
THE MAXINE VIRTUAL MACHINE

Dr. Bernd Mathiske, Senior Staff Engineer

TS-5169

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Welcome by Sun, welcome to the Maxine

Where have you been?

It's alright, we know where you've been.

You've been in vi and emacs, filling in macros,

Provided with make, scouting for ants.

You wrote a compiler to punish yourself,

And you didn't like coffee,
and you know you're nobody's user.

So welcome to the Maxine!

What did you dream?

It's alright, they told you what to dream.

You dreamed of a big nerd,

He wrote some mean code,

He always ate chili peppers,

He loved to run his benchmarks.

1975

2008 JavaOneSM Conference | java.sun.com/javaone | 3

VM Implementation Challenges
Lack of modularity
Pervasive features with intricate interdependencies
• Code generation, Application Binary Interfaces (ABI), Garbage Collection

(GC), class loaders, security, threads, safepoints, synchronization,
canonicalization...

Platform dependencies
Pressure to optimize performance leads to more complexity
Much low-level programming
• Explicit CPU and memory operations
• Complex OS calls (signal, mmap, mprotect...)
• Assembly code
• Manipulation of intermediate representations

High potential for hard-to-find bugs

... <insert several more slides about how hard this is> ...

2008 JavaOneSM Conference | java.sun.com/javaone | 4

As the sessions and exhibits at JavaOneSM conference demonstrate,
Java™ application and library programmers enjoy great productivity
and agility advantages based on their choice of language, platform,
OO patterns, tools and build process.

But what about VM developers?

How can we bring these benefits to them?
How do we disentangle intricately interdependent VM features?
How do we keep a VM modular without performance loss?
How do we debug large amounts of optimized machine code?
How do we overcome the lack of low-level features in the Java language?
How...

Let's start with meta-circular VM design, then push the envelope.

2008 JavaOneSM Conference | java.sun.com/javaone | 5

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
Java Developer Kit (JDK™) Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Maxine Open Source Research VM

GNU General Public License version 2
• License-compatible with OpenJDK™

Currently builds on JDK 1.6 release
Not a fully compliant Java™ Virtual Machine (yet)

Early access to pre-alpha source code:

https://maxine.dev.java.net/

2008 JavaOneSM Conference | java.sun.com/javaone | 7

Maxine Platforms

Supported:
• Solaris™ Operating System / SPARC® Technology
• Solaris OS / x64
• Xen / x64

Under development:
• Solaris OS / x32
• Linux / x64
• Linux / x32
• Darwin / x64
• Darwin / x32

Contemplated:
• Xen / x32
• ARM
• PowerPC
• Windows

2008 JavaOneSM Conference | java.sun.com/javaone | 8

Pre-Alpha Release: Proof-Of-Concept

Miscellaneous Meta-Circular Design Aspects
Bootstrap
Configurability
Low-Level object interfaces and layering
Unsafe features
Portable JIT
Safepoint mechanism
...

2008 JavaOneSM Conference | java.sun.com/javaone | 9

Not Yet
Performance
JCK Compliance
JDK software's java loader
All Java™ Virtual Machine interfaces
Competitive GC
Memory-Management Framework
OSR, dynamic de-optimization
Inline caching
...

Profiling and tuning tools
Multi-level debugging
Asynchronous debugging
Lock analyzer
Heap analyzer
...

JDK 1.7 release

2008 JavaOneSM Conference | java.sun.com/javaone | 10

Maxine VM Research Areas

Addressed today:
• Modularity
• Tool support
• Compilation
• Garbage collection
• Concurrency
• Control flow
• Data structures
• Hypervisor
• ...

Anticipated:
• Task Isolation
• Resource control
• Adaptive runtime behavior
• Reliability
• Real-time
• Multi-language
• Emulation
• ...

2008 JavaOneSM Conference | java.sun.com/javaone | 11

Maxine Innovations

Architecture:
• Flexible configuration
• Java environment interfaces for primitive operations
• Portable fast JIT derived from optimizing compiler
• Portable generation of efficient inlineable Java Native Interface (JNI™)

implementation and reflective invocations stubs
• Byte code generation for exception dispatching

and synchronized methods

Tools and Libraries:
• Assembler and disassembler framework for the Java platform
• Integrated low-level debugging and object browsing (Inspector)

Miscellaneous Runtime Mechanisms

2008 JavaOneSM Conference | java.sun.com/javaone | 12

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Maxine Development

IDE-powered (NetBeans™ IDE, Eclipse, IntelliJ, JBuilder)
Java Technology powered
• Almost all source code is written in the Java language
• Integrates with JDK 6 release
• Leverages Java Technology 5/6 features
• OO-patterns

