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About the speakers
> Eric Vétillard

● CTO of Trusted Labs
● Technical Chair, Java Card Forum

> Anki Nelaturu
● Staff engineer, Java Card Technology Group,

Sun Microsystems
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Session objectives
> Learn the basic principles of Java Card 3.0

● Based on a small realistic application
● Step-by-step building of a first version

● Including typical smart card issues
● Security, performance, deployment

> Discover the development tools
● Building a project
● Using the Reference Implementation
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The Session at a Glance
> An introduction to Java Card 3.0
> Writing a first application
> Building and running the application
> Making your application realistic
> Further options
> Deploying your application
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Smart Card Characteristics
> Smart cards are small

● Best in class have 32k RAM, 1M Flash
> Smart cards are cheap

● A single chip, embedded in plastic
> Smart cards are secure

● They are often used to manage sensitive assets
> Smart cards are manageable

● Powerful remote app management tools
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Why a Specific Platform?
> Limited resources

● RAM is very scarce; object use is limited
● Flash memory is hard to access
● Computing power is limited

> Specific requirements
● High level of security
● Several applications share the same VM
● Persistence is achieved through objects
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Java Card 3.0 in One Slide
> VM and core API based on CLDC

● Minus floating-point numbers and a few details
● Plus persistent objects
● Plus a firewall between applications
● Plus detailed permissions

> A servlet application model
● Plus a legacy smart card application model
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The First Application
> A basic password manager

● Stores triplets made of
● An identifier (URL or simple string)
● A user name
● A password

> Available through a Web interface
● Main application is a servlet



9

A Password Record
package com.vetilles.passwords;

public class PasswordEntry ;
  private String userName;
  private String password;

  public PasswordEntry(String userName, String password) {
    this.userName = userName;
    this.password = password;
  }

  public String getUserName() {
    return userName ;
  }

  public void setUserName(String userName) {
    this.userName = userName;
  }
  ...
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A Password Manager

package com.vetilles.passwords;
import java.util.Hashtable;
import java.util.Enumeration;
import javacardx.framework.TransactionType;
import javacardx.framework.TransactionTypeValue;

public class PasswordManager ;
  private Hashtable<String,PasswordEntry> entries;

  public PasswordManager() {
    entries = new Hashtable();
  }
  ...
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A Password Manager

  ...
  @TransactionType(TransactionTypeValue.REQUIRED)
  public boolean addPasswordEntry
          (String id, String userName, String password) {
    if (entries.containsKey(id)) return false ;
    entries.put(id, new PasswordEntry(userName, password);
    return true ;
  }

  public PasswordEntry retrievePasswordEntry(String id)
  {
    return entries.get(id) ;
  }
  ...
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A Password Manager

  ...
  @TransactionType(TransactionTypeValue.REQUIRED)
  public boolean deletePasswordEntry(String id) {
    return entries.remove(id) != null ;
  }

  public Enumeration<String> listIdentifiers()
  {
    return entries.keys() ;
  }
}
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Persistence basics
> Persistence by reachability

● Reachability by a root of persistence
● Static field, servlet context, applet object

● All persistent objects stored in persistent memory

> Guarantees on persistent objects
● Individual write operations are atomic
● All writes in a transaction are atomic
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Transaction basics
> Inspired from Java EE persistence

● With some specific details
● A smart card is not a database

> Three basic principles
● The scope of the transaction is a method
● Commit occurs on normal return
● Abort occurs on exception exit
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Transaction types
> SUPPORTS

● By default, transaction optional
> REQUIRED

● When a transaction is needed
> REQUIRES_NEW

● For a separate transaction
> MANDATORY, NEVER, NOT_SUPPORTED:

● For special cases
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A Password Servlet

package com.vetilles.passwords;

import java.io.IOException;
import java.io.PrintWriter;

import java.util.Enumeration;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

