.‘
%
G
1

sl
xz~
i

JavaOne

Energy, CO2 Savings
with Java™ Platform,
Enterprise Edition and

More: Project GreenFire

g 9 % Adam Bien, Consultant

adam-bien.com
blog.adam-bien.com

Java™ Champions

Sunday, 24 May 2009

JavaOne

What Is GreenFire?

> GreenFire is a a “heating tuner”, actually a heating
regulator

> Beyond heating regulation, GreenFire is also an
Interesting automation platform to control ventilation
and parts of the house automation

> (GreenFire is opensource: greenfire.dev.java.net

> |t is already 2 years in production. Energy savings:
about 20-50%

@Sun

JavaOne

What Is GreenFire?

> | was not very happy with the way how the heating
regulation worked.

> ... begun to regulate the heating manually (what
was a lot of plumbing)

> The first prototype was started with Ruby On Rails
In early 2006, but the problem were the conventions
and the DB choice (only few databases were
supported that time)

> The second prototype (with hardcoded rules) was
built at a weekend with EJB 3 preview

‘%i% SZ;”Z

JavaOne

GreenFire - And How It Started)

Greenfire

> It was one of the very first Java EE 5 apps in 2006

> GreenFire is continually (mis)used to evaluate
some Java EE patterns and best practices as well

> |t is also a nice application to test JavaFX™
capabilities

»
@ oun

JavaOne

Context / What is Solar Heating?

> “|s the usage of solar energy to provide process,
space or water heating”

> Solar energy is cheap comparing it to oil/gas/wood-
pellet ..and CO2 neutral.

> But: conventional energy sources are easier to
control and manage.

> However, it Is hard to predict, whether, when and
how long the sun will shine (at least in Germany /
Bavaria ©).

@Sun

JavaOne

GreenFire - The Intention

> Situation/context dependent prioritization of ,,bio®
resources (solar over wood-pellets etc.)

> Highest possible energy and CO2 savings

> Intelligent control of circulation-pumps, heating and
ventilation

> Monitoring, reports and remote control
> ...and FUN (JavaFX, SunSPOTs, Groovy etc.)

@Sun

JavaOne

Real (house) hardware - “Deployment Diagram” :-)

> TWOQO: upper water

temp I i
> TPO: upper heating -
temp L %
> TPU: lower heating 9 D,
temp ‘|| —
> TWO: lower heating - p |
temp —J

»

JavaOne

How It Works?

> Modern heating systems use buffers to store the
(solar) energy:

* The buffer is the heart of the heating control.

* The buffer’s temperature is important for the
decision, whether the primary heating source should
be activated or turned off

> Even modern systems only use a timer driven
approach to control the heating. The current solar-
power, weather predictions, internal house
temperature are not taken into consideration :-(.

‘%i% SZ;”Z

JavaOne

Use (Problem) Cases - Wrong Prioritization

> Buffer is cold, the sun shines, ...and the timer starts
the primary energy source (oil/wood pellet)

> Buffer is cold, you are cold, so you are going to
make fire in the wood burning stove (it is connected
with the buffer). .. your heating doesn’t know that
(more precisely - it ignores that) and starts the
primary heater again (this energy is wasted)

@Sun

JavaOne

Use (Problem) Cases - Wrong Prioritization

> Autumn/Spring, the buffer is warm and the sun
shines. To avoid overheating the control decides to
turn the solar collectors off, instead of turning on the
heating in the basement (another kind of cooling).

> You are enjoying the wood burning stove in the
evening, however it produces too much heat (=
warm water). The house heating could be
automatically turned on for cooling, and turned off
again at a predefined point automatically.

‘%i% SZ;”Z

JavaOne

Use (Problem) Cases - Wrong Prioritization

> The weather forecast for the next day is good
(=sun). But the primary source (oil/wood pellet)
heats the buffer in the night. Morning sun is too
weak to heat the already warm buffer. The energy is
wasted again.

> In case the sun shines — it is usually warm enough
— the house heating as well as the heater could be
turned offt.

> ...and many, many ideas.

@:@ 5,1--!7’1

JavaOne

Technology decisions: why EJB 37

> EJB 3 technologies are POJOs with only few
annotations (@ Stateless, @Local).

> The container cares about state, concurrency and
dependency management (it “injects” other EJB
technologies , PersistenceContext, JMS queue or
the DataSource)

> The DI (Dependency Injection) relies on convention,
rather than configuration — so XML is no more
necessary

JavaOne

Why EJB 3?