Maxine Inspector

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Maxine Inspector

A kind of Serviceability Agent / Object Browser / Debugger
Starts and inspects a new VM or inspects a boot image
• planned: attach to a running VM, inspect core dump

Displays objects, memory content, disassembled methods
• planned: source code

Queries meta data: class registry, code manager
Displays threads, register contents, stack frames
Performs instruction single stepping
Breakpoints at several code representation levels

2008 JavaOneSM Conference | java.sun.com/javaone | 15

Maxine Inspector Demo – Part 1:

Object Browsing

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 17

Meta-Circular VM Design

The VM is written in the same language it executes

The VM uses JDK packages
and implements their downcalls into the VM

Built around an optimizing compiler (not an interpreter)

The optimizing compiler in the VM translates itself

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Bootstrapping

Developer writes VM source code

javac produces class files

Boot Image Generator reads class files,
creates VM data structures and code as Java objects,
writes binary representations of these to a boot image file

Boot image contains all necessary runtime functionality
including class loader, compiler, GC, etc.

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Very Limited C Code

Simple way to create an executable for the OS's loader
Starts up the VM by loading its boot image (mmap)
and transferring control to it
Shields some native methods and JNI API functions
from the C preprocessor and C varargs
Implements the “JVM” interface to native libraries
Comes with easy-to-use make files

This thin C “substrate” could later be removed
by writing more platform-dependent Java code

2008 JavaOneSM Conference | java.sun.com/javaone | 20

Conventional vs. Meta-Circular

JDK

Applications

Java Language

Native
Libraries

C/C++ etc.

Conventional
VM Native

Libraries

Java

Applications

C/C++ etc.

Language

JDK
Meta-Circular VM

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Immediate Payoffs

All internal data structures expressed by Java objects

No object handles in VM code to guard against GC

Genuine Java code exception handling
(not C/C++ macros or longjmp())

No code and data structure duplication in C/C++

Reuse VM code in companion tools (Inspector)

2008 JavaOneSM Conference | java.sun.com/javaone | 22

WEOO: Write Everything Only Once

Reuse runtime methods for different compilers
by translation instead of manual re-implementation

Diminished compiler interface
• Only primitive operations and ABI specifics need porting

Meta-evaluation by reflective invocation

2008 JavaOneSM Conference | java.sun.com/javaone | 23

Performance Potential

The VM further optimizes itself by dynamic re-compilation

Callbacks into the runtime are no longer native

VM code can be inlined into app code
and optimized together

Optional runtime code features can be turned on and off
by dynamic re-compilation
• no overhead while off

More efficient reflection

2008 JavaOneSM Conference | java.sun.com/javaone | 24

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Configurable Components

Garbage collector
Object layout
Object reference representation
Read and write barriers
Fast JIT
Optimizing compiler
Optimizing compiler's ABI
Dynamic re-compilation policy
Method call trampolines (for dynamic compilation)
Thread synchronization (object monitors)
Startup sequence

(“Schemes”)

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Configuration Mechanism
At VM build time, select which alternative package
to load for a particular “scheme”
The package designates one class
to implement the given Scheme interface
This class is then loaded, initialized and instantiated
The singleton instance represents the scheme to the VM
Interface calls to the scheme instance are disambiguated
and inlined by the optimizing compiler,
which is guided by annotations
A facade class may wrap the interface in static methods
Implementation flexibility without performance overhead!

2008 JavaOneSM Conference | java.sun.com/javaone | 27

Configurable Cross-Compiling

Operating system
Instruction Set Architecture
64-bit vs. 32-bit
Endianness
Alignment

2008 JavaOneSM Conference | java.sun.com/javaone | 28

Guest VM
Sun Labs Project led by Mick Jordan

Maxine VM runs as Xen Guest
Runs a network stack written in the Java language
Ported runtime substrate and inspector support in C to Xen
• Uses a small micro-kernel providing threads, memory, I/O
• File I/O via inter-guest communication to sibling guest OS

Maxine Inspector inspects and controls debuggee guest VM
via inter-guest communication

Same Inspector functionality as on Solaris OS:
single-step, find threads, read registers, read memory, ...

http://research.sun.com/projects/dashboard.php?id=185

2008 JavaOneSM Conference | java.sun.com/javaone | 29

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Java 5 Platform Features Used by Maxine

Annotations (JSR 175)