/** A Simple Hello Servlet */
public class PassServlet extends HttpServlet {        
  private static PasswordManager manager =
            new PasswordManager();

...
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A Password Servlet
  @Override
  public void doGet( HttpServletRequest request,
                     HttpServletResponse response)
                        throws IOException
  {
    // First interprets the command
    String command = request.getServletPath();
    
    // Matches the possible incoming commands         
    if (command.equals("/addentry"))
      addEntry(request, response);
    else if (command.equals("/retrieveentry"))
      retrieveEntry(request, response);
    else if (command.equals("/deleteentry"))
      deleteEntry(request, response);
    else if (command.equals("/listidentifiers"))
      listIdentifiers(request, response);
  }
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A Password Servlet

  private void addEntry(
            HttpServletRequest request,
            HttpServletResponse response)
               throws IOException
  {
    boolean status = manager.addPasswordEntry(
            request.getParameter("id"),
            request.getParameter("name"), 
            request.getParameter("pass")) ;
    
    PrintWriter out = startResponse(response);
    if (status)
      out.println(HTML_ADD_ENTRY_SUCCESS);
    else
      out.println(HTML_ADD_ENTRY_FAILED);
    finishResponse(response);
  }
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A Password Servlet

  private static final String HTML_ADD_ENTRY_SUCCESS =
    "<p align=\"center\">"
  +   "Password entry added successfully"
  + "</p><br>";

  private static final String HTML_ADD_ENTRY_FAILED =
    "<p align=\"center\">"
  +   "Password entry addition failed."
  + "</p>"
  + "<p align=\"center\">"
  +   "Identifier already in use."
  + "</p><br>";
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A Password Servlet

 private PrintWriter startResponse(
         HttpServletRequest request,
         HttpServletResponse response)
              throws IOException, ServletException {
   // Set content type first
   response.setContentType("text/html");
   // Uses RequestDispatcher to write the header
   RequestDispatcher dispatcher = 
       request.getRequestDispatcher("/WEB-INF/header.i");
   dispatcher.include(request, response);

   // Get PrintWriter object to create response
   return response.getWriter();
 }
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A Password Servlet

 private void finishResponse(
         HttpServletRequest request)
         HttpServletResponse response)
     throws IOException
 {
   // Uses RequestDispatcher to write the footer
   RequestDispatcher dispatcher = 
       request.getRequestDispatcher("/WEB-INF/footer.i");
   dispatcher.include(request, response);
 }



22

HTML file: header.i

<html>
  <head><title>Password Manager</title></head>
  <body>
    <table><tr>
      <h1 align="center">Password Manager</h1><br>
      <td><a href="/pass/add.html">Add entry</a></td>
      <td><a href="/pass/retrieve.html">
        Retrieve entry
      </a></td>
      <td><a href="/pass/delete.html">
        Delete entry
      </a></td>
      <td><a href="/pass/listidentifiers">
        List identifiers
      </a></td>
    </tr></table>
    <br><br>
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HTML file: footer.i

  </body>
</html>
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Access Control
> No access control

● The user must be authenticated

> Container-managed authentication is possible
● BASIC authentication for simplicity
● FORM-based for more flexibility

> Role-based security is available
● Access rights orthogonal to authentication
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So ?
> For Java Card 2.x developers

● Java Card 3.0 is a major breakthrough
● The servlet model is entirely new

> For other Java developers
● Java Card 3.0 is more traditional
● Well integrated into standard tool chain

● NetBeans, debugger, etc.
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Demo
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What is Wrong with this Application?
> Security

● Content is not well protected
● No protection against Web attacks

> Performance
● Too much content going back and forth
● Card-specific optimizations
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Why Protect the Content?
> No separation in n tiers

● Data is stored by the presentation application

> Smart cards are subject to attacks
● They are a Web server in the attacker's hands
● Attacks on the hardware are possible

● Observation and fault induction attacks

> Content is sensitive
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Secure Storage of Passwords
> Issue 1: Upon deletion, passwords must be wiped

