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Agenda
> What Are Real-Time Systems?
> What Business Sectors Need Real-Time?
> How are JavaTM Systems Adapting to Real-Time?
> What Real-Time Tools Are Available?
> Does Any Middleware Run on Real-Time JVMs?
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What Are Real-Time Systems?
> Broad Category Describing a Range of Systems
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● Any System With Real-World Time Constraints 

●All Trades Must Complete in <25ms

Examples:

●99.99% of all radar scan events captured 

●Cruise Control speed change never fails 

●95% of call packets processed in <20ms
● 99.9% of packets processed in <40ms

● 100% of packets processed in <50ms

●Assembly Line Advance every 20 minutes
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What Business Sectors Need Real-Time?
> A better question would be who doesn't need it
> Improved predictability would help most systems

● Telco: Could you repeat that? The line is crackling.
● Financial: 'most' trades complete quickly.
● Desktop Systems: Ever had a tool 'freeze up'?
● Web Servers: Click 'Reload' – it's taking too long.
● Safety Critical: Want to stop when you hit the brake?
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Writing Real-Time Java Applications
> Using Standard Java Virtual Machines (JVMs)

● May not satisfy Service Level Agreements (SLAs)
● Garbage Collection causes application delays
● Java Threads may not use Real-Time Scheduling
● Compilation can cause unexpected CPU spikes
● Class Loading causes loading from disk
● Underlying OS may not provide consistent services
● Underlying Hardware may have random interrupts
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Garbage Collection (GC)
Different Policies for Different SLAs
> Several Popular GC Policies Available Today

● High Throughput Stop-The-World Collection
● Generational, Concurrent Collection
● Incremental Collection
● Work-Based Collection
● Event-Based Collection
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Garbage Collection Policies
High Throughput Stop-The-World
> Run Application at full speed until memory low

● Stop all application threads
● Clean up objects that are no longer referenced
● Transfer control back to application
● Garbage collection delays are variable

Application

GCTime
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Garbage Collection Policies
Generational, Concurrent
> Run Application, Garbage Collector Mark in Parallel

● Perform Very Small, Fast, Nursery collect often
● Perform Large Tenured Space collect infrequently
● Less variable than Stop-the-World, but not consistent

Application

GCTime



9

Garbage Collection Policies
Incremental Collection 
> Run Application for Short Periods of Time
> Perform Very Small, Partial Collects Very Often
> Garbage Collection Keeps Up with Creation
> Collection Pauses are Consistent

Application

GCTime
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Garbage Collection Policies
Work-Based Collection
> Free Space Tracking on a per Thread Basis
> Trigger Thread Collect at Allocation Point
> Typically Thread-Based Incremental Collection

Application

GC

Time

Thread 1

Thread 2

Thread 3

Thread 4
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Garbage Collection Policies
Event-Based Collection
> Application is Designed as an Event-Based System
> Garbage Collection is Scheduled as Another Event
> GC Algorithm could be STW, Incremental, ...

Application

GC

Time

App Thread 1

App Thread 2

App Thread 3

GC Thread 1
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Real World Garbage Collection
Comparing Real-Time Incremental to Generational GC
> The following slides show the effects of GC

● Session Initiation Protocol (SIP) Server 
● Processing Incoming Phone Calls
● Compares IBM Generational GC to Incremental GC
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SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

ack
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SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

Time passes, Garbage Collects

ack
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SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

Peer BPeer A

Time passes, Garbage Collects

GC Occurs, Processing Stops

Network Storm: packets get backed up

ack
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SIP (Session Initiation Protocol) Server
Real System running with Generational GC

packets sent

Peer APeer A Peer B

Peer BPeer A

Time passes, Garbage Collects

GC Occurs, Processing Stops

No acknowledgement, packets Retransmitted

Network Storm: packets get backed up

ack
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SIP (Session Initiation Protocol) Server
Real System with Real-Time Incremental GC

packets sent

Peer APeer A Peer B

ack
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SIP (Session Initiation Protocol) Server
Real System with Real-Time Incremental GC

packets sent

Peer APeer A Peer B

Time passes, Garbage is Collected as it is created

ack
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SIP (Session Initiation Protocol) Server
Real System with Real-Time Incremental GC

packets sent

Peer APeer A Peer B

Peer BPeer A

Time passes, Garbage is Collected as it is created

ack

packets sent
ack
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Real-Time (Incremental) GC has slightly less throughput than Generational
●But 98% reduction in standard deviation of GC pause times

Reduced pause times results in reduced latencies

Throughput:
Real-Time throughput less than Generational

Maximum Latencies
Real-Time  less than 100ms
Generational  less than 1000ms (1s)

Latencies greater than 50 ms: 
Real-Time  0.3%, 
Generational  50%

Real SIP Server Performance Results
Generational GC Compared to Incremental GC
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Real-Time Thread Scheduling
> Java does not mandate a scheduling policy

● Low priority and High priority work runs together
● Many JVMs use SCHED_OTHER *ix policy

> Real-Time JVMs Expose Scheduling Policies
● In particular:

● RTSJ JVMs provide SCHED_FIFO RealTimeThread
● Could alternately run Java Threads SCHED_FIFO

> Thread Priority Scheduling is Critical 
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Java Application on Single CPU
Running Application Threads as SCHED_OTHER

