclosing class to determine supertype
* Add methods from superclasses and mixins
« This time, don't filter out private or protected methods

@ Sun 2007 JavaOne®™ Conference | Session TS-9972 | 38 java.sun.com/javaone

JavaOne

Variable Completion

= Track variable types in local scope

def block scanf (fstr, &b)
fs = Scanf::FormatString.new(fstr)
str = self.dup
final = []
begin
current = str.scanf (fs)
final .push(yield(current)) unless current.empty?
str = fs.string left
end until current.empty? || str.empty?
return final
end

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 39 java.sun.com/javaone

JavaOne

Tracking Variable Types

- If we see an assignment where we know the
expression type, record it

* X = Foo::Bar.new => x is now of type Foo::Bar
y = /whatever/ =>y is now of type Regexp
X = foobar() => X is now unknown again

» Completion algorithm
« Track variables up to the completion point
* For known types, apply normal instance completion

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 40 java.sun.com/javaone

JavaOne

Dealing With Uncertainty

* Works for instance vars, class vars, globals too
* Unless intermediate calls have side effects

def block scanf (fstr, &b)
@fs = Scanf::FormatString.new (fstr)
@str = self.dup
final = []
begin
current = str.scanf (Qfs)
final.push(yield (current)) unless current.empty?
str = (@fs.string left
end until current.empty? || str.empty?
return final
end

¢.':}m 2007 JavaOneSM Conference | Session TS-9972 | 41 java.sun.com/javaone

JavaOne

Dealing With Uncertainty

- Let the user decide or interpret the results

* For example, show best guesses first, then list
all matches

() read (name, length,offset) I0
readable?(file name) File
{p readable_real?(file name) File
readlines(name, sep_string) IO

_{]D readlink(link name) File
i readline|separator) Object
[y readlines (separator) Object
File.read|
= EH

read({name, length,offset)
I0.read({name, [length [, offset]]) => string

Opens the file, optionally seeks to the given offset, then returns length bytes
{defaulting to the rest of the file). read ensures the file is closed before

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 42 java.sun.com/javaone

JavaOne

Enhanced Variable Tracking

Compute expression types: x = foo().bar()

Store return types in the index and use these to
compute expression types—when possible

Return type is frequently not known
Suppose String#chomp always returns a String,

and String#count always returns a Fixnum:
X = “foo\n".chomp().count()

We now know that x is of type Fixnum
Local variable tracking can proceed

'@.':}m 2007 JavaOneSM Conference | Session TS-9972 | 43 java.sun.com/javaone

. Java

JavaOne

Indexing Return Types

* When indexing code, look for return statements
and last expressions

- If the type is known, record it
» This method returns AssertionMessage

def build message (head, template=nil, *arguments)
template &&= template.chomp
return AssertionMessage.new(head, template, arguments)
end

¢.':}m 2007 JavaOneSM Conference | Session TS-9972 | 44 java.sun.com/javaone

. Java

JavaOne

Multiple Return Types

- A method can have multiple return types

* If the number is small—record all, and let
completion include all possibilities

» This method returns {FalseClass, TrueClass}:

def has expires?
@hash.each do |k, v|
v.each do |tuple|
return true 1if tuple.expires
end
end
false
end

¢.':}m 2007 JavaOneSM Conference | Session TS-9972 | 45 java.sun.com/javaone

JavaOne

Full Class Scope Type Tracking

= Track all assignments to class instance variables
and class variables

* |If there are no unknown type assignments
* We can deduce the possible types of the symbol
* More than one is okay—completion can use a union

class Foo
def whatever (x)

@state = 0
end
def whatever (x)

@state = “Error:” + x.to_s
end

Q@state is Fixnum or String

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 46 java.sun.com/javaone

JavaOne

@ Sun

Call Site Tracking

- def make sound (duck)
duck.qu”®
end

- Usually think of “duck” as unknowable since
there is no type information here—any duck
will do

* We are already tracking method references
(for refactoring purposes)

- What if we know that make sound is called only
once—with a known type?

2007 JavaOne®™ Conference | Session TS-9972 | 47 java.sun.com/javaone

JavaOne

Call Site Tracking (Cont.)

