
Creating a Java™ Platform, Enterprise
Edition (Java EE Platform) Appliance
Using GlassFish™ and OpenSolaris™

Peter Karlsson, Technology Evangelist

Lee Chuk Munn, Staff Engineer

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Learn how we build a JavaEE application
appliance

Under funded
Under pressure

for One Appliance per GeekTM (OAPG) cause!

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Agenda
OpenSolaris™ Project / GlassFish Appliance
OpenSolaris Project
• Short Introduction to Solaris ZFS
• (Another) Short Introduction to SMF

GlassFish Application Server
Appliance Features Overview
• Installing Applications
• Integration with SMF

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 4

OpenSolaris/GlassFish Appliance

2008 JavaOneSM Conference | java.sun.com/javaone | 5

What is an Appliance?
An instrument or device designed for a particular use or
function
• A solution to solving problem by enabling the proper function

Typically hardware and software bundled and tightly
integrated
Example of appliance
• Toaster
• Wireless router

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Criteria for an Appliance*

Purpose
• Scope – scope of operation
• Design – native or packaged
• Ends not means – what it achieves rather than how it is done

Convenience
• Ease of use – aim for plug-and-play
• Simplicity – if you need to open it up, then it is not simple
• Compatibility – harmony with the environment

Value
• Alignment – align to the business requirements
• Cost – lower TCO and should cost less than sum of parts
• Performance – does not only refer to speed but for achieving its

purpose

* From http://www.b-eye-network.com/view/5790

2008 JavaOneSM Conference | java.sun.com/javaone | 7

SMEs do not have the expertise to install and manage an
appserver
• Do not really care about the system, just what it can do for them

Small to medium JavaEE application tend to have similar
hardware and software requirements
• Cater to these needs

Telcos, hosting company deploy large number of these
• Fairly generic
• Should be manageable as a unit, not as independent OS and

application server
Application specific JavaEE appliance
• Software vendor can leverage a generic appliance for OEMs
• Think Karaoke appliance (maybe not)

Why a JavaEE Appliance?

2008 JavaOneSM Conference | java.sun.com/javaone | 8

JavaEE application as an Operating
Environment

Grown into a full fledged environment
• Can write application without know anything about the underlying

OS
• Handles its own resources, security, connections, cache/pools, etc
• Meta environment for managing the application server and Java

Virtual Machine (JVM™)
• Clustrable, *able words

Grown in complexity and sophistication
• Micro managing application servers when the environment only run

a JavaEE application server
• A bit like an extremely high end Hi-Fi kit

• Should have a tight binding with the operating system
Abstraction is higher, at component level
• Solaris system/Linux/Unix file based abstraction

2008 JavaOneSM Conference | java.sun.com/javaone | 9

What Do We Want from the JavaEE
Appliance?

Easy setup
• Close to zero touch
• LCD for system display and configuration
• Flashing LEDs for status
• Easy deployment

Low cost
• Off the shelf parts
• Free and open source software

'Acceptable' performance
Operable in room temperature
• 'Normal' power supply – 110V or 230V

Auto update, if permission is given
Robust – install and forget should be the motto

2008 JavaOneSM Conference | java.sun.com/javaone | 10

What are the Appliance Non-Goals
Target for deployment not for development
• Can certainly use it for development

Not intended to run resources
• Database
• Mail services
• Message queues

Set SPECjbb benchmarks
Running any other applications besides what comes
preloaded

2008 JavaOneSM Conference | java.sun.com/javaone | 11

Challenges for a JavaEE Appliance
Application Server is a complex beast
• Challenge is how to make it usable as an appliance?

Learn from Grails and Rails
• Provide excellent support for the most common use cases,

workflow
• Conventions over configuration

View application as a unit rather than sum of parts
• Eg. web application, EJB™ architectures, database
• Currently difficult without proprietary extensions in deployment

descriptor
Aim at users who know a little about web application
Reset to “factory installed” if all else fails

2008 JavaOneSM Conference | java.sun.com/javaone | 12

OpenSolaris Project as the Base
Lots of useful features to support 'appliancing' GlassFish
application server
• Solaris ZFS for preserving state, versioning, backups
• SMF (Service Management Framework) for service management
• Containers for security
• Mature and robust

Can easily be customized
• Hardening
• Small footprint

Robust and tested
Familiarity

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Major Software Components
OpenSolaris source code 2008.05
• Leverage the OS facility to simplify deployment and management

of JavaEE applications
• Solaris ZFS, Containers, SMF

JavaSE platform 6
• Latest and greatest

GlassFish application server
• Open source
• Fairly popular and easy to setup
• Standards compliant

