
Real-Time Specification for Java™:
The Revolution Continues

Bertrand Delsart, John Duimovich, Doug Locke
TS-5767

2008 JavaOneSM Conference | java.sun.com/javaone | 2

Learn about the different flavors of Real-Time
Java Specifications to find the one that best
fits your tastes

2008 JavaOneSM Conference | java.sun.com/javaone | 3

Who are these people?
Bertrand : Sun Microsystems
• Java RTS (Real-Time System) technical leader
• Bertrand.Delsart@Sun.COM

Doug: Locke Consulting LLC
• Real-time systems consultant, JSR-302 Spec Lead
• doug@douglocke.com

John: IBM® Canada
• Chief Technology Officer of the IBM Java Technology Centre
• John_Duimovich@ca.ibm.com

2008 JavaOneSM Conference | java.sun.com/javaone | 4

Agenda

Java Specification Request (JSR)-1: The Real-Time
Specification for Java (RTSJ):
• The Determinism of C/C++, a Taste of Java Code

JSR-282: RTSJ version 1.1
• Adding New Ingredients

JSR-50: Distributed Real-Time Specification for Java
• Adding Distribution Flavor

JSR-302: Safety Critical Java
• Simplifying the Recipe to Guarantee the Taste

JSR-xxx
• Revisiting the Taste

2008 JavaOneSM Conference | java.sun.com/javaone | 5

What is Real-Time ?
Real-time isn’t the same as real fast!
Going faster helps...
But what really matters is the Worst Case Execution Time

Real-Time is about deadlines !

Military
• e.g., accurate missile tracking; avoid getting blown up

Telcos
• e.g., predictable call connection; avoid irritating the user

Banks
• e.g., responsive trading; avoid not making money

2008 JavaOneSM Conference | java.sun.com/javaone | 6

Real-Time Use Case:
Send Data at a Fixed Rate

Mainstream Java Technology Solution:
while (true) do {

compute_data();
now = System.currentTimeMillis()
Thread.sleep(next_period – now);
send_data();
next_period += period;

}
Problem:
• Not guaranteed to wake up quickly after the sleep call

• Mainstream “setPriority()” is not sufficient
• What if it is preempted just after the currentTimeMillis()

call ?

2008 JavaOneSM Conference | java.sun.com/javaone | 7

JSR-1 Provides the Necessary APIs and Semantics
Code executed by a RealTimeThread:
this.setPriority(my_RTPriority);
AbsoluteTime wakeup = ...;
RelativeTime period = ...;
while (true) do {

compute_data();
RealtimeThread.sleep(wakeup);
send_data();
wakeup.add(period,wakeup);

}
Note on priority semantics:
• It properly handles locks, boosting low priority threads if necessary

Problem:
• The system does not know the timing properties of this thread

2008 JavaOneSM Conference | java.sun.com/javaone | 8

JSR-1 Provides a Rich Real-Time Library
Code executed by a RealTimeThread:
this.setPriority(my_RTPriority);
this.setReleaseParameters(myPeriodicParams);
while (true) do {

compute_data();
RealtimeThread.waitForNextPeriod();
send_data();

}
Advantage:
• Richer semantic, with Deadline Miss monitoring and management

and optionally Cost Enforcement and Feasibility Analysis
Problem:
• Is it sufficient to guarantee determinism ?

2008 JavaOneSM Conference | java.sun.com/javaone | 9

JSR-1 Provides Threads Optimized for Determinism
Isolated from GC pauses
Implicitly working around other non-deterministic
optimizations (JIT compilation, recompilation, ...)

'Same' code... executed by a NoHeapRealtimeThread
(NHRT)
Result:
• Programs running today as deterministic as C/C++
• Java code flavor

• Availability of a rich library for ease-of-use and portability
• Lots of dynamic timing checks to easily detect and react to timing

issues
Problem:
• What about memory allocation since 'isolated' from the GC ?

2008 JavaOneSM Conference | java.sun.com/javaone | 10

MemoryAreas for NoHeapRealtimeThreads

ImmortalMemory for non recycled objects
ScopedMemory for recycling
• Memory areas not subject to the Garbage Collector
• Per area counters to know how many threads have entered an

area
• Objects automatically deleted when the count of their area is 0
• Tree of nested scope, dynamically modified by each enter() call

• Reflecting which scopes can safely reference a given scope
• With dynamic checks to ensure a “single-parent” rule

• Dynamic read/write checks to guarantee safety
• Read exception if the returned value is a Heap-allocated object
• Write exception if a Scope-allocated object is stored in an object

that may survive longer than the Scope

2008 JavaOneSM Conference | java.sun.com/javaone | 11

First NHRT Version: Try with the Same Code
Code executed by a NoHeapRealtimeThread
while (true) do {

scopedMemory1.enter(runnable);
// scopedMemory1 recycled for the next loop

}
void run() {

compute_data();
RealtimeThread.waitForNextPeriod();
send_data();

}
Problem
• Is compute_data() endorsing read/write constraints ?
• More generally, what about legacy code, third party libraries... and

even core libraries ?