@ Sun

More calls yields better accuracy

Each additional call type constrains parameter methods
Eventually, only “quack™ may be present in all call types

def swap(a,b)
return b, a
end
swap (5,10) ;swap (“x”,”y"”) ;swap(/x/,/s/)

The only method available on a and b above is to_s
(other than the methods on Object and Class)

This approach doesn’t work well when you write
methods before calling them (which is common...)

2007 JavaOne®™ Conference | Session TS-9972 | 48 java.sun.com/javaone

JavaOne

Parameter Usage Analysis

* We can also look at the actual operations
performed on the parameters

- def rotate log(age)
age.downto(0) do |1i]

- Without looking at any uses of this method, we
can deduce that the type of age is either Integer

or Date, the only known classes which provide a
downto method

* (Unless the program is relying on method missing)

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 49 java.sun.com/javaone

JavaOne

Parameter Usage Analysis (Cont.)

It's not as simple as it sounds

You have to know that the parameter value is still
being used at the time of the method reference
(back to local variable type tracking)

Control flow can introduce complications:
def combine(s)
if (foo())
s .downto (0)

Here we can’t conclude that s is an Integer because

the call to foo() could have let other types legally
bypass the downto call

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 50 java.sun.com/javaone

JavaOne

Type Hints and Type Assertions

- Before annotations in Java™ code, JavaDoc"™
tool markers were used to store metadata for
tool use

* We can do the same with Ruby comments

- Record parameter types and return values
in the RDoc

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 51 java.sun.com/javaone

JavaOne

FXRuby

Draw a circle centered at (x , y), with radius r.
=== Parameters:

+x+:: x-coordinate of the circle's center [Integer]
+y+:: y-coordinate of the circle's center [Integer]

+r+:: radius of the circle, in pixels [Integer]

See also #fillCircle.

H = HHHHHH N

def drawCircle(x, y, r)
drawArc(x-r, y-r, 2*r, 2*r, 0, 360%*64)
end

Source: FXRuby-1.6.5/lib/fox16/core.rb from http://www.fxruby.org

#.‘fig‘ﬂ 2007 JavaOne®™ Conference | Session TS-9972 | 52 java.sun.com/javaone

JavaOne

“Ruby In Steel” IDE

#:return:=>Array

#:arg:names=>Array

#:arg:aName=>String

def addName (names, aName)
return names << aName

end

Source: http://www.sapphiresteel.com/onlinehelp/Type%Z20Assertions.html

’S{.‘ﬂ 2007 JavaOnesM Conference | Session TS-9972 |

53

java.sun.com/javaone

JavaOne

Type Hints

- We need an agreed upon convention

» Possibly one which allows multiple allowed types,

multiple possible return values, or even specific
required “quack” methods

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338
@Sun

2007 JavaOneSM Conference | Session TS-9972 | 54 java.sun.com/javaone

JavaOne

Flame War Alert!

* Type hinting is a highly controversial topic!
* Inserting actual type “constraints” into the source

files defeats the purpose of dynamic languages
« “Sorry, that’'s not Ruby!”

* C Ruby relies on comment conventions to
document the libraries
- [* call-seq:
* Time.at(seconds [, microseconds]) => time
*| static VALUE time_s_at(argc, argv, klass)

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338
@ Sun 2007 JavaOnes™ Conference | Session TS-9972 | 55 java.sun.com/javaone

JavaOne

Type Hints

- Comments can lie
* S0 can type constraints expressed in comments
« Like comments, type hints express intent, not reality

* |IDEs can help detect violations of the type
constraints, a la Java code’s FindBugs tool

- Parameter hints are not just for type inference
» Tooltip pop-ups on parameters

* Improved description of current entry during parameter
code completion

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338

@ﬁ:’m 2007 JavaOneSM Conference | Session TS-9972 | 56 java.sun.com/javaone

JavaOne

Known Types

- JRuby bridges the Java technology and
Ruby worlds

- In the following we know everything about £rame
and we can do accurate completion

require 'java'

JFrame = javax.swing.JFrame

frame = JFrame.new("Hello Swing")

button = javax.swing.JButton.new("Click Me!")
frame.getContentPane.add button

Source: http://groups.google.com/group/comp.lang.ruby/browse_thread/thread/c5a19668a0963cb4/085debfba2fe6338
@ Sun

2007 JavaOneSM Conference | Session TS-9972 | 57 java.sun.com/javaone

JavaOne

@ Sun

Recorded Types

Ruby encourages unit tests with a built-in testing
framework (Test::Unit)

