
Building Real-Time Systems
for the Real-World
Session TS-6989

Mike Fulton
IBM Canada Ltd.

2

Agenda
> What Are Real-Time Systems?
> What Business Sectors Need Real-Time?
> How are JavaTM Systems Adapting to Real-Time?
> What Real-Time Tools Are Available?
> Does Any Middleware Run on Real-Time JVMs?

3

What Are Real-Time Systems?
> Broad Category Describing a Range of Systems

Determinism

Th
ro

ug
hp

ut
Fault T

olerance

● Any System With Real-World Time Constraints

●All Trades Must Complete in <25ms

Examples:

●99.99% of all radar scan events captured

●Cruise Control speed change never fails

●95% of call packets processed in <20ms
● 99.9% of packets processed in <40ms

● 100% of packets processed in <50ms

●Assembly Line Advance every 20 minutes

4

What Business Sectors Need Real-Time?
> A better question would be who doesn't need it
> Improved predictability would help most systems

● Telco: Could you repeat that? The line is crackling.
● Financial: 'most' trades complete quickly.
● Desktop Systems: Ever had a tool 'freeze up'?
● Web Servers: Click 'Reload' – it's taking too long.
● Safety Critical: Want to stop when you hit the brake?

5

Writing Real-Time Java Applications
> Using Standard Java Virtual Machines (JVMs)

● May not satisfy Service Level Agreements (SLAs)
● Garbage Collection causes application delays
● Java Threads may not use Real-Time Scheduling
● Compilation can cause unexpected CPU spikes
● Class Loading causes loading from disk
● Underlying OS may not provide consistent services
● Underlying Hardware may have random interrupts

6

Garbage Collection (GC)
Different Policies for Different SLAs
> Several Popular GC Policies Available Today

● High Throughput Stop-The-World Collection
● Generational, Concurrent Collection
● Incremental Collection
● Work-Based Collection
● Event-Based Collection

7

Garbage Collection Policies
High Throughput Stop-The-World
> Run Application at full speed until memory low

● Stop all application threads
● Clean up objects that are no longer referenced
● Transfer control back to application
● Garbage collection delays are variable

Application

GCTime

8

Garbage Collection Policies
Generational, Concurrent
> Run Application, Garbage Collector Mark in Parallel

● Perform Very Small, Fast, Nursery collect often
● Perform Large Tenured Space collect infrequently
● Less variable than Stop-the-World, but not consistent

Application

GCTime

9

Garbage Collection Policies
Incremental Collection
> Run Application for Short Periods of Time
> Perform Very Small, Partial Collects Very Often
> Garbage Collection Keeps Up with Creation
> Collection Pauses are Consistent

Application

GCTime

10

Garbage Collection Policies
Work-Based Collection
> Free Space Tracking on a per Thread Basis
> Trigger Thread Collect at Allocation Point
> Typically Thread-Based Incremental Collection

Application

GC

Time

Thread 1

Thread 2

Thread 3

Thread 4

11

Garbage Collection Policies
Event-Based Collection
> Application is Designed as an Event-Based System
> Garbage Collection is Scheduled as Another Event
> GC Algorithm could be STW, Incremental, ...

Application

GC

Time

App Thread 1

App Thread 2

App Thread 3

GC Thread 1

12

Real World Garbage Collection
Comparing Real-Time Incremental to Generational GC
> The following slides show the effects of GC

● Session Initiation Protocol (SIP) Server
● Processing Incoming Phone Calls
● Compares IBM Generational GC to Incremental GC

13

SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

ack

14

SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

Time passes, Garbage Collects

ack

15

SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

Peer BPeer A

Time passes, Garbage Collects

GC Occurs, Processing Stops

Network Storm: packets get backed up

ack

16

SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

Peer BPeer A

Time passes, Garbage Collects

GC Occurs, Processing Stops

No acknowledgement, packets Retransmitted

Network Storm: packets get backed up

ack

17

SIP (Session Initiation Protocol) Server
Real System with Real-Time Incremental GC

packets sent

Peer APeer A Peer B

ack

18

SIP (Session Initiation Protocol) Server
Real System with Real-Time Incremental GC

packets sent

Peer APeer A Peer B

Time passes, Garbage is Collected as it is created

ack

19

SIP (Session Initiation Protocol) Server
Real System with Real-Time Incremental GC

packets sent

Peer APeer A Peer B

Peer BPeer A

Time passes, Garbage is Collected as it is created

ack

packets sent
ack

20

Real-Time (Incremental) GC has slightly less throughput than Generational
●But 98% reduction in standard deviation of GC pause times

Reduced pause times results in reduced latencies

Throughput:
Real-Time throughput less than Generational

Maximum Latencies
Real-Time less than 100ms
Generational less than 1000ms (1s)

Latencies greater than 50 ms:
Real-Time 0.3%,
Generational 50%

Real SIP Server Performance Results
Generational GC Compared to Incremental GC

21

Real-Time Thread Scheduling
> Java does not mandate a scheduling policy

● Low priority and High priority work runs together
● Many JVMs use SCHED_OTHER *ix policy

> Real-Time JVMs Expose Scheduling Policies
● In particular:

● RTSJ JVMs provide SCHED_FIFO RealTimeThread
● Could alternately run Java Threads SCHED_FIFO

> Thread Priority Scheduling is Critical

22

Java Application on Single CPU
Running Application Threads as SCHED_OTHER

Elapsed Time

10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms

E
ve

nt
s

High Priority Thread

Low Priority Thread

Low and High Priority Threads Share CPU to complete work

23

Java Application on Single CPU
Running Application Threads as SCHED_FIFO

Elapsed Time

10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms

E
ve

nt
s

High Priority Thread

Low Priority Thread

preempt preempt

High Priority Thread Takes Control and Preempts Low Priority Thread
●High Priority Thread completes quicker
●Low Priority Thread takes longer to complete because it was preempted