● How do you wipe a String?
● Persistent storage must be in a byte array

> Issue 2: Passwords should be stored encrypted
● Once again, byte arrays are required

> The PasswordEntry class needs some work
● Storage of passwords in encrypted byte arrays
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Secure Storage of Passwords
package com.vetilles.passwords;

import javacard.security.DESKey ;
import javacard.security.KeyBuilder ;
import javacardx.crypto.Cipher ;
import javacardx.crypto.RandomData ;

public class PasswordEntry {
  private String userName;
  private byte[] password;
  private static DESKey theKey ;
  private static Cipher cipher ;

  public PasswordEntry(String userName, String password) {      
    if (theKey == null)
      initCrypto() ;
    this.userName = userName;
    setPassword(password);
  }
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Secure Storage of Passwords

private static void initCrypto()
{
  // Allocates the objects
  theKey = (DESKey)KeyBuilder.buildKey(
              "DES",KeyBuilder.LENGTH_DES3_2KEY, false);
  cipher = Cipher.getInstance("DES_CBC_ISO9797_M2", true);

  // Generates a random key value
  RandomData rnd = RandomData.getInstance("SECURE_RANDOM");
  byte[] value = new byte[16] ;
  rnd.generateData(value, (short)0, (short)16);
  theKey.setKey(value);

  // Clears the key value before to return
  rnd.generateData(value, (short)0, (short)16);
}
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Secure Storage of Passwords
public void setPassword(String pass)
{
  byte[] bytes = pass.bytes();
  password = new byte[bytes.length+9];

  cipher.init(theKey,Cipher.MODE_ENCRYPT);
  password[0] = (byte)cipher.doFinal(
    bytes, (short)0, (short)bytes.length, password, (short)1 );
}

public String getPassword()
{
  byte[] bytes = new byte[password.length];

  cipher.init(theKey,Cipher.MODE_DECRYPT);
  short len = cipher.doFinal(
          password, (short)1, password[0], bytes, (short)0 );

  return new String(bytes,(short)0,len);
}
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Secure Communication
> Several issues are present

● All data is transmitted in clear
● Master password is transmitted in clear

> One simple solution: SSL
● Supported at the container level
● Not a single line of code
● Only constraint: manage the certificates
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Web Security
> Web applications have many security issues

> See OWASP for a starting point
● In particular the “Top 10 Vulnerabilities”

> Some countermeasures are required
● Input filtering
● Output canonicalization
● Proper session management
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Validating Input

  private void addEntry(
            HttpServletRequest request,
            HttpServletResponse response)
               throws IOException
  {
    boolean status ;
    try {
      status = manager.addPasswordEntry(
            validateId(request.getParameter("id")),
            validateId(request.getParameter("name")), 
            request.getParameter("pass")) ;
    } catch(Exception e) {
      sendError(response,e.getMessage());
      return;
    } 
    ...
  }
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Validating Input

 private static final String otherChars = "-_@." ;
 
 private String validateId(String id) throws IOException
  {
    char[] chars = id.toCharArray() ;
    for(char c:chars)
    {
      if (Character.isDigit(c)) continue;
      if (Character.isLowerCase(c)) continue;
      if (Character.isUpperCase(c)) continue;
      if (otherChars.indexOf(c)!=-1) continue;
      throw new IOException("Invalid identifier string");
    }
    // If we get here, all characters are acceptable
    return id ;
  }
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Canonicalizing Output
> The idea is to make the output innocuous

● Make sure that characters are not interpreted
● The following only works on ASCII characters

 private String encodeUnverifiedString(String str)
  {
    StringBuffer s = new StringBuffer();
    char[] chars = str.toCharArray() ;

    for(char c:chars)
    {
      s.append("<span>#&" + Integer.toString(c) + ";</span>");
    }
    return s.toString();
  }
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Communication Performance
> Card communication remains slow