Ruby on Rails takes this even further
Tools may run unit tests automatically after edits

With some hooks, unit test execution can record
and attribute types for the user program

Similar to, and perhaps performed by, code
coverage tools

These are some of the parameter’s types, not all
“Sampling"—types may depend on the input data

2007 JavaOne®™ Conference | Session TS-9972 | 58 java.sun.com/javaone

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

@ Sun 2007 JavaOnes Conference | Session TS-9972 59 java.sun.com/javaone

JavaOne

Goto Declaration

Quick navigation (ctrl-click hyperlinks in
NetBeans IDE) to declaration point

Relies on resolving types

Tricky in Ruby because of “open classes”

The “Test::Unit::TestCase” class is defined in many

places: test/unit/testcase.rb, active record/fixtures.rb,
action_controller/test_process.rb,

action_web_service/test_invoke.rb,...
“Goto the TestCase Declaration™—which one?

@ Sun

2007 JavaOne®™ Conference | Session TS-9972 | 60 java.sun.com/javaone

JavaOne

Heuristics

* |If the reference includes the module qualifier,
we're closer—if we know we’re looking for
Test::Unit:: TestCase we can skip
RUNIT:: TestCase

* Prefer documented versions of the class over
undocumented
« TestCase in testcase.rb matches; fixtures.rb does not

* Not enough: File is documented at length in both
ftools.rb and the standard Ruby library

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 61 java.sun.com/javaone

JavaOne

Heuristics (Cont.)

» Uses of the class near the reference helps
disambiguate—match with methods in each file

* File.makedirs implies we are looking for File in ftools.rb

- Prefer matches in files that are required
* Require ‘ftools’

- May have to look transitively: If resolving “Context”.
require ‘irb’ will recursively require ‘irb/context’ which
defines IRB::Context

- May have to look at requires in parent classes as well

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 62 java.sun.com/javaone

JavaOne

Heuristics (Cont.)

* Prefer “built-in” classes over other ones
* Unless they are defined in the user’'s own project files
* e.g., prefer the built-in “File” over the ftools.rb File
- Stdlib matching is based on C comment signatures...

* When going to method declarations, additional
criteria are available

 Arity (number of arguments) matching

» Look in super classes and mixins for matching
iInherited methods

@ﬁ:’m 2007 JavaOneSM Conference | Session TS-9972 | 63 java.sun.com/javaone

Arity Matching

#1. def method(arg1, arg2)
#2. def method(arg1, arg2, arg3=50)
#3. def method(arg1, arg2, *arg3)

method(1) matches none of these methods
method(x,y) matches #1, #2 and #3
method(x,y,z) matches #2 and #3
method(x,y,z,w) matches #3

Used for occurrences highlighting, Goto Decl,...

2007 JavaOneSM Conference | Session TS-9972 | 64

;

JavaOne

Other Semantic Editing Features

Smart selection: select progressively larger
surrounding logical code blocks: statement,
block, method, class...

Find usages
Including current class—can be split over multiple files

Semantic highlighting
Highlight unused local variables

Highlight potentially accidental variable aliasing
In blocks

Highlight other occurrences of current symbol

@Sun 2007 JavaOneS™ Conference | Session TS-9972 | 65 java.sun.com/javaone

@Sun

Editors vs. IDEs

Debugging

Code Templates

Code Completion and Type Attribution
Goto Declaration

Refactoring

Demo

2007 JavaOnes™ Conference Session TS-9972

uuuuuuuuuuuuu

aaaaaaa

JavaOne

Refactoring

- Rename
« “Killer app”
» Complicated by metaprogramming

def def method(mod, methodname, fname=' (ERB) ')
mod.module eval ("def #{methodname}\n" + self.src +
"\nend\n", fname, O0)
end

#.‘fi_.‘a_’._’ 2007 JavaOne®™ Conference | Session TS-9972 | 67 java.sun.com/javaone

JavaOne

Refactoring

» Local variable/parameter rename
 Trivial (with a parse tree), and often quite handy

- Not the same as Search/Replace
 The third reference to £oo below is a separate symbol

def parse mode (m)
result = 0
(1..9) .each do |foo]
result = 2*result + ((m[fool==?-) 2?2 0 : 1)
end
foo = count(result)
end