Type Parameters (JSR 14)

Return Type Overloading (JSR 14)

Enhanced for Loop (JSR 201)

Autoboxing/unboxing (JSR 201)

Enums (JSR 201)

Varargs (JSR 201)

Static Import (JSR 201)

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Maxine Annotations
@INLINE
@NEVER_INLINE
@BUILTIN
@SNIPPET
@METHOD_SUBSTITUTIONS
@SUBSTITUTE
@SURROGATE
@CONSTANT
@CONSTANT_WHEN_NOT_ZERO
@ACCESSOR
@TEMPLATE
@C_FUNCTION
@JNI_FUNCTION

@Generated
@Hypothetical
@JavacSyntax
@JdtSyntax

@FOLD
@INITIALIZE
@INSPECTED
@PROTOTYPE_ONLY
@TRAMPOLINE
@UNSAFE
@WRAPPER
@WRAPPED

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Source Code Example (1)

public abstract class
 EirSomeAllocator<EirRegister_Type extends EirRegister> extends
 EirAllocator<EirRegister_Type> {

 protected abstract PoolSet<EirRegister_Type> allocatableRegisters();
 ...
}

public final class SPARCEirSomeAllocator extends
 EirSomeAllocator<SPARCEirRegister> {
 ...
}

2008 JavaOneSM Conference | java.sun.com/javaone | 33

Source Code Example (2)
public enum Endianness {

 LITTLE {
 @Override
 public short readShort(InputStream stream) throws IOException {
 final int low = readByte(stream) & 0xff;
 final int high = readByte(stream);
 return (short) ((high << 8) | low);
 }
 ...
 },
 BIG {
 @Override
 public short readShort(InputStream stream) throws IOException {
 final int high = readByte(stream);
 final int low = readByte(stream) & 0xff;
 return (short) ((high << 8) | low);
 }
 ...
 }

 public abstract short readShort(InputStream stream) throws IOException;

}
...

dataModel.endianness().readShort(stream);

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 35

JDK Software Integration

No JDK source code changes
No class/jar file changes
Simplified implementation of some features
Seamless bidirectional reuse between JDK library and VM
No native methods for downcalls into the VM,
no call overhead
JDK library implementation methods in the VM
are subject to dynamic optimization, especially inlining
(just like the rest of the VM and everything else)

2008 JavaOneSM Conference | java.sun.com/javaone | 36

Injected Fields

The Maxine VM synthesizes
and injects extra fields into
core classes to link instances
to internal representations

VM

JDK

ClassActor

cachedConstructor

 _$injected$ClassActor

.class object
instance of java.lang.Class

 newInstanceCallerCache

 name

 declaredFields

 publicFields

 declaredMethods

 publicMethods

 annotationType

 declaredAnnotations

 annotations

 publicConstructors

 declaredConstructors

...

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Method Substitution
Guided by annotations, the VM substitutes certain JDK library
methods with alternative implementations
and compiles those in their stead
It does not matter whether the original methods are native

VM

package com.sun.max.vm.jdk
@METHOD_SUBSTITUTIONS(Class.class)
class JDK_java_lang_Class

JDK

package java.lang.class
class Class

@SUBSTITUTE
forName0()

@SUBSTITUTE
isAssignableFrom()

@SUBSTITUTE
getSuperClass()

... ...

isAssignableFrom()

forName0()

getSuperClass()

2008 JavaOneSM Conference | java.sun.com/javaone | 38

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 39

Low Level Programming Support

Static type loophole
Unsafe type loophole

Unboxed word types
• 32 or 64 bits, depending on VM configuration
• Unboxed representation like primitive types
• Method call syntax like boxed object types

Raw memory allocation and deallocation
Virtual memory mapping and unmapping

Assemblers, Disassemblers

2008 JavaOneSM Conference | java.sun.com/javaone | 40

Word-Sized Primitive Types

opaque

arithmetic

one-dimensional zero-dimensional

unsigned signed

Offset

Pointer

Address

Word

memory
access

Size

40

2008 JavaOneSM Conference | java.sun.com/javaone | 41

Layered Views on Objects

cell

just an example layout

Header Fields

Pointer

Reference

java.lang.Object

Grip

origin

what the Java application program(mer) sees

what the mutator primarily uses:
low-level operations with read/write barriers

what the garbage collector primarily uses:
low-level operations without read/write barriers

2008 JavaOneSM Conference | java.sun.com/javaone | 42

The Object Interface

PointerReference

public interface Accessor { ...
 boolean isZero();
 byte readByte(Offset offset);
 int readInt(int offset);
 Word readWord(Offset offset);
 Reference readReference(int offset);
 void write Boolean(Offset offset, boolean value);
 void writeDouble(int offset, double value);
 void writeReference(int offset, Reference value);
 ...
}

Grip

implemented by these classes (and all their subclasses):

2008 JavaOneSM Conference | java.sun.com/javaone | 43

Low Level Code Example: sun.misc.Unsafe
package com.sun.max.vm.jdk;

import com.sun.max.unsafe.*;
...