2008 JavaOneSM Conference | java.sun.com/javaone | 12

Limiting Hard Real-Time to the Time Critical Part
Part executed by the NoHeapRealtimeThread consumer
void run() { // in the consumer runnable

RealtimeThread.waitForNextPeriod();
send_data(scopes[consumer].getPortal());

}
Part executed by the soft RealtimeThread producer
void run() { // in the producer runnable

scopes[producer].setPortal(compute_data());
RealtimeThread.waitForNextPeriod();

}
Problem:
• Soft real-time delays must not impact the hard real-time part
• The user has to ensure the reference count drops to zero... but not

too early
• send_data() must enforce read/write constraints

2008 JavaOneSM Conference | java.sun.com/javaone | 13

Recovering from Production Delays
softReleaseParameters.setDeadlineMissHandler(hardDMH);
Bound No-Heap Deadline Miss Handler:
void handleAsyncEvent() {

scopes[consumer].enter(dmh_runnable);
}
void run() {

data = compute_simpler_data(); // deterministic
scopes[consume].setPortal(data);
softRTT.schedulePeriodic();

}

Problem:
• compute_simpler_data()must enforce read/write constraints

2008 JavaOneSM Conference | java.sun.com/javaone | 14

Using Two Scopes to Guarantee Recycling
Part executed by the soft RealtimeThread producer
while (true) do {

// produce in the current consumer scope
producer = consumer;
scopes[producer].enter(producer_runnable);

}
Part executed by the NoHeapRealtimeThread consumer
while (true) do {

// change to the other scope only if the
// producer was not delayed inside it
if (producer == consumer) {

consumer = 1-consumer; // 0..1 toggle
}
scopes[consumer].enter(consumer_runnable);

}

2008 JavaOneSM Conference | java.sun.com/javaone | 15

JSR-1, RTSJ: The determinism of C/C++, a
taste of Java Code

Necessary Real-Time Extensions
Rich Real-Time Library
Interesting Time Related Checks
A Mechanism to Avoid GC Pauses
A Few Optional Features
• Cost Enforcement, Feasibility Analysis, PCP Locks

The Resulting Taste
+ Simple portable programs as deterministic as C/C++ ones
+ Powerful recovery mechanisms to improve robustness
 Potential issues for more complex hard real-time tasks

Don't be put off !
With Real-Time Garbage Collectors (RTGC),

you can get the real taste of Java Code

2008 JavaOneSM Conference | java.sun.com/javaone | 16

Real-Time Garbage Collection:
The Real Taste of Java Code

Hard real-time consumer
while (true) {

RealtimeThread.waitForNextPeriod();
send_data();

}
Soft real-time producer
while (true) {

RealtimeThread.waitForNextPeriod();
compute_data();

}
Hard real-time Deadline Miss Handler
void handleAsyncEvent() {

compute_simpler_data();
softRTT.schedulePeriodic();

}

2008 JavaOneSM Conference | java.sun.com/javaone | 17

JSR-1 Evolution

Real-Time
Specification for
Java (JSR-001)
proposal
submitted

Many companies
represented: IBM, Sun,
Ajile, Apogee,
Motorola, Nortel, QNX,
Thales, TimeSys,
WindRiver

2002 2005 2007 2008
JSR-001
approved by the
Java Community
Process

TimeSys
Reference
Implementation

RTSJ update
proposal
submitted
(JSR-282)
- Several JSR-1
compliant
products
(Apogee, IBM,
Sun)
-RTGC Available
in IBM's JVM

RTGC added
to Sun's JSR1-
compliant JVM

JSR-1 APIs
added to
RTGC
enhanced
JVMs

New Sun/IBM JSR

1998

2008 JavaOneSM Conference | java.sun.com/javaone | 18

Agenda

JSR-1: The Real-Time Specification for Java:
• The Determinism of C/C++, a Taste of Java Code

JSR-282: RTSJ version 1.1
• Adding New Ingredients

JSR-50: Distributed Real-Time Specification for Java
• Adding Distribution Flavor

JSR-302: Safety Critical Java
• Simplifying the Recipe to Guarantee the Taste

JSR-xxx
• Revisiting the Taste

2008 JavaOneSM Conference | java.sun.com/javaone | 19

JSR 282: Further Enrich the RTSJ Library
Title – “RTSJ version 1.1”
Spec Lead: TimeSys Corporation, Peter Dibble leading
Champion for each SI, “Specification Issue”

Processor pinning:
• Specify which CPUs a thread can use
• No existing POSIX standard
• Develop an API that is portable enough to work on various systems

Consumed CPU time
• Allow reasoning about CPU consumption instead of relying only on

the optional cost enforcement
Add data to fired events
• Similar to cookies in POSIX signal handlers

...