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 68 java.sun.com/javaone

JavaOne

Example: Extract Method

Move a selected chunk of text within a method
Into its own method

The IDE looks for local variables used within the
block, and converts these into parameters

The IDE also replaces the selection with a call to
the new method

The IDE may look for other code fragments that
can be converted to a call

New variables created within the block and
referenced outside are converted to return values

2007 JavaOneSM Conference | Session TS-9972 | 69

JavaOne

Ruby Specific Refactorings

Merge class parts

Ruby classes are open and can span many files: this
merges them all (or portions of the class) into one

Extract mixin

Move features common to several classes into its own
module and add include it as a mixin

Remove unused scope
Remove unnecessary begin/end blocks

Combine redundant exception handlers
Handlers that do the same can be shared

@ Sun 2007 JavaOne$ Conference | Session TS-9972 | 70 java.sun.com/javaone

JavaOne

Other Refactorings

The usual OO-language refactorings also apply

Extract Superclass, Convert local variable to a field,
Pull Up, Encapsulate Field, Inline Class/Method, move
Field/Method/Class, etc.

Some of these refactorings can take advantage
of Ruby techniques

Decorator pattern allows us to implement only the
unique methods and use a single method_missing to
dispatch everything else to the original decorated class

Ruby-oriented refactoring books in the works

@Sun 2007 JavaOne®™ Conference | Session TS-9972 | 71 java.sun.com/javaone

;

JavaOne

Multi-Language Editing

Support “languages” like RDoc, Quoted Strings,
Regular Expressions, Ruby Within Strings

Nested lexing, efc.

Support RHTML/Eruby: Ruby within
HTML markup

Full type attribution is necessary such that refactoring,
code completion, goto declaration and friends all work

More complicated—not well supported anywhere yet*
*At the time of this writing, probably obsolete when this is read

@Sun 2007 JavaOneS™ Conference | Session TS-9972 | 72 java.sun.com/javaone

JavaOne

DEMO

NetBeans IDE + Ruby Support

2007 JavaOneSM Conference | Session TS-9972 | 73 iaua.sun.com/iauaone

E-.—\.I %;

JavaOne

Future Directions

New and better Refactoring operations

"Smarter” code completion based on
Improved heuristics

Static analysis incorporating runtime logs
and statistics

Perhaps the other way around as well—during a run
the debugger can poke the live object hierarchies and
perform checks traditionally done by tools like Findbugs

Incorporate research: “Success Typings” type
iInference algorithm, etc.

@ Sun 2007 JavaOne®™ Conference | Session TS-9972 | 74 java.sun.com/javaone

JavaOne

Summary

- Dynamic languages can benefit from features
typically available in Java IDEs

- Full-fledged Ruby IDEs in particular are
available now

* There is a lot of development in this area

@ Sun 2007 JavaOnes Conference | Session TS-9972 | 75 java.sun.com/javaone

—_ Java

JavaOne

For More Information

* http://wiki.netbeans.org/wiki/view/Ruby

* Ruby related sessions and BOFs:

TS-9370: JRuby on Rails: Agility for the Enterprise

TS-6503: JRuby; Rails; and Java™ Platform, Enterprise Edition
(Java™ EE)

TS-9535: Comparing the Developer Experience of Java EE 5.0,
Ruby on Rails, and Grails: Lessons Learned

TS-9294: Exploiting JRuby: Building Domain-Specific Languages
for the Java™ Virtual Machine (JVM™)

BOF-9179: Java Platform Web Applications Versus Ruby on Rails:
This Time with Tools

BOF-2958: Dynamic Scripting Languages BOF

BOF-5122: JRubME Is JRuby on Java™ Platform, Micro Edition
(Java™ ME)

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

@ Sun

2007 JavaOneSM Conference | Session TS-9972 | 76 java.sun.com/javaone

JavaOne

2007 JavaOnesM Conference | Session TS-9972 | 77 iaua.sun.com/iauaone

@Sun

< NetBeans

JavaOne

Ruby Tooling:
State of the Art

Tor Norbye and Martin Krauskopf

Senior Staff Engineer
Sun Microsystems
http://www.sun.com

Session TS-9972

2007 JavaOne®M Conference | Session TS-9972 | iava.sun.com/javaone

