
Easily Tuning Your Real-
Time Application

Bertrand Delsart
Frederic Parain
Sun Microsystems, Inc.

2

Goal of this presentation

Show how to tune and monitor a real-time
application using Java Real-Time System tool

set

3

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future

4

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future

5

Java Platforms and Real-Time
> Real-Time Specification for Java (RTSJ)

● Provides an Application Programming Interface that
enables the creation, verification, analysis, execution and
management of Java threads whose correctness
conditions include timeliness constraints

> Java Real-Time System
● Sun's implementation of the RTSJ
● Based on JDK 5 platform (32-bit and 64-bit)
● Real-Time Garbage Collector
● Initialization-Time Compilation
● DTrace instrumentation

6

Why tuning is required
> Tuning for determinism

● No deadline miss
> A real-time virtual machine is not a crystal ball

● Application's requirements unknown
> Virtual machine adapts itself

● Based on current or past requirements of the
application

> Dynamic Adaptation
● Makes developer's life easier
● Introduces jitter

7

Auto-adaptation
> Not a magic bullet

● Requires a warm-up phase
● Time consuming
● Difficult to be accurate
● Cannot solve all the tuning issues

> Tuning required when auto-adaptation is not
enough

> Tuning helps to optimize adaptation

8

Tool: Thread Scheduling Visualizer

> Tool to record and
analyze thread
execution
● Events are recorded

during execution
● Off-line visualization

> Provide graphical
time-line based views

9

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future

10

Class Loading / Compilation
> Default behavior:

● On-demand class loading
● Just-In-Time compilation of hot methods

> Neither policy is well suited for RT
● Jitter late in application's execution
● Generally happens at worst time: error handling,

uncommon situations, ...

11

Demo RTImageProcessing

Class initialization
performed by a
real-time thread

Compilation occurs
during first period

Delays cause
first deadline
to be missed

12

Initialization Time Compilation
> List of pre-loaded classes
> List of pre-initialized classes
> List of methods to be compiled at class

initialization time
> Java RTS can generate these lists automatically
> Developers can edit them

● List format supports wild cards

13

ITC Configuration

14

Demo RTImageProcessing with ITC

Class initialization and
compilation are performed
by the VM at startup time

The real-time thread has
deterministic behavior
as of its first execution:
no deadline miss

15

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future

16

CPU Resources
> Shared among all threads

● Real-Time Threads / Non Real-Time Threads
● Virtual Machine Threads

> Importance of the scheduling policy
● Time-sharing scheduler apportions CPU time out

to all threads
● Real-Time Scheduling always gives CPU to the

highest priority threads
● Can cause starvation, delays, dead-locks

> Priorities control access to CPU

17

Application with Multiple Threads

> Difficult to see the
relationships
among threads

> Very hard to
evaluate the
CPU load

18

Per CPU View

> CPUs are clearly
overloaded

> RTTs cannot run
during GC cycle

> Thread migrations
are easy to see

19

Configuring RTGC Threads

20

Giving Priority to the Application

> Application threads run
at a higher priority
than the RTGC.

> It doesn't solve the
problem: deadline
misses still occur.

> Threads need memory.
> RTGC cannot run to

recycle memory on
time.

21

Giving Priority to the RTGC
> RTGC runs at a

higher priority than
the application.

> RTGC runs with a
single worker
thread.

> Enough CPU time for
the application.

> Memory recycled on
time.

> No deadline miss.

22

Shared locks and real-time scheduling
> Priority inversion

● When a high priority thread A tries to acquire a lock
held by a low priority thread B

● Worse if a medium priority thread C preempts B and
prevents it from running: unbounded priority inversion

> Priority Inheritance
● When A blocks while acquiring the lock held by B then

B is boosted to A's priority until it releases the lock
● Solve the issue if both threads execute deterministic

code
● Danger: having real-time threads depending on non

deterministic code executed at a real-time priority

23

Tracking Application Locking Issues
> A non real-time

thread blocks a real-
time thread.