2008 JavaOneSM Conference | java.sun.com/javaone | 20

JSR-282: Revisiting NHRT Memory Areas
1/3 of the Specification Issues concern memory
1/2 of them have already been closed
Most of them are about ScopedMemory
• Scoped Weak References, Pinned Scopes, Enhanced

MemoryArea.enter method allowing to pass arguments, Removal
of the bi-directional rule

Significant progress on ImmortalMemory consumption
• Will benefit class unloading and immortal memory 'leaks'

• Option to prevent implicit ImmortalMemory allocations
• Study of a new initialization strategy based on the area in which the

ClassLoader was allocated being considered

2008 JavaOneSM Conference | java.sun.com/javaone | 21

JSR-282 progressing... slowly
Initiated in 2005
RI and TCK gradually enriched with new JSR-282 APIs
and semantics
A few Specification Issues are still being discussed due to
their complexity
• Feedback is requested to improve the proposal while it is still

flexible
RTGC technology changed the context; the most complex
SIs are sometimes no longer the most important for
customers because RTGCs allow them to be deterministic
enough without using NHRT/ScopedMemory

2008 JavaOneSM Conference | java.sun.com/javaone | 22

Agenda

JSR-1: The Real-Time Specification for Java:
• The Determinism of C/C++, a Taste of Java Code

JSR-282: RTSJ version 1.1
• Adding New Ingredients

JSR-50: Distributed Real-Time Specification for Java
• Adding Distribution Flavor

JSR-302: Safety Critical Java
• Simplifying the Recipe to Guarantee the Taste

JSR-xxx
• Revisiting the Taste

2008 JavaOneSM Conference | java.sun.com/javaone | 23

JSR-50: Adding Distribution Flavor
Title – “Distributed Real-Time Specification for Java”
Spec Lead – Mitre Corp., Doug Jensen leading
Bring distributed real-time support to Java technology
• Provide support for end-to-end application timeliness and fault

management properties
• RTSJ applications intended to run unmodified on DRTSJ
• Traditionally ensuring these end-to-end properties has been forced

on the application designers
• who must create ad-hoc (and error-prone) mechanisms to attain them
• typically without proper experience or education
• and at high recurring and non-recurring costs

• Existing Java technology distribution models (e.g., Java Message
Service, JXTA) do not provide appropriate end-to-end context…

2008 JavaOneSM Conference | java.sun.com/javaone | 24

JSR-50 Distributable Threads Components
A distributable threads programming model
A distributable thread integrity framework
A scheduling framework

Object A Object B Object C Object D

dthread 1 dthread 2 dthread 3

(Returns have not yet occurred)

2008 JavaOneSM Conference | java.sun.com/javaone | 25

JSR-50 Status
Specification nearing completion
Reference Implementation nearing completion
Funding issues have caused a recent suspension of
progress
• Opportunities exist for interested parties to assist

2008 JavaOneSM Conference | java.sun.com/javaone | 26

Agenda

JSR-1: The Real-Time Specification for Java:
• The Determinism of C/C++, a Taste of Java Code

JSR-282: RTSJ version 1.1
• Adding New Ingredients

JSR-50: Distributed Real-Time Specification for Java
• Adding Distribution Flavor

JSR-302: Safety Critical Java
• Simplifying the Recipe to Guarantee the Taste

JSR-xxx
• Revisiting the Taste

2008 JavaOneSM Conference | java.sun.com/javaone | 27

JSR-302: Simplifying the Recipe to
Guarantee the Taste

Title – “Safety Critical Java Technology”
Spec Lead: The Open Group, Doug Locke leading
Goal – a specification for Safety Critical Java source
capable of being certified under DO-178B Level A and
other safety critical certification standards
• The specification will be based on a subset of the Real-Time

Specification for Java
• Certification implies a small, reduced complexity infrastructure (i.e.,

Java Virtual Machine)
• Emphasis is on defining a minimal set of capabilities required for

safety critical applications

2008 JavaOneSM Conference | java.sun.com/javaone | 28

JSR-302 Overview
Application Structure

• Three Compliance Levels
• Data structures created at initialization in Mission Memory
• Scoped memory areas used for limited dynamic allocation

• Restrictions on multiple memory area access
• Application startup will not require heap memory