Groovy and Grails
• Tight integration with the JVM software
• Use as a glue for tying the system
• Grails is used to develop the appliance's management interface

2008 JavaOneSM Conference | java.sun.com/javaone | 14
Image from http://www.mini-box.com/M200-LCD-
Enclosure?sc=8&category=87

Major Hardware Component Prototype
Solaris platform friendly
motherboard
• Intel D201GLY2 Mini-ITX

• Soldered down Intel® Celeron 220
with a 533 MHz system bus

• 1GB RAM
• 8GB CF as system disk

picoLCD 20x2 LCD display
Keypad
12V external power supply

Image from http://www.mini-box.com/picoLCD-20x2-OEM

2008 JavaOneSM Conference | java.sun.com/javaone | 15

OpenSolaris Project

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Miniaturizing OpenSolaris Project
Only install the bare minimum of what we will need
• Anything else can be downloaded later from the OpenSolaris

project network repository automatically as we need it
Only services that we really need will be enabled

2008 JavaOneSM Conference | java.sun.com/javaone | 17

Open Solaris project configuration
Use LCD and keypad to do basic configuration
• Set up ip-address, static or DHCP
• Hostname

Auto detect JavaEE applications on USB drive
• Detect and deploy applications from USB drive to local media

Use SMF to manage JavaEE applications
• Auto start, define dependency on resources, etc

What I did
• Wrote a driver to interface with the picoLCD and using the keypad

as input
• Used standard OpenSolaris source code configuration files and

APIs
• Integration with the OpenSolaris source code removable media

manager “tarmac” to detect USB events
• Integrated GlassFish application server with SMF

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Short Introduction to Solaris ZFS

2008 JavaOneSM Conference | java.sun.com/javaone | 19

Simple, Reliable, Scalable
ZFS is a 128-bit file system, so it can store 18 billion billion

times more data than current 64-bit systems.

● End-to-end data integrity
– Copy-on-write transactions
– 64-bit checksums

● Simplified administration
– Storage pools
– No slices, volumes, partitions

● Infinitely scalable
● Huge performance gains

Revolutionary Solaris ZFS File System

Best File System

2008 JavaOneSM Conference | java.sun.com/javaone | 20

No More Volume Manager!
Automatically add capacity to shared storage pool

ZFS

Application 1

Storage Pool

ZFS

Application 2 Application 3

2008 JavaOneSM Conference | java.sun.com/javaone | 21

Copy-on-Write and Transactional

Initial block tree Writes a copy of some changes

Copy-on-write of indirect blocks Rewrites the Uber-block

Original Data

New Data

New Pointers

Original Pointers New Uber-block

Uber-block

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Solaris ZFS Snapshots
Provide a read-only point-in-time copy of file
system
Copy-on-write makes them essentially “free”
Very space efficient – only changes are tracked
And instantaneous – just doesn't delete the copy

Current Data

Snapshot Uber-block New Uber-block

2008 JavaOneSM Conference | java.sun.com/javaone | 23

ApplicationApplication

ZFS MirrorZFS MirrorZFS Mirror

Self-Healing Data
Solaris ZFS can detect bad data using checksums and
“heal” the data using its mirrored copy.

Application

“Heals” Bad CopyGets Good Data from MirrorDetects Bad Data

2008 JavaOneSM Conference | java.sun.com/javaone | 24

How we use Solaris ZFS in our project
Keep a “factory” configuration snapshot for easy reset
zfs rollback -r root_pool@factory
• Resets configuration to “factory default”

Each application resides on its own Solaris ZFS file
system
• Allows for quick backup and recovery using snapshots
• By using Solaris ZFS send/receive we could implement remote

storage of backups
We can enable use of “ditTo blocks” for important data
• Allow for data redundancy even though we only use 1 drive
• Protect against partial failure of storage media

2008 JavaOneSM Conference | java.sun.com/javaone | 25

Short Introduction to SMF -
Service Management Framework

2008 JavaOneSM Conference | java.sun.com/javaone | 26

SMF – Short Introduction
Basic idea, manage services not processes
• Users care about the service

Describe your service in an XML manifest
• What's the name of your service
• What services do you depend on
• How do you start, stop and restart the service
• Actions to be taken in case of various failure scenarios, full, partial

or failure of other service that I depend on
• Where to find more information about my service, log files etc.