> The non real-time
thread inherits from
the real-time priority.

> Contentions cause
deadline misses

> TSV provides the call
stack when the
contention occurs.

24

Real Case Log

> 32 cores
> 900+ threads
> 5 sec of execution
> Per CPU view

25

Zoom into the Real Case Log

> Zooming in helps
> Still hard to analyze
> Data synthesis missing

26

Log summary

CPU time

Migrations

Contentions

Blocked times

Per-thread summary

27

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future

28

Memory Areas in JavaRTS
> Garbage-collected Heap

● Tune the Real-Time Garbage Collector if needed
> Immortal memory consumption

● Identify and remove Immortal Memory leaks
> Scoped memory recycling

● Tune the size of each scoped memory area
● Check when each area is reset

29

Demo: Dumping Immortal Consumption
on Thread Death

30

Real Time Garbage Collector Monitoring
> RTGC threads are visible in TSV

● Check how they compete with application threads
> Efficient per-thread memory consumption

monitoring
> RTGC events available

● Boosting of RTGC threads when memory falls low
● Blocking non-critical threads when memory falls

very low
● Information for each GC cycle

31

Tuning the RTGC for Soft Real Time
> Tuning the default number of GC threads
> Understanding soft real-time jitter

● Using GC logs to check the auto-tuning
● Using GC MBeans to (remotely) monitor the GC
● Enhancing DTrace scripts or TSV view with GC

statistics or memory consumption information
● Improved GC logs
● Correlate scheduling events with memory usage in

TSV

32

Demo: Visualizing Heap Consumption in
TSV

Global non-RT 1M 'ticks'

Per Thread 1M 'ticks'

Global RT 1M 'ticks'

33

Tuning the RTGC for Hard Real Time...> Evaluating behavior considering only hard real-
time threads:
● CPU consumption by hard RT threads
● Time needed to execute two RTGC cycles with

the remaining CPU power (two might be needed
to guarantee the recycling of dead objects)

● Memory consumed by hard RT threads during
that time

> Deducing the memory limit under which non hard
real-time threads must block (critical mode)
● RTGCCriticalReservedBytes

>

34

… and Tuning the Application
> Even if stable, the critical mode executes only

parts of your application
> Tips:

● Keep RTGCCriticalReservedBytes low to ensure
the RTGC will recycle enough memory and
unblock the non hard RT threads

● Minimize the work in hard RT tasks to do only
what needs to be done during the critical phase

● Ensure RTGCCriticalReservedBytes is sufficient
for these hard RT tasks

35

Demo: Fine Grain Allocation Rate
Monitoring

36

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future

37

Benefiting from DTrace Improvements
> Graphical view of DTrace aggregates with Chime

(already available on OpenSolaris)

> Example: Tracking memory usage over time
● Available Memory
● Per-thread allocation rates
● Per-priority allocation rate
● ...

38

Demo: Per Priority
 Memory Usage

Consumption per priority
(interval 0.5s)

Plotting for a critical priority
(varies from 10.5MB/0.5ms

to 11.5MB/0.5ms)

Plotting for a soft real-time priority
(varies from 25MB/0.5s

to 150MB/0.5ms)

39

Building other DTrace based tools
> Prototype of DTrace based sampling profiler

● Very limited interference on the application
● Used to successfully identify a performance

degradation on a complex user application

> Now leveraging this efficient raw sampler to build
a real profiler

40

Real-Time Linux Support
> TSV is platform independent
> The issue is to gather the relevant data

● Need user probes for JVM events
● Need documented probes for scheduling events

> The Linux community is investigating different
probe mechanisms
● SystemTap, ftrace, utrace, Kprobes, ...

Bertrand Delsart
Bertrand.Delsart@Sun.COM
Frederic Parain
Frederic.Parain@Sun.COM

Sun Microsystems, Inc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

