
JavaTM RTS: Trade-Offs
Between Throughput and
Determinism
Roland Westrelin
Eric J. Bruno
Sun Microsystems

2

Goal
> Learn how response time determinism and

throughput are related and how to balance them
with real world application examples.

3

Agenda
> Real Time Performance
> Response Time Benchmark
> Customer case study
> Summary

4

Agenda
> Real Time Performance
> Response Time Benchmark
> Customer case study
> Summary

5

What is Real-Time?
> Simple definition: The addition of temporal

constraints to the correctness conditions of a
program
● “When” is as important as “what”
● “A late answer is a wrong answer”

> “real-time” does not mean “real-fast”
● Going faster helps but ...

> Predictability is the key

6

Example Temporal Constraints
> Deadline: started task must complete by a given

time
● Once a request for a trade is received, it must

execute within 5ms
> Latency: difference between when an event

happens and when it is seen to have happened
● Stop button handler must respond within 500us of

a press
> Jitter: Variance in the time interval between

events
● The input sensor must be sampled every 1ms +/-

100us

7

Performance: non Real-Time
> “How fast is it?”
> Defined in terms of mean execution time

● Over several iterations
● Over several threads of execution

> = “throughput”
> Worst case execution time rarely matters as long

as:
● The application is always “reasonably” fast
● A glitch “does not happen often”

> Observed/measured performance is what matters

8

Performance: Real-Time
> Worst case defines performance
> Hard Real-Time is not necessarily low latency
> Application scheduling can be proved feasible,

guarantees are offered:
● Known Implementation/design flaw matters even if

very unlikely
> Measured with its own metrics:

● Latency
● Jitter

> Requires its own performance tools:
● Tools that collect samples not sufficient

9

But...
> Execution time still matters...
> Users don't want to totally give up on throughput

● Mix of Real-Time and non/soft Real-Time
workload in a single app

> Some Implementation techniques used in OS or
Java Virtual Machine (JVM™ machine):
● Are incompatible with Real-Time
● Or lead to higher latency/jitter

> Increased determinism typically comes at the
expense of decreased throughput

10

Sun's Java Real-Time System
> Sun's implementation of the RTSJ
> Optimized Real-Time Java platform runtime

based on Java HotSpot™ high performance
virtual machine

> Based on Java Platform, Standard Edition 5
(Java SE platform 5)

> Runs on:
● Solaris™ Operating System, SPARC®

technology, and x86/x64 platforms
● Real-Time Linux on x86/x64 platforms

11

Sun's Java Real-Time System (cont'd)
> Coming soon: 64 bit support (version 2.2)
> dtrace based tools offer full view of running

system

12

Throughput vs determinism: Scheduling
and resource usage
> For better throughput (Java SE):

● Time sharing, let the system balance resources
● Aggressive lock optimization (biased locking)

> For better determinism (Java RT):
● Fixed priority, run to block scheduling, static cpu

partitioning: not necessarily “best” overall usage
of resources

● Mandates Priority inversion protection scheme:
more expensive than standard locks

● Restricts use of lock-free algorithms

13

Throughput vs determinism: Native code
generation (JIT)
> For better throughput (Java SE):

● Compile hot methods: enable profile driven
optimizations.

● Be optimistic: allow recompilation if optimization
needs to be undone.

> For better determinism (Java RT):
● Compile everything in the critical path early:

limited knowledge at compilation time
● Make the code as steady as possible
● Java RTS only supports hotspot's client compiler

14

Throughput vs determinism: Garbage
Collection
> For better throughput (Java SE):

● Stop the world GC
● Generational GC to efficiently recycle short-lived

objects
> For better determinism (Java RT):

● Guarantee max pause time
● Offer control over pause time frequency
● Guarantee progress (recycling on time)
● Concurrent or incremental GC

15

Throughput vs determinism: RTGC in
Java RTS
> For better determinism:

● GC runs concurrently with mutator threads
● Critical threads always preempt the RTGC

threads and allocate from reserved space
● No stop the world phase (Pause one thread at a

time)

16

Throughput vs determinism: RTGC in
Java RTS (cont'd)
> Impact on throughput:

● Objects may be split (heavy heap fragmentation).
Compiled code need to accommodate for that.