2008 JavaOneSM Conference | java.sun.com/javaone | 27

GlassFish Application Server

2008 JavaOneSM Conference | java.sun.com/javaone | 28

GlassFish Application Server V2 Features
– 1

JavaEE platform 5 compliant
Metro Web Service Stack
• Performance, advance WS features and Microsoft interoperability

Clustering, load-balancing and HA
• Unified management

Web tier
• Grizzly, dynamic web container, fast JSP™ framework compilation

Java Business Integration (JBI) support
Observability
• Graphical, command line tools
• JMX software based
• Call flow, self-management
• Multi tier provisioning with N1 SPS

2008 JavaOneSM Conference | java.sun.com/javaone | 29

GlassFish Application Server V2 Features
– 2

Multiple user profiles
• Developer, cluster, enterprise
• Upgrade from one to the other

Better startup time
• Comparable to Tomcat

Latest Web 2.0 and cool technologies
• Comet, Ruby on Rails, jMaki, SIP

Update center
• Provision and install new features, frameworks, etc

Tools support
• NetBeans™ software, (My)Eclipse, IntellJ

2008 JavaOneSM Conference | java.sun.com/javaone | 30

Screenshot of Web Admin

2008 JavaOneSM Conference | java.sun.com/javaone | 31

Screenshot of VisualVM with GlassFish
Application Server

2008 JavaOneSM Conference | java.sun.com/javaone | 32

Screenshot of Undate Center

2008 JavaOneSM Conference | java.sun.com/javaone | 33

GlassFish Application Server Domain
Directory Structure

mydomain

applications j2ee-apps

config

autodeploy

keyfile

Partial structure

web apps

asadmin start-domain –domaindir /path/to/domain mydomain

2008 JavaOneSM Conference | java.sun.com/javaone | 34

Appliance Features Overview

2008 JavaOneSM Conference | java.sun.com/javaone | 35

Appliance Startup
Connect LAN cable to hub
Power on
Set host name
Set static IP address or use DHCP
Point your browser to http://server.com:8080
This is the manual

2008 JavaOneSM Conference | java.sun.com/javaone | 36

Web Applications As First Class Citizens
Current version of appliance makes it extremely easy to
install and manage web applications
Web applications includes the following
• Traditional web applications JSP framework/ Servlet
• JSF applications
• AJAX based application
• Dynamic languages based web applications

• As long as it can run on Servlet/JVM software combo
If you can create a WAR file, should be able to deploy
Other application types are not supported through the
simplified interface
• Go to GlassFish application server admin console
• http://localhost:4848

http://localhost:4848/

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Administration Features
Administration of appliance is done via Grails application
• Meant for simple, common use cases
• For custom configurations, still need to go back to admin console

The following can be configured
• Application
• User
• Network
• Resources

All these can be perform via the LCD panel
Does not include cluster
• Telnet in to appliance if you really want to do this

Features not advertised is accessible if you know how
• Will eventually provide a way to shut these off
• Harden the appliance – Solaris application and GlassFish

application server

2008 JavaOneSM Conference | java.sun.com/javaone | 38

Resources
Uses existing asadmin command to do this
• create-jdbc-connection-pool
• create-jdbc-resource
• javamail-resource
• create-persistence-resource

Prepackage common resources to reduce settings
• Make it really easy to define data sources – lessons from

Grails/Rails
• Connection pool and JDBC™ API resource – Oracle,

Derby/JavaDB, MySQL, Postgres
• Persistence resource

2008 JavaOneSM Conference | java.sun.com/javaone | 39

Users
Appliance defaults to 'File Realm' security
• GlassFish application server supports File, Certificate, JDBC API

and Custom
• Simplest and easiest to understand: username / password

Simplified interface to create users
Do not envisage target users to tie into LDAP, Custom,
etc.
Users here are GlassFish application server users not
OpenSolaris source code
• Do not allow adding users to OpenSolaris source code
• Users are not encourage to run any other application on appliance

2008 JavaOneSM Conference | java.sun.com/javaone | 40

Installing Application

2008 JavaOneSM Conference | java.sun.com/javaone | 41

Scenarios
Deploy JavaEE application: USB Drive
Deploy JavaEE application: URL
Upgrade JavaEE application: USB/URL