24

Real World Java Messaging Application
Comparing SCHED_FIFO and SCHED_OTHER

0..5ms
5..10ms

10..20ms
20..30ms

30..40ms
40..50ms

>50ms

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0..5ms
5..10ms

10..20ms
20..30ms

30..40ms
40..50ms

>50ms

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0..5ms
5..10ms

10..20ms
20..30ms

30..40ms
40..50ms

>50ms

0
100000

200000
300000

400000
500000
600000
700000
800000
900000

SCHED_OTHER
SCHED_FIFO

3K Message Size 4K Message Size 5K Message Size

> Application for publishing 3K, 4K, 5K messages
● Identical binary, RHEL 5.1, IBM Real-Time JVM
● Java threads run SCHED_OTHER, SCHED_FIFO

25

Compilation Approaches
> A: Interpreter Only, Ahead-of-Time Compilation

● Conservative, easy to analyze, lower throughput
> B: Dynamic Compilation at Start Up

● Higher throughput, Deterministic, Slow Start-up
> Real-Time Dynamic Compilation

● Highest throughput – good supplement to A or B
● Should Provide:

● Compilation on Separate Thread
● Incremental Compilation that can be suspended
● Compiler capable of being preempted by GC or App

26

Real-Time Compilation
Blended Compilation Strategy
> Ahead of Time Compilation for fast start
> Code Compilation/Class-Loading at Start-up
> Incremental, Preemptable, Dynamic Compilation

Elapsed Time

10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms

E
ve

nt
s

High Priority Thread

Compiler

GC

preempt

preempt

Low Priority Thread

preempt

27

Are All Operating Systems the Same?
Why an RTOS Can Be Critical
> Consistency of System Services Matters

● Time-of-Day Clock, Sleep Very Important
● Dispatch accuracy of system/application events?
● In Java, what is the accuracy of System.nanosleep()?
● Ranges from sub-microsecond to tens of milliseconds

● Accurate systems not completely free
● Caching algorithms disabled for consistent operation
● Otherwise 1st invocation much slower than 2nd

● Real-Time Industry Benchmarks being developed
● Measure the Determinism of JVMs and OSs

28

Real-Time Micro Benchmark C Results
for two popular operating systems
> Real-Time C Benchmark

● Suite of Micro-Benchmarks measuring determinism

clock timer int f loat mem io-read io-w rite net time thd-prio event multi-thd dispatch lock geomean
0

1000

2000

3000

4000

5000

6000

7000

OS#1
OS#2

CPU 0

CPU 1

Hardware Alert:
Memory soft error

Over-temperature condition
Power-supply alert

Hardware
Management

Stack

Non-real-time behavior

There is nothing that the OS or higher-level software can
do to make up for this HW/FW non-realtime behavior.

HW/FW Handles Alert

Is All Hardware the Same?
What Can Go Wrong with Hardware Interrupts

CPU 0

CPU 1

Hardware Alert:
Memory soft errors

Thermal alerts
Power-supply alerts

Hardware
Management

Stack

Real-Time Thread Permitted to Complete

The OS and higher-level software now see Real-Time behavior.

OS handles alert
at appropriate

priority

Is All Hardware the Same?
Priority-Based Hardware Interrupts

31

Does Real-Time Need Specific Tools?
> Yes!

● Real-Time Modeling Tools
● Tailored for creating event-driven applications

● OS/JVM Tracing Tools
● Find performance outliers, not throughput issues
● Traditional Performance Analysis based on averages

● Statistical approaches like sampling work very well
● Worst-case Execution Time Analysis focus on outliers

● Sampling is of little value

32

Summary
> Model Event-Based Systems

● Simulate/Trace events using models
● Define real-time event dispatch / scheduling

33

Real-Time OS/JVM Tracing
> Very Low Overhead Trace Daemon

● Capture data at Application, JVM, OS Level
● Transmit data on low priority socket to other OS
● On other OS, process event stream

34

Real-Time Outlier Detection
Outlier Analysis : Diagnosing an application outlier
> 8 CPU System with Single 588µs Outlier (red)

● Drilling down to event trace at point of outlier
● Initial thought is GC (green) causing interference

35

Real-Time Outlier Detection
Outlier Analysis : Diagnosing an OS Outlier
> 8 CPU System with Single 588µs Outlier

● Drilling down to OS event trace at point of outlier
● Rolling IRQ across CPUs causes Java process bump
● Process pre-empted across 4 CPUs in turn (1->4->2->5)

36

Real-Time Middleware
> Variety of Real-Time Middleware Available

● Some runs 'as-is' on RT JVMs
● Better Determinism 'for free'

● Some middleware exploits RT JVM Capabilities
● Priority-based routing in Application Servers

● Next Generation Extreme Transaction Processing
● Working with huge data sets – hundreds of gigabytes
● Performing Complex Event Processing in Real-Time
● Will be running on Real-Time Systems Developed today

37

Real-Time Application Server
Priority Based Routing

App Server with Priority-Based
Routing

Client App

App Server with Standard JVMApp Server with Real-Time JVM

In-memory
database

Traditional
database

Message

Message with High Priority Header Message with Low Priority Header

38

Summary
What I hope you gleaned from my ramblings
> Most applications can benefit from Real-Time Java
> JVMs require core enhancements for real-time

● The OS, hardware, and middleware are also key
> Real-Time has distinct tooling demands
> The benefits of real-time are real, not theoretical

Mike Fulton
fultonm@ca.ibm.com

IBM Canada Ltd.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