> Applications built with EJB technology are leaner
than without:

* Dependency Injection makes ServicelLocators,
factories and even constructor invocations
superfluous

* Additional frameworks or libraries are optional
(mostly not needed)

> The integration with Java EE 5 platforms is superb.
To create a simple “CRUD” application only few
lines of code are necessary

JavaOne

Why EJB 3?

> Transactions and concurrency issues are already
solved for you:

* No need to use ThreadlLocals, Singletons or another
hacks to associate the EntityManager with a
transaction

* The Entities inside a transaction remain consistent

* EJB 3 technology can be easily injected into a Java
Serviet APIl, JSP™ framework or Managed Beans —
the concurrency and transactions are correctly
handled by the application server

@:z@ SZ{ L

JavaOne

Why EJB 3?

> Transactions are propagated to all methods within
the same thread, even scripts (Groovy, JavaScript
etc.)

> EJB 3 are well integrated with JMS (sender and
receiver)

> JSR-223 scripts can be loaded and executed
directly into a Session Bean

> EJBs have to expose their monitoring data via JMX
(JSR-77). Monitoring is an important requirement
for a heating regulator

JavaOne

Why EJB 3?

> EJB 3 Timer Service is perfect for the
iImplementation of a heart beat

> The EntityManager is correctly “synchronized” by
the EJB container in multi-threaded environment

> Good JSR-311 (REST) and JSR-181 (SOAP)
Integration

> EJB components are portable and can be deployed
to any Java™ EE 5 application server without
additional effort

JavaOne

Why EJB 3/JPA?

> JPA entities are just annotated POJOs

> Superb integration with scripting components -
attached entities can be directly manipulated

> The same entity can be used for XML serialization
and persistence. Its Don’t Repeat Yourself (DRY)

> DAQOs and DTOs are an option - and not a
necessity (important for smaller applications)

> EJB 3 and JPA In particular are easy unit-testable

@:z@ SZ{ L

JavaOne

Java EE

> GreenFire is a Java EE application:
» workflow is implemented as EJB 3.0 Session Beans

* business logic is implemented in Groovy and loaded
via JSR-223 in a Session Bean

* the current state and the decisions are persisted
with JPA

D
@un

JavaOne

GreenFire Glassfish v2 deployment

O Sun

microsysiems

Name: GreenFire

Virtual Servers: i
server

k.

Asspciates an internet domain name with a phy=ical server

Description:

Status: +'| Enabled

Java Web Start: | Enabled

Locatiom: S{com.sun.aas.instanceRoot}i/applications/jZee-apps/GreenFire
Object Type: user

Libraries:

sub Components (5)

HeatingControlRSS-war.war

Hame | Type
HeatingControlBrain-ejb.jar EJBModule
HeatingMessenger.jar EJBModule
WeatherForecastProvider.jar EJBModule
HeatingManagement.war WebModule
WebNModule

19

Sunday, 24 May 2009

19

JavaOne

Java EE (contd.)

* the "heartbeat” is implemented with EJB timer
service

* reports (currently BIRT) are accessing the database
directly, via JDBC

* the sensor information is published via JMS topic
internally (inside the EAR), and with
shoal.dev.java.net externally

* RSS is just Servlet (JMS listener)

* the same data is also published with JSR-311
(REST, JAX-RS)

@Sun

avalOne

Components Overview

»

Java FX

monitoring Ul

HTML Widget

monitoring Ul

Presentation / Business GF v2

controller broadcaster

weather _
forecast -

configuration
provider

Swing Rich Client

monitoring Ul

Derby DB

archiver T

timer service

Web App

Integration (is

lated JVM)

integration service

integration

21

Sunday, 24 May 2009

21

JavaOne

Heating News RSS Feed

> Updated every 5
minutes via JMS

> Data Is distributed
via Topic (openmq /
Glassfish)

> RSS Feed is only
one subscriber

Heating NEWS

Last Update was before
1,78 minutes

External temperature
17.61

Water temperature (TWO)
50.51

Water temperature (TWU)
39.19

House Temperature

23.9

Upper Buffer Temperature
49.25

Collector output temperature

61.05

Max Collector output temperature

62.87

Current collector power (kW/h)
3.1

Today's collector gain

3.0

Total collector gain

1012

Delta House Temparature

0.0

Delta External Temparature

0.0
S Delta TWO T
oo S ta emparature
7 0UnN 22
microsystems 0.0
Sunday, 24 May 2009 22

JavaOne

GreenFire Status in IPhone

> Can be accessed
from mobile phones
directly

> A restful interface is
available as well
(useful for Java FX

LAY u

Sunday, 24 May 2009 23

JavaOne

Portability

> (GreenFire was initially developed on JBoss 4.0

> Porting to Glassfish™ v1, then v2 was painless
(only copy+paste of the EAR)