Backup
• JavaEE application
• System backup

Platform upgrade

Reset to “factory” configuration

2008 JavaOneSM Conference | java.sun.com/javaone | 42

Add a JavaEE application: USB drive
Vold detects USB drive inserted in USB slot
Scan USB drive for war files
Copy war file to system
Create Solaris ZFS for application
Create SMF manifest for application, import to SMF
 Tell GlassFish application server to deploy application on
the created Solaris ZFS
Take “deploy” snapshot of Solaris ZFS filesystem
• zfs snapshot app/”appname”@deploy

Tell SMF to “enable” application
And we're up and running

2008 JavaOneSM Conference | java.sun.com/javaone | 43

Add a JavaEE application: URL location
Select “Add Application” from Menu on LCD
Enter URL using the keypad
Use wget to download the war file to local system
Create Solaris ZFS for application
Create SMF manifest for application, import to SMF
Tell GlassFish application server to deploy application on
the created Solaris ZFS
Take “deploy” snapshot of Solaris ZFS filesystem
Tell SMF to “enable” application
• SMF tells GlassFish application server to start application

2008 JavaOneSM Conference | java.sun.com/javaone | 44

Upgrade application : USB/URL location
Select upgrade application on LCD menu
Select application to upgrade
Select USB or URL deployment
The appliance SW does the following steps
• Copy new war file to system
• Tell SMF to temporarily “disable” application
• Take “pre upgrade” Solaris ZFS snapshot
• Install web application

• Application will be reinstalled if exist
• Take “post upgrade” Solaris ZFS snapshot

• Rename “pre upgrade” Solaris ZFS snapshot” to “appname@current-1”
• Rename “post upgarde” Solaris ZFS snapshot to “appname@current”

• Tell SMF to “enable” the application

2008 JavaOneSM Conference | java.sun.com/javaone | 45

Upgrade: Rollback to previous version
Select “rollback application” on LCD menu or web interface
Select application to “rollback”
Select version to “rollback” to
• We keep a history of 3 versions

The appliance SW does the following steps
• Tell SMF to temporarily “disable” the application
• Do a Solaris ZFS rollback to selected version

• Solaris ZFS rollback app/appname@current-1
• Rename Solaris ZFS snapshot to reflect current setup

• @current -> @current+1
• @current-1 -> @current

• Tell SMF to re-enable the application
If OK select commit on menu
• All Solaris ZFS snapshots later than @current gets destroyed

2008 JavaOneSM Conference | java.sun.com/javaone | 46

Backup JavaEE application
Select Backup application on LCD
If you have more than one application deployed, select
application to backup or ALL

For each application:
• SMF temporarily “disables” the application
• Take Solaris ZFS snapshot of application
• SMF “enables” application

Option to save backup on remote media
• USB
• URI (nfs/ftp)

2008 JavaOneSM Conference | java.sun.com/javaone | 47

Backup System
Select “Backup” -> “System” on LCD menu

SMF temporarily “disables” GlassFish application server
• As all applications “depend” on GlassFish application server they

will “disabled” as well
Take Solaris ZFS snapshots
• All applications
• GlassFish application server
• OpenSolaris source code

SMF “enables” GlassFish application server and
applications
Option to save backup on remote media
• USB drive
• URI (nfs/ftp)

2008 JavaOneSM Conference | java.sun.com/javaone | 48

“Factory reset”
Select “System” -> “Reset to default configuration” on LCD

OR
Push “RESET” button

SMF “disables” applications and GlassFish application
server
Destroy Solaris ZFS filesystems for installed applications
Rollback Solaris ZFS for GlassFish application server and
OS to @install snapshot
Reboot

2008 JavaOneSM Conference | java.sun.com/javaone | 49

Integration with SMF

2008 JavaOneSM Conference | java.sun.com/javaone | 50

Using SMF
SMF manifest will be automatically generated whenever
an applications or resources are installed
• Generated with Groovy Builders

Use SMF to create dependencies between application and
resources
• Define a SMF when ever a resource is created – eg. connection

pool
• Define a SMF dependency from application to resource whenever

an application that uses that resource is installed
Check all dependencies when we start an application
• Done by OpenSolaris project through the appliance user interface

Other things we can do
• Automatically restart an application or resource when either one

dies
• Automatically start/shutdown application and resources whenever

appliance startup/shutdown
Cannot tie resources to application, only to GlassFish