@METHOD_SUBSTITUTIONS(sun.misc.Unsafe.class)
final class JDK_sun_misc_Unsafe {
 ...

 @SUBSTITUTE
 public Object getObject(Object object, long offset) {
 if (object == null) {
 return Pointer.fromLong(offset).getReference().toJava();
 }
 final Reference r = Reference.fromJava(object);
 return r.readReference(Offset.fromLong(offset)).toJava();
 }

 ...
}

2008 JavaOneSM Conference | java.sun.com/javaone | 44

Low Level Code Example: JNI API Function

public final class JniFunctions {
 ...

 @JNI_FUNCTION
 private static Pointer GetByteArrayElements(Pointer env,
 JniHandle array,
 Pointer isCopy) {
 if (!isCopy.isZero()) {
 isCopy.setBoolean(true);
 }
 final byte[] a = (byte[]) array.get();
 final Pointer pointer = Memory.allocate(a.length);
 for (int i = 0; i < a.length; i++) {
 pointer.setByte(i, a[i]);
 }
 return pointer;
 }

 ...
}

2008 JavaOneSM Conference | java.sun.com/javaone | 45

Maxine Assembler System

Used by Maxine's optimizing compiler
Java 5/6 technology packages
Assemblers, Disassemblers
Generator framework
Automated testing
Almost complete instruction sets:
SPARC processor (32/64), AMD64, IA32, PowerPC (32/64),
(ARM under development)

Earlier version: Project Maxwell Assembler System
• https://maxwellassembler.dev.java.net

https://maxwellassembler.dev.java.net/

2008 JavaOneSM Conference | java.sun.com/javaone | 46

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 47

Optimizing Compiler Highlights

Layered architecture
Reduced compiler interface
Meta-evaluation by reflective invocation
Annotation-driven optimizations
Interpreters for intermediate representations
Continuation passing style
No intermediate representation manipulation
outside the translator and optimizer
Almost no hand-written assembly code in the runtime
Portable register allocator framework

2008 JavaOneSM Conference | java.sun.com/javaone | 48

Bytecode Generation

Exception dispatch
Synchronized methods
Reflective invocation
Native method invocation

=> streamlined compiler,
 translating bytecodes without incongruous diversions

2008 JavaOneSM Conference | java.sun.com/javaone | 49

Ultra-Light JIT

Goal: produce code as quickly as possible,
hopefully preventing the need for an interpreter
Single pass!
Code quality is of secondary concern
Closely matches the JVM spec's execution model
No stack map production while generating code
• Stack maps can be filled in at GC safepoints as needed,

by abstract interpretation without allocating

2008 JavaOneSM Conference | java.sun.com/javaone | 50

Portable JIT Implementation

Copy machine code snippets from a template table
Templates generated by the optimizing compiler
at VM build time from Java source code
One-instruction template prefix arguments specify
local variable indices, constant pool indices
Adapter frames mediate between stack-oriented JIT code and
register-oriented optimized code and vice-versa

2008 JavaOneSM Conference | java.sun.com/javaone | 51

JIT Portability

ABI-sensitive:
• Stack walking procedures
• Adapter frame layout
• Prefix argument instructions

Platform:
• Prefix argument instructions are ISA-specific
• Some byte codes hand-coded, e.g., branches
• Templates written in portable Java source code