Elapsed Time

10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms
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High Priority Thread

Low Priority Thread

Low and High Priority Threads Share CPU to complete work
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Java Application on Single CPU
Running Application Threads as SCHED_FIFO

Elapsed Time

10ms 20ms 30ms 40ms 50ms 60ms 70ms 80ms 90ms 100ms
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nt
s

High Priority Thread

Low Priority Thread

preempt preempt

High Priority Thread Takes Control and Preempts Low Priority Thread
●High Priority Thread completes quicker
●Low Priority Thread takes longer to complete because it was preempted
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Real World Java Messaging Application 
Comparing SCHED_FIFO and SCHED_OTHER
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> Application for publishing 3K, 4K, 5K messages
● Identical binary, RHEL 5.1, IBM Real-Time JVM
● Java threads run SCHED_OTHER, SCHED_FIFO
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Compilation Approaches
> A: Interpreter Only, Ahead-of-Time Compilation

● Conservative, easy to analyze, lower throughput
> B: Dynamic Compilation at Start Up

● Higher throughput, Deterministic, Slow Start-up
> Real-Time Dynamic Compilation 

● Highest throughput – good supplement to A or B
● Should Provide: 

● Compilation on Separate Thread
● Incremental Compilation that can be suspended
● Compiler capable of being preempted by GC or App



26

Real-Time Compilation
Blended Compilation Strategy
> Ahead of Time Compilation for fast start
> Code Compilation/Class-Loading at Start-up 
> Incremental, Preemptable, Dynamic Compilation
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Are All Operating Systems the Same?
Why an RTOS Can Be Critical
> Consistency of System Services Matters

● Time-of-Day Clock, Sleep Very Important
● Dispatch accuracy of system/application events?
● In Java, what is the accuracy of System.nanosleep()?
● Ranges from sub-microsecond to tens of milliseconds

● Accurate systems not completely free
● Caching algorithms disabled for consistent operation
● Otherwise 1st invocation much slower than 2nd 

● Real-Time Industry Benchmarks being developed
● Measure the Determinism of JVMs and OSs
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Real-Time Micro Benchmark C Results
for two popular operating systems
> Real-Time C Benchmark

● Suite of Micro-Benchmarks measuring determinism
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CPU 0

CPU 1

Hardware Alert:
Memory soft error

Over-temperature condition
Power-supply alert

Hardware
Management

Stack

Non-real-time behavior

There is nothing that the OS or higher-level software can
do to make up for this HW/FW non-realtime behavior.

HW/FW Handles Alert

Is All Hardware the Same?
What Can Go Wrong with Hardware Interrupts



CPU 0

CPU 1

Hardware Alert:
Memory soft errors

Thermal alerts
Power-supply alerts

Hardware
Management

Stack

Real-Time Thread Permitted to Complete

The OS and higher-level software now see Real-Time behavior.

OS handles alert
at appropriate

priority

Is All Hardware the Same?
Priority-Based Hardware Interrupts 
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Does Real-Time Need Specific Tools?
> Yes! 

● Real-Time Modeling Tools
● Tailored for creating event-driven applications

● OS/JVM Tracing Tools
● Find performance outliers, not throughput issues
● Traditional Performance Analysis based on averages

● Statistical approaches like sampling work very well
● Worst-case Execution Time Analysis focus on outliers

● Sampling is of little value
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Summary
> Model Event-Based Systems

● Simulate/Trace events using models
● Define real-time event dispatch / scheduling
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Real-Time OS/JVM Tracing 
> Very Low Overhead Trace Daemon

● Capture data at Application, JVM, OS Level
● Transmit data on low priority socket to other OS
● On other OS, process event stream
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Real-Time Outlier Detection
Outlier Analysis : Diagnosing an application outlier
> 8 CPU System with Single 588µs Outlier (red)

● Drilling down to event trace at point of outlier
● Initial thought is GC (green) causing interference
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Real-Time Outlier Detection
Outlier Analysis : Diagnosing an OS Outlier
> 8 CPU System with Single 588µs Outlier

● Drilling down to OS event trace at point of outlier
● Rolling IRQ across CPUs causes Java process bump
● Process pre-empted across 4 CPUs in turn (1->4->2->5)
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Real-Time Middleware
> Variety of Real-Time Middleware Available

● Some runs 'as-is' on RT JVMs
● Better Determinism 'for free'

● Some middleware exploits RT JVM Capabilities
● Priority-based routing in Application Servers

● Next Generation Extreme Transaction Processing
● Working with huge data sets – hundreds of gigabytes
● Performing Complex Event Processing in Real-Time
● Will be running on Real-Time Systems Developed today
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Real-Time Application Server
Priority Based Routing

App Server with Priority-Based 
Routing

Client App

App Server with Standard JVMApp Server with Real-Time JVM

In-memory
database

Traditional
database

Message

Message with High Priority Header Message with Low Priority Header
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Summary
What I hope you gleaned from my ramblings
> Most applications can benefit from Real-Time Java
> JVMs require core enhancements for real-time

● The OS, hardware, and middleware are also key
> Real-Time has distinct tooling demands
> The benefits of real-time are real, not theoretical



Mike Fulton
fultonm@ca.ibm.com

IBM Canada Ltd.
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