● Content production also has limits
> Similar to other elements of the “Web of Things”

● Servers are less powerful than clients
● The work must be delegated to clients

> Ajax can be used
● Limits the amount of communication
● Limits HTML overhead on the server side
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Ajax on a Smart Card?
> Ajax is an interesting technique

● It is entirely managed on the card
● It uses the client's resources

> Aren't there security issues ?
● No, not really
● The browser must be trusted anyway
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Performance Optimization
Persistent memory

private static void initCrypto()
{
  // Allocates the objects
  theKey = (DESKey)KeyBuilder.buildKey(
              "DES",KeyBuilder.LENGTH_DES3_2KEY, false);
  cipher = Cipher.getInstance("DES_CBC_ISO9797_M2", true);

  // Generates a random key value
  RandomData rnd = RandomData.getInstance("SECURE_RANDOM");
  byte[] value = new byte[16] ;
  rnd.generateData(value, (short)0, (short)16);
  theKey.setKey(value);

  // Clears the key value before to return
  rnd.generateData(value, (short)0, (short)16);
}
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Performance Optimization
Persistent memory

private static void initCrypto()
{
  // Allocates the objects
  DESKey newKey = (DESKey)KeyBuilder.buildKey(
              "DES",KeyBuilder.LENGTH_DES3_2KEY, false);
  cipher = Cipher.getInstance("DES_CBC_ISO9797_M2", true);

  // Generates a random key value
  RandomData rnd = RandomData.getInstance("SECURE_RANDOM");
  byte[] value = new byte[16] ;
  rnd.generateData(value, (short)0, (short)16);
  newKey.setKey(value);

  // Clears the key value before to return
  rnd.generateData(value, (short)0, (short)16);

  // Promotes the key to persistent memory
  theKey = newKey ;
}
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What more could we do ?
> Manage the data in a separate application

● Use sharing to communicate
> Add an APDU interface

● Work with legacy smart card applications
> Manage our own authenticators

● Rather than use the platform's default ones
> Backup our passwords

● Open a connection to a backup server
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What about Deployment?
> Many instances

● Not a single server
● Instead, millions of cards/objects

> A mutualized server
● Several providers represented on the server
● Usually, one single issuer (the owner)
● Some resource allocation to manage
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GlobalPlatform
> Card management technology since 1999

● Standards to deploy/manage applications
● Standards to manage relationships

● Between card issuers and application providers
● Including trusted third parties when needed

> Currently being adapted to a Web model
● Update of application management
● Addition of new resources to be managed
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GlobalPlatform Architecture

From GlobalPlatform
Card Spec v2.2, 2006
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Issuer-Centric Deployment
> Current model for smart cards

● The issuer owns the card
> Many deployment options

● The issuer manages all applications
● Simple and practical

● A third party needs to sign all applications
● Practical to enforce issuer policies

● Management can be delegated
● All operations may still be explicitly authorized
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Alternative Deployment Scenarios
> White card schemes

● Very similar to an issuer-centric scheme
● But the “issuer” is an association/public entity

> Cardholder-owned cards
● Not the tendency for traditional cards
● Likely trend with smart objects

> ...
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GlobalPlatform Networked Framework
> Adapts the existing model to the Web

● HTTP and SSL as transport
● ASN.1 as encoding

> Supports specific Web application features
● Management of URIs

● Who can use the http://localhost:8019/google ?
● Management of realms and authenticators

● Who can use the “Visa” authentication realm?

http://localhost:8019/google
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Recap
> Java Card 3.0 brings Web servers everywhere

● On cards and on other devices
● Using a very classical model

> Of course, there is a catch
● Resources are severely limited
● Deployment needs to be carefully planned
● Applications and devices may be linked
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Getting More Information
> Spec and Development Kit

● java.sun.com/products/javacard
● Look at the samples ...

> Blogs
● javacard.vetilles.com

> Other sessions at JavaOne
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