• Uses a Safelet

2008 JavaOneSM Conference | java.sun.com/javaone | 29

JSR-302 Compliance Levels
Three Compliance Levels
• Level 0 provides a cyclic executive (single thread), no

wait/notify
• Synchronization ignored
• No threads – only periodic Async Event Handlers
• Local memory in local scoped memory – emptied each period

• Level 1 provides a single mission with multiple
schedulable objects, no wait/notify
• Multiple concurrent schedulable objects
• Dynamic scoped memory allowed, but not shared

• Level 2 provides nested missions with (limited) nested
scopes
• May have NoHeapRealtimeThreads, wait/notify, nested shared scoped

memory (must be statically checkable)
• All Exceptions must be pre-allocated

2008 JavaOneSM Conference | java.sun.com/javaone | 30

JSR-302 Issues (1)
Garbage Collector
• None required

Scoped memory
• Nesting restricted to Level 2
• Reference safety must be statically analyzable

All Schedulable Objects will be non-heap
Initialization initializes each class in user-defined order
Java source memory model follows JSR-133
• Circular reference initialization disallowed

2008 JavaOneSM Conference | java.sun.com/javaone | 31

JSR-302 Issues (2)
Support for SMP’s to follow RTSJ lead
• May include Schedulable Object processor pinning

No Finalizers
No Reflection
Requires Priority Ceiling for priority inversion management in
Synchronized methods
• No synchronized blocks other than “this”

Priority Inheritance not required
Class loader not required
Raw memory included, but Physical Memory not required
Required annotations to support static analyzability defined
Specification will list required Java classes in conforming
implementations

2008 JavaOneSM Conference | java.sun.com/javaone | 32

JSR-302 Status
Specification draft writing assignments are almost
completed
Expect initial specification soon
Reference Implementation being implemented as open
source RTSJ-compliant Java code executable on any
RTSJ-compliant JVM™
Technology Compatibility Kit still to be worked
Strong Expert Group
Stay tuned!

2008 JavaOneSM Conference | java.sun.com/javaone | 33

Agenda

JSR-1: The Real-Time Specification for Java:
• The Determinism of C/C++, a Taste of Java Code

JSR-282: RTSJ version 1.1
• Adding New Ingredients

JSR-50: Distributed Real-Time Specification for Java
• Adding Distribution Flavor

JSR-302: Safety Critical Java
• Simplifying the Recipe to Guarantee the Taste

JSR-xxx
• Revisiting the Taste

2008 JavaOneSM Conference | java.sun.com/javaone | 34

JSR-xxx, Why: Avoid Real-Time Java
Technology Fragmentation

JVM implementation issues with ScopedMemory
• ScopedMemory is hard to implement efficiently
• ScopedMemory enhancements are very intrusive
• Each implementor must decide which classes must be modified to be

Scope-safe
• A few issues are still being worked on in JSR-282

Alternative approaches sufficient for many customers
• RTGC technologies, included in most of the RT JVMs
• Other proprietary extensions that permit smaller latencies in a subset

of the application (xRTs for instance)
Consequence
• A few vendors do not try to be fully JSR-1 compliant
• Users have more portability issues

2008 JavaOneSM Conference | java.sun.com/javaone | 35

JSR-xxx, How: Subset that's Useful and
Easy

Proposed during “Future Directions for the RTSJ” BOF, at
JTRES 2007 (Workshop on Java Technologies for Real-time
and Embedded Systems)
• http://www.vmars.tuwien.ac.at/jtres2007/slides/BoF.pdf
• No objections raised from the RT experts at the workshop
• Proposal removed memory management and ATC

Focus on memory management to proceed faster
Mostly paperwork to define:
• A new configuration, subset of JSR-1:

RTSJ Configuration for Alternative Memory Allocators
• A profile defining the current JSR-1 memory management

NoHeapRealtimeThread profile for RTSJ
Leveraging JSR-1 RI and TCK

2008 JavaOneSM Conference | java.sun.com/javaone | 36

JSR-xxx, Who:
Possibly co-led by IBM and Sun
TimeSys delivering the RI and the TCK
Expert Group being formed to prepare submission into
JCPSM service
You can still be part of it !

2008 JavaOneSM Conference | java.sun.com/javaone | 37

Summary
JSR-1 products already exist and are successfully used
JSR-282 is continuing to improve RTSJ
JSR-50 and JSR-302 will extend the real-time Java
technology market
JSR-xxx should increase the compliant real-time JVMs
offering

You can still contribute to these specification efforts
• Go to http://jcp.org/ for the existing JSRs
• Contact Bertrand.Delsart@Sun.COM for the new one

http://jcp.org/
mailto:Bertrand.Delsart@Sun.COM

2008 JavaOneSM Conference | java.sun.com/javaone | 38

Bertrand Delsart, John Duimovich, Doug Locke