> |t runs currently on Glassfish v2.1
> No proprietary extension are used

> The Ul is based on Java FX Script, RSS, HTML and
Swing

%

o Sun

JavaOne

IDE and Environment

> Greenfire was developed with plain Netbeans
5.5.1/6.7 without any extensions (reason: lazyness,
better compatibility between developers)

> Greenfire is tested with (www.paradigma.de).
However only a small part of the integration layer is
dependent on the proprietary heating-protocol. All
other parts are heating-equipment independent.
Actually every heating system with an accessible
interface, should be easy to integrate.

LAY u

http://www.paradigma.de
http://www.paradigma.de

JavaOne

Packaging and Prerequisites

> GreenFire is an ear, which consists of several ejb-
jar modules and some WAR applications.

> For the installation only a datasource (for archiving)
and a JMS-topic (for publishing) are needed.

> The Java EE 5 application talks to an integration
unit, which is realized as a lean RMI-server.

@Sun

JavaOne

...and how it works

> Every 5 minutes the timer service (the archiver,

actually the heartbeat) completes the following
tasks:

* |t gathers the data (heating + configuration, weather
forecast) and passes it to the ,brain”®

* The brain is asked what to do (heating on/off, etc.)

* The decision is passed to the integration layer and
executed

> All the data is stored in the Derby DB and can be
used in reports.

JavaOne

> The data in the Derby DB is used for reports and
monitoring independently (it stores every 5 minutes
all the data since about 3 years — and performs still

very well -> no problems).

> The Ul is accessing Derby DB to access the

information — not directly the heating system
(decoupling — the serial port seems not to be thread

safe)

@:@ 5,1--!7’1

JavaOne

The “driver”

Sun

microsysiems

@Stateless
public class HeatingStateArchiverBean implements Archiver {
//constant declaration omitted
@EJB
private HeatingNewsBroadcasterLocal heatingNewsBroadcasterBean;
@EJB
private HeatingDecider heatingDecider = null;
@PersistenceContext
protected EntityManager entityManager;
@Resource
private SessionContext sessionContext;
private ParadigmaRemoteAccess paradigmaAccess;

@PostConstruct
public void initialize() {
try {
this.paradigmaAccess = (ParadigmaRemoteAccess) Naming.lookup(URL + ParadigmaRemoteAccess.NAME);
} catch (Exception e) {
logger.throwing(HeatingStateArchiverBean.class.getName(), "initialize"”, e);
throw new IllegalStateException("Cannot connect to ParadigmaRemoteAccess " + e, e);

}

@Timeout
@TransactionAttribute(TransactionAttributeType.REQUIRES_NEW)
public void archive(Timer timer) {

HeatingStateItem heatingStatelItem = fetchData();

String xmlData = serializeToString(heatingStateItem);

}

private HeatingStateItem fetchData() {
HeatingStateltem heatingStateItem = new HeatingStateltem();
try {
this.paradigmaAccess.initialize();
//copying from integration DTOs to JPA entities
heatingStateltem.setHeatingMode(this.paradigmaAccess.getHeatingMode().value());
persistCheatingStateltem);
HeatingMode heatingMode = this.heatingDecider.decideCheatingStateItem);
if CheatingMode != null) {
logger.info("Decider has decided: " + heatingMode + " changing the heating state to");
this.paradigmaAccess.setHeatingMode(heatingMode);
} else {
logger.info("Decider has not decided.");

}
} catch (Exception e) {

29

Sunday, 24 May 2009

29

JavaOne

The decider

@Stateless
public class HeatingDeciderBean implements HeatingDecider {

@EJB

private ConfigurationMgr configurationMgr = null;
@EJB

private AuditMgr auditMgr;

@EJB

private HeatingRuleEngine heatingRuleEngine = null;

public HeatingMode decide(HeatingStateltem currentState){
ConfigurationItem configurationItem = configurationMgr.getCurrentConfiguration();
if(lconfigurationItem,isActive()){
logger.info("Profile is deactivated. Returning null...");
return null;

}

HeatingMode decision = this.heatingRuleEngine.checkRules(configurationItem, currentState);
logger.info("Rule engine decided: " + decision);

logger.info("Writing audit to persistent store");

this.auditMgr.writeAudit(currentState, configurationltem, decision);

return decision;

Sun

microsysiems 30

Sunday, 24 May 2009

30

JavaOne

1 :)) estateless
e ru e e n g I n e public class GroovyRuleEngine implements HeatingRuleEngine {

