
Fully Time Deterministic Java™ Technology

Jean-Marie Dautelle, Senior Principal Engineer
Raytheon Company
TS-4797

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Because real-time programming requires a
time-predictable standard library.

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Biography
Jean-Marie holds a master degree of electrical engineering
(Orsay University, France) and a post graduate degree in
Information Processing and Simulation.
Jean-Marie is a Java Executive Committee member (as
Individual) since November 2006 (Java™ 2 Platform, Micro
Edition)
Jean-Marie has published articles in major computing
magazines (e.g. Java Developer Journal, Dr Dobbs,
JavaWorld™ publication)
Jean-Marie is the project leader and main author of the
Javolution framework (http://javolution.org) and the JScience
library (http://jscience.org).

http://javolution.org/
http://jscience.org/

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Agenda

Current Challenges
The Standard Library
A Real-Time Library
Context Programming
Real-Time I/O
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 5

Current Challenges
Writing real-time/safety critical application in the Java™
programming language presents significant challenges. To
name a few: Just-In-Time compilation, Garbage Collection,
Thread Scheduling, Synchronization Overhead, Lock
Queuing Order, Class Initialization, Maximum Interrupt
Response Latency, etc…

Typical Execution Time with Just-In-Time Compilation Enabled

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Real-Time Virtual Machines for Java
Platform
Most problems can be addressed with new RTSJ Virtual
Machines and Real-Time Garbage Collectors.

IBM J9/Metronome

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

1 76 151 226 301 376 451 526 601 676 751 826 901 976

Iterations

M
ic

ro
-S

ec
on

ds

IBM J9/Metronome

Sun HotSpot 1.5

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000

1 73 145 217 289 361 433 505 577 649 721 793 865 937

Iterations

M
ic

ro
-S

ec
on

ds

Sun HotSpot 1.5

Incremental garbage collection.
Still full-GC occurring from time to

time.

Real-Time garbage collection.
GC distributed over time for all

objects (short and long-lived).

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Still many issues unresolved.
The standard library is not time-predictable (not even
RTSJ-Safe).
Class initialization is performed at first use and may
cascade into hundreds of classes being initialized at an
inappropriate time.
Sharing data with native applications is cumbersome and
error-prone (no Struct/Union in Java programming
language).

A RTSJ VM is not enough. It needs to
be complemented by a real-time library.

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Agenda

Current Challenges
The Standard Library
A Real-Time Library
Context Programming
Real-Time I/O
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 9

The Standard Java Library.
Oriented toward throughput (e.g. server applications).
Time predictability and RTSJ not taken into consideration
by the implementation (most of the code written 10 years
ago).
Worst: Its use with RTSJ may result in errors/crashes!
To this date no time-deterministic or even RTSJ compliant
implementation provided by RTSJ Vendors.

2008 JavaOneSM Conference | java.sun.com/javaone | 10

Timing Issues
Users may encounter unexpected large delays due to:

Large arrays being allocated and copied due to internal
resizing taking place (e.g. StringBuffer, Vector, ArrayList,
etc.)
Sudden burst of computation (e.g. internal rehashing of
hash maps or hash sets).
Long garbage collection pauses (full GC) due to memory
fragmentation when large arrays are suddenly allocated.

2008 JavaOneSM Conference | java.sun.com/javaone | 11

Memory Issues
Memory allocation might be performed surreptitiously and

cause RTSJ memory clashes. For example:

– A static map instance (allocated in ImmortalMemory) creates new
entries resulting in IllegalAssignment errors.

//Memory leaks (when entries removed) or IllegalAssignmentError

 //(when new entries while in ScopedArea).
static HashMap<Foo, Bar> map = new HashMap<Foo, Bar>();

– Objects may be allocated at first use only (lazy initialization) causing
further unexpected illegal access errors.

2008 JavaOneSM Conference | java.sun.com/javaone | 12

Agenda

Current Challenges
The Standard Library
A Real-Time Library
Context Programming
Real-Time I/O
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 13

A library for real-time/safety critical
applications in the Java platform.

The RTSJ specification alone is not enough
To complement the RTSJ effort an open-source project
Javolution (http://javolution.org) has been created.
Major RTSJ VM vendors have been invited to participate.
Javolution is already used by a number of large companies
Raytheon (Air Traffic Control), Thales, Sun, IBM…

http://javolution.org/

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Time-Deterministic Operations

Operations on Javolution classes are highly time-
deterministic (in the micro-second range).

2008 JavaOneSM Conference | java.sun.com/javaone | 15

RTSJ Compliance

Javolution classes are RTSJ-Compliant and can safely be
allocated in ImmortalMemory
Javolution classes support real-time resizing (always small
increments) and lazy initialization. Any extension part is
allocated in the same memory area as the parent object to
avoid memory clash.

// RTSJ Safe - Removed entries are internally recycled,
// new entries are in ImmortalMemory
static FastMap<Foo,Bar> map = new FastMap<Foo, Bar>();

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Real-Time AND Real-Fast!
All real-time systems need consistent performance. The RTSJ
does not require that a conforming Java platform be unusually
fast. But having a poor consistent performance is not better
than good performance with some limited fluctuations (often
the “worst-case” execution time is actually what matters the
most). Here is an example of average time.

Ensuring bounded
response-time is of
interest to any interactive
application
(even non real-time).