Runtime features:
• Templates reuse runtime code

Porting Effort

none

low

moderate few

Variations

few

many

some

2008 JavaOneSM Conference | java.sun.com/javaone | 52

Building the JIT from Java Source Code

javac

Bytecode Templates
VMJIT

Optimizing
Compiler

Bytecode Templates
VMJIT

Boot Image
Generator

Bytecode Templates
VMJIT

Bytecode Templates
VMJIT

 public static void iadd() {
 int value2 = JavaStackFrame.peekInt(0);
 int value1 = JavaStackFrame.peekInt(1);
 JavaStackFrame.removeSlots(1);
 JavaStackFrame.pokeInt(0, value1 + value2);
 }

iconst_0
invokestatic JavaStackFrame.peekInt()
istore_0
iconst_1
invokestatic JavaStackFrame.peekInt()
istore_1
iconst_1
invokestatic JavaStackFrame.removeSlots()
iconst_0
iload_1
iload_0
iadd
invokestatic JavaStackFrame.pokeInt()

movsxd rcx,[rsp]
movsxd rax,[rsp + 8]
addq rsp,8
add eax,rcx
mov [rsp],rax

0x48 0x63 0x0C 0x24
0x48 0x63 0x44 0x24 0x08
0x48 0x83 0xC4 0x08
0x01 0xC8
0x89 0x04 0x24

byte[]{0x48,0x63,0x0C,0x24,0x48,0x63,0x44,0x24,
 0x08,0x48,0x83,0xC4,0x08,0x01,0xC8,0x89,
 0x04,0x24}

2008 JavaOneSM Conference | java.sun.com/javaone | 53

Bytecode Template with Unresolved Constant
public static void igetfield(ReferenceResolutionGuard guard) {
 IntFieldActor fieldActor = ResolutionSnippet.ResolveInstanceFieldForReading.resolve(guard);
 Object object = JavaStackFrame.peekReference(0);
 JavaStackFrame.pokeInt(0, FieldReadSnippet.ReadInt.readInt(object, fieldActor));
}

aload_0
invokestatic ResolutionSnippet.ResolveInstanceField.resolveInstanceFieldForReading()
astore_1
iconst_0
invokestatic JavaStackFrame.peekReference()
astore_2
iconst_0
aload_2
aload_1
invokestatic FieldReadSnippet.ReadInt.readInt
invokestatic JavaStackFrame.pokeInt()

 mov rdi,[-515] // custom argument

 mov [rbp],rdi
 mov rax,[rbp]
 mov rcx,[rax + 32]
 xor rax,rax
 cmp rcx,rax
 jnz L2:+43
 mov rdi,[rbp]
 push rbp
 call resolve()
 pop rbp
 mov rax,[rbp]
 mov rax,[rax + 32]
 mov rcx [rbp]
 mov rcx, rax
L1: mov rdx[rsp]
 movsxd rcx,[rcx + 64]
 movsxd rax,rdx[rcx]
 mov [rsp],eax
 jump L3:+17
L2: mov rax,[rbp]
 mov rax,[rax + 32]
 mov rcx,[rbp]
 mov rcx,rax
 jmp L1:-34
L3:

• How to improve the quality of such JIT code?
• Conventional: manually change the JIT
• Meta-circular: do not touch the JIT, improve

the optimizing compiler, which needs to be
done anyway

2008 JavaOneSM Conference | java.sun.com/javaone | 54

BytecodeTemplate with Resolved Constant
public static void igetfield(int offset) {
 Object object = JavaStackFrame.peekReference(0);
 JavaStackFrame.pokeInt(0, TupleAccess.readInt(object, offset));
}

iconst_0
invokestatic JavaStackFrame.peekReference()
astore_1
iconst_0
aload_1
iload_0
invokestatic TupleAccess.ReadInt.readInt
invokestatic JavaStackFrame.pokeInt()

mov rdi,0x10 // custom argument: field offset

mov rdx,[rsp]
movsxd rax,rdx[rdi]
mov [rsp],eax

To do: top-of-stack caching
• Idea: additional template parameter passing, e.g., rdi == [rsp]

• Then this code will become possible:
mov rcx,0x10
movsxd rdi,rdi[rcx]

2008 JavaOneSM Conference | java.sun.com/javaone | 55

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 56

Maxine Inspector Demo – Part 2:

Debugging

2008 JavaOneSM Conference | java.sun.com/javaone | 57

Agenda

Open Source Release
Maxine Development Environment
Meta-Circular VM Design
Configurability
Use of New Language Features
JDK Software Hookup
Low-Level Features
Compiler system
Debugging Demo
Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 58

Summary

New research VM
Pervasive meta-circular design
Configurable, malleable, maintainable, portable
Integrates with JDK software
Inspector tool: low-level debugging and object browsing

Agile systems programming with Java technologies

Pre-alpha open source release

2008 JavaOneSM Conference | java.sun.com/javaone | 59

The Maxine Virtual Machine
Dr. Bernd Mathiske
Senior Staff Engineer
Principal Investigator, Maxine Project
Sun Microsystems Laboratories
TS-5169

http://research.sun.com/projects/maxine