2008 JavaOneSM Conference | java.sun.com/javaone | 51

<?xml version='1.0'?>
<!DOCTYPE service_bundle SYSTEM '/usr/share/lib/xml/dtd/service_bundle.dtd.1'>
<service_bundle type='manifest' name='export'>
<service name='application/database/mysql' type='service' version='0'>
 <dependency name='network' grouping='require_all' restart_on='none' type='service'>
 <service_fmri value='svc:/milestone/network:default'/>
 </dependency>
 <dependency name='filesystem-local' grouping='require_all' restart_on='none' type='service'>
 <service_fmri value='svc:/system/filesystem/local:default'/>
 </dependency>
 <exec_method name='start' type='method' exec='/lib/svc/method/mysql start' timeout_seconds='60'>
 <method_context/>
 </exec_method>
 <exec_method name='stop' type='method' exec='/lib/svc/method/mysql stop' timeout_seconds='60'>
 <method_context/>
 </exec_method>
 <instance name='dev_db' enabled='false'>
 <method_context project=':default' resource_pool=':default' working_directory=':default'>
 <method_credential group='mysql' limit_privileges=':default' privileges=':default' supp_groups=':default' user='mysql'/>
 </method_context>
 <property_group name='mysql' type='application'>
 <propval name='bin' type='astring' value='/usr/mysql/5.0/bin'/>
 <propval name='data' type='astring' value='/export/db_data/dev_db'/>
 <propval name='port' type='astring' value='3308'/>
 </property_group>
 <property_group name='general' type='framework'>
 <propval name='action_authorization' type='astring' value='solaris.smf.manage.mysql/dev_db'/>
 <propval name='value_authorization' type='astring' value='solaris.smf.manage.mysql/dev_db'/>
 </property_group>
 </instance>

2008 JavaOneSM Conference | java.sun.com/javaone | 52

 <instance name='prod_db' enabled='false'>
 <method_context project=':default' resource_pool=':default' working_directory=':default'>
 <method_credential group='mysql' limit_privileges=':default' privileges=':default'
 supp_groups=':default' user='mysql'/>
 </method_context>
 <property_group name='mysql' type='application'>
 <propval name='bin' type='astring' value='/usr/mysql/5.0/bin'/>
 <propval name='data' type='astring' value='/export/db_data/prod_db'/>
 <propval name='port' type='astring' value='3306'/>
 </property_group>
 <property_group name='general' type='framework'>
 <propval name='action_authorization' type='astring'
 value='solaris.smf.manage.mysql/prod_db'/>
 <propval name='value_authorization' type='astring'

 value='solaris.smf.manage.mysql/prod_db'/>
 </property_group>
 </instance>
 <stability value='Evolving'/>
 <template>
 <common_name>
 <loctext xml:lang='C'>MySQL RDBMS</loctext>
 </common_name>
 <documentation>
 <manpage title='MySQL 5.0.45' section='1'/>
 <doc_link name='mysql.com' uri='http://dev.mysql.com/docs'/>
 </documentation>
 </template>
</service>
</service_bundle>

http://dev.mysql.com/docs'/

2008 JavaOneSM Conference | java.sun.com/javaone | 53

Summary

2008 JavaOneSM Conference | java.sun.com/javaone | 54

Lessons Learnt
Never attempt to build an appliance 4 weeks before
delivery!
Deciding what type of application to support
• Web application is a really simple decision
• Make it real easy to deploy Grails and Rails application

• Rails config/database.yml
• Grails conf/DataSource.groovy

Grails is excellent if we were working from a database
• Cannot leverage Grails fully
• Still quite productive
• Copy GSP from existing Grails app
• Think like a script dude instead of a Java guy – short cuts are okay

2008 JavaOneSM Conference | java.sun.com/javaone | 55

Next Steps
Self configuration JavaEE application package
• Resources are defined in application package – eg. sun-web.xml
• Install resource along with application
• Excellent if used with 'cloud' computing

• Eg. Amazon S3 or SimpleDB
Tools support
• Use IDE to configure deployment descriptor for the appliance
• Currently we are not reading sun-web.xml file
• Can get better understanding of application

Cluster/HA support
• GlassFish application server has near zero touch for 'memory'

cluster configuration
• Appliance should leverage that

2008 JavaOneSM Conference | java.sun.com/javaone | 56

Acknowledgment
Jason Huang – helped with the code for managing
GlassFish application server

2008 JavaOneSM Conference | java.sun.com/javaone | 57

Peter Karlsson, Technology Evangelist
Lee Chuk Munn, Staff Engineer

Speaker’s logo here
(optional)