2008 JavaOneSM Conference | java.sun.com/javaone | 17

Agenda

Current Challenges
The Standard Library
A Real-Time Library
Context Programming
Real-Time I/O
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Context Programming

Javolution provides real-time Context to facilitate separation of
concerns and achieve higher level of performance and code
predictability (e.g. each thread can have its own context based
upon criticality, security or performance constraints).
Here is a list of few predefined contexts:

 LocalContext - To define locally scoped environment settings.
 ConcurrentContext - To take advantage of concurrent algorithms on multi-processors

systems.
 AllocatorContext - To control object allocation, e.g. StackContext to allocate on the stack

(or RTSJ ScopedMemory).
 LogContext - For thread-based or object-based logging capability, e.g. StandardLog to

leverage standard logging capabilities. Note: java.util.logging provides class-based logging
(based upon class hierarchy).

 PersistentContext - To achieve persistence across multiple program execution.
 SecurityContext - To address application-level security concerns.
 TestContext - To address varied aspect of testing such as performance and regression.

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Case Study - Concurrent Context

It would be nice when something urgent has to be done
that all processors participate in order to terminate the task
quickly.
To this effect, the Javolution library provides a specialized
execution context named ConcurrentContext.
When a thread enters a concurrent context, it may perform
concurrent executions at the same thread priority by
calling ConcurrentContext.execute(Runnable) static method.
The logic is then executed by a concurrent thread or by the
current thread itself if there is no concurrent thread
immediately available (the number of concurrent threads is
typically limited to the number of processors).

2008 JavaOneSM Conference | java.sun.com/javaone | 20

ConcurrentContext - Example
ConcurrentContext.enter();
try {
 ConcurrentContext.execute(new Runnable() {...});
 ConcurrentContext.execute(new Runnable() {...});
 } finally {
 ConcurrentContext.exit();
 // Waits for all concurrent threads to complete.
}

ConcurrentContext can be entered recursively (divide and
conquer algorithms).

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Concurrent Context Success Stories

Concurrent context has proven to be very efficient.
JScience's matrix multiplications for example, are
accelerated by a factor 1.99x when concurrency is enabled
on a dual-core processor.
On one government project running on a Sun Fire™
T2000 Server, the execution of lengthy database
operations was accelerated 17 times by using concurrent
context and only 5 additional lines of code.

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Concurrent Context And Server
Applications

Concurrent context has been used with web application
servers when some users actions take a long time in order
to average the server response time to an acceptable
level.
In such scenario, lengthy operations are performed in a
concurrent context and are authorized to use up to half of
the processors available.
This is done through the simple command:

 ConcurrentContext.setConcurrency(
 (Runtime.getRuntime().availableProcessors()/2)-1);

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Agenda

Current Challenges
The Standard Library
A Real-Time Library
Context Programming
Real-Time I/O
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Real-Time I/O
To support real-time networking, additional classes are provided:

Struct/Union classes for direct interfacing with application written
in C/C++ (e.g. memory sharing or UDP/TCP messages).
XML Marshalling/Unmarshalling facility (world’s fastest
according to independent benchmarks)
Real-Time SAX & StAX XML Reader/Writers using
CharSequence instead of String (no garbage generated)

These classes make it possible to write real-time distributed
applications in the Java programming language!

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Javolution Struct/Union

Javolution provides two base classes to mimic the C struct
and union types: Struct and Union
They follow the same alignment rules, support the same
features (e.g. bit fields, byte order, packing) and they make it
extremely easy to convert C header files to Java technology-
based classes.
Embedded systems can map Java technology-based objects
to physical addresses in order to control hardware devices or
communicate through shared memory with external
applications
Struct/Union are wrappers around java.nio.ByteBuffer,
tutorials/usages for the Java technology-based NIO package
are directly applicable.

2008 JavaOneSM Conference | java.sun.com/javaone | 26

C Struct Example

 struct Date {
 unsigned short year;
 unsigned byte month;
 unsigned byte day;
 };

 struct Student {
 char name[64];
 struct Date birth;
 float grades[10];
 Student* next;
 };

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Javolution Struct Equivalent

 public static class Date extends Struct {
 public final Unsigned16 year = new Unsigned16();
 public final Unsigned8 month = new Unsigned8();
 public final Unsigned8 day = new Unsigned8();
 }
 public static class Student extends Struct {
 public final Utf8String name = new UTF8String(64);
 public final Date birth = inner(new Date());
 public final Float32[] grades = array(new Float32[10]);
 public final Reference32<Student> next =
 new Reference32<Student>();
 }

2008 JavaOneSM Conference | java.sun.com/javaone | 28

Direct Encoding/Decoding

Struct's members are directly accessible and can be shared
with C/C++ native applications.

 Student student = new Student();
 student.name.set("John Doe"); // Null terminated
 int age = 2003 - student.birth.year.get();
 student.grades[2].set(12.5f);
 student = student.next.get();

2008 JavaOneSM Conference | java.sun.com/javaone | 29

Agenda

Current Challenges
The Standard Library
A Real-Time Library
Context Programming
Real-Time I/O
Conclusion

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Conclusion

Ensuring bounded response time is of interest to any
interactive application, even non real-time.
Safety-critical / Real-Time applications require more than just
a low pause virtual machine; a real-time library is essential.
Javolution has been created in response to the demand for
using Java technology in domains it was originally not
intended for (Air Traffic Control, Embedded, Real-Time
servers).
Ease of use, good performance and clean design (enforces
separation of concerns) may explain its success and use by
many reputable companies (Raytheon, Sun, IBM, Excelsior,
Lockheed Martin, Thales, BEA, Blockbuster, etc)

2008 JavaOneSM Conference | java.sun.com/javaone | 31

For More Information

JavaWorld™ publication May 2008 “Realistically Real-Time”
“Fully Time Deterministic Java” by Jean-Marie Dautelle.
AIAA Space 2007 Conference Proceedings
“Validating Java for Real-Time System” by Jean-Marie
Dautelle. AIAA Space 2005 Conference proceedings

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Jean-Marie Dautelle, Senior Principal Engineer
Raytheon Company
TS-4797