● Write barrier is more complex than standard
hotspot

● Not generational, non moving: higher cpu usage
● Cost can be paid by extra CPUs
● Cost of RTGC impacts only non-critical threads

17

Configuring Java RTS for best
determinism

> Java RTS has a “soft real-time” behavior by
default and need to be configured for hard
realtime:
● Configure garbage Collector
● Preload/preinitialize classes, precompile methods:

Init Time Compilation configuration
● Use processor partitioning

18

Agenda
> Real Time Performance
> Response Time Benchmark
> Customer case study
> Summary

19

Response Time Benchmark
> Single Real-Time periodic thread

● Wakes up at a pre-programmed fixed interval
(absolute release dates)

● Does not produce garbage in steady mode
> Simple but representative

● Simple control loop: thread wakes up to read
sensor and take some action

> At every release, wake-up latency is measured

20

Response Time Benchmark (cont'd)
> Benchmark measures:

● Max difference between effective release time and
expected release time is computed = max
latency

● Difference between smaller and larger latency =
jitter

> Runs with RT thread in a single processor
partition and Init Time Compilation

21

Response Time Benchmark (cont'd)
public void run(){
 for(int i = 0; i < iterations; i++) {
 Clock.getRealtimeClock().getTime(actualStartTimes[i]);
 waitForNextPeriod();
 }
}

Time
period

latency

RT thread
running

work

22

Response Time Benchmark: Sample
Result

Java RTS 2.1, NHRT/Serial GC on Solaris/quad-core 2.8Ghz Opteron

23

Response Time: Load
> Non Real-Time garbage producer threads
> Load the CPUs, exercise the system scheduler
> Triggers GC cycles: observe GC pauses
> Plan to add other types of load: I/O, network

24

Response Time Benchmark: Non Real-
Time GC

Java RTS 2.1, RTT/Serial GC/2GP on Solaris/quad-core 2.8Ghz Opteron

25

Response Time Benchmark: Real-Time
GC

Java RTS 2.1, RTT/RTGC/2GP on Solaris/quad-core 2.8Ghz Opteron

26

Agenda
> Real Time Performance
> Response Time Benchmark
> Customer case study
> Summary

27

Customer Case Study
> Lots of work in the financial services space

● Exchanges
● Investment banks
● Trading floors
● And so on...

> Most are message-processing applications
> Throughput is important, but so is latency

28

Customer Case Study
> For example:

● Order requests from distributed clients
● Order execution
● Response sent back to client
● Important factors:

● Round-trip response time subject to quality of service
agreement

● Requests per second

29

Customer Case Study
> Architecture:

Client A
Client B

Client C

Client n. . .

Server
Server

Server. . .

Back end

30

Customer Case Study
The Goal
> Reduce latency
> Remove all outliers
> Maintain throughput as much as possible

31

Customer Case Study
One Example
> Common Java SE issues:

● GC pauses
● Lack of thread priorities
● Lack of priority inversion control

> Let's examine a graph on Java SE...

32

Slide Heading: 36pt
Subhead: 28pt

33

Customer Case Study
Real-time Approach
> Common approach:

● Quantify memory requirements and allocation rate
● Identify time-critical code path
● Use javax.realtime.RealtimeThread (RTT)
● Apply appropriate priority to each RTT
● Methodical testing with careful measurement
● Use DTrace and TSV

34

Customer Case Study
Real-time Approach, continued
> Some other considerations:

● Use the RTSJ clock API
● Possible RTGC tuning
● Processor sets and RTT binding
● Initialization-Time Compilation
● Possible use of critical reserved bytes

> Same application tuned for Java RTS...

35

Slide Heading: 36pt
Subhead: 28pt
> All text is Arial
> Level One bullet point: 28pt

● Level Two bullet: 26pt
● Level Three: 22pt

● Level Four and subsequent: 18pt
> Text block is aligned to the left

36

Customer Case Study
> Most satisfied with

● RTGC – removes GC interference
● Ability to measure and tune with Java RTS
● Control:

● Java RTS gives control to the developer for many run-
time factors

● Tools
● DTrace and TSV, in particular...

37

The Thread Scheduling Visualizer (TSV):

> All text is Arial
> Level One bullet point: 28pt

● Level Two bullet: 26pt
● Level Three: 22pt

● Level Four and subsequent: 18pt
> Text block is aligned to the left

38

Summary
> SE implementations can be tuned for low latency

to some extent...
> … But can't offer guaranteed determinism.
> Need to balance throughput and

determinism/latency

39

Java RTS Book
> “Real-Time Java Programming: With Java RTS”

● By Eric J. Bruno and Greg Bollella
● http://my.safaribooksonline.com/9780137153626

Roland Westrelin
Roland.Westrelin@Sun.COM

Eric Bruno
eric.bruno@sun.com
www.ericbruno.com

mailto:Roland.Westrelin@Sun.COM
mailto:eric.bruno@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