//some obvious constants omitted
private static final HashMap<Integer, HeatingMode> MODE_MAP = new HashMap<Integer,HeatingMode>();
private final static String ENGINE_NAME = "groovy";

private ScriptEngine scriptEngine = null;

@PostConstruct
public void initializeScripting(){
ScriptEngineManager engineManager = new ScriptEngineManager();
this.scriptEngine = engineManager.getEngineByName(ENGINE_NAME);
if (this.scriptEngine == null) {
throw new IllegalStateException("Cannot create ScriptEngine: " + ENGINE_NAME);
}
}

public HeatingMode checkRules(Configurationltem configurationItem,HeatingStateltem heatingStateltem){
Bindings binding = this.scriptEngine.createBindings();
binding.put("logger"”, logger);
binding.put("configurationItem”, configurationItem);
binding.put("heatingStateltem”, heatingStateltem);
InputStream is = null;
InputStreamReader isr = null;
try {
logger.info("Trying to executing script engine™);
is = getScriptAsStream();
isr = new InputStreamReader(is);
this.scriptEngine.eval(isr, binding);
logger.info("Script executed !");
} catch (Exception e) {
throw new IllegalStateException("Exception during evaluating script: " +e,e);
}finally{ /* closing the stream*/ }
int heatingMode = (Integer) binding.get("suggestedMode");
return MODE_MAP.get(heatingMode);
}

InputStream getScript(){
try {
URL url = new URL(getBaseUrlName() + getScriptName());
return url.openStream();

@Sun)

microsysiems

Sunday, 24 May 2009 31

JavaOne

The Script (variable initialization)

Sun

microsysiems

tpoShouldHigh = configurationItem.getTPOHigh()
tpoShouldLow = configurationItem.getTPOLow()

twoShouldHigh = configurationlItem.getTWOHigh()
twoShouldLow = configurationItem.getTWOLow()
solPowerLow = configurationItem.getSolPowerLow()

tpols = heatingStateltem.getTPO()
twoIs = heatingStateltem.getTWO()
tpuls = heatingStateltem.getTPU()

heatingModels = heatingStateltem.getHeatingMode()
solPowerIs = heatingStateltem.getMomentaneLeistung()

OFF = configurationlItem.getHeatingModeOff();
ON = configurationItem.getHeatingModeOn();

32

Sunday, 24 May 2009

32

JavaOne

Groovy Script - Control Logic

if (heatingModelIs != 0){ // Change only if heating is not in AUTO mode
// the buffer shouldn t be hotter than 72
if(tpolIs > 72 || twols > 72){
suggestedMode = ON
logger.info(Too hot (70) suggested change: " + suggestedMode)

return;
}
if(solPowerls < solPowerlLow){
suggestedMode = OFF

LA

logger.info("The solar power is too low. Suggested change:

return;
}
if(tpols > tpoShouldHigh || twols > twoShouldHigh) {
suggestedMode = ON
logger.info(Too hot suggested change: " + suggestedMode)

}else if(twols < twoShouldLow || tpols < tpoShouldLow){
suggestedMode = OFF
logger.info(Too hot suggested change: " + suggestedMode)

jelse({
suggestedMode = heatingStateltem.getHeatingMode()

logger.info("Nothing to do. Just keeping the current mode:

}
}else{ // Heating is in the AUTO s
if(tpolIs > 68 || twols > 68)({
suggestedMode = ON

cthe AUTO state 3ut cooling 1s needed :

S B SR S -

logger.info(Temperature greater than 68: " + suggestedMode)

}else{
suggestedMode = heatingModels

logger.info("Heating is in AUTO state. Keeping the state.'

< Sun

microsystiems

+ suggestedMode);

+ suggestedMode)

Sunday, 24 May 2009

33

JavaOne

Java FX - XML Parsing

<report>
<timestamp>1239779266217</timestamp>

> (GreenFire’s state is e e eine- ke

<ti>23.4</ti>

also available via Spech.sie/ives

<twu>38.79</twu>

REST / XML
<tsa>40.69</tsa>
<tsa-max>51.97</tsa-max>
<current-power>0.0</current-power>

> The Java FX Script Do S Ay A
]] </report>
class HeatingState is
" " public c}ass BeatingStatg {
aDTO - which is Ty

préntln(\nALfi{: ta has changed!");
used as a model SECREIN G4 Velnes {olarales)}:
i

public var ti: Double;

public var tpo: Double;

public var two: Double;

public var twu: Double;

public var tpu: Double;

public var tsa: Double;

public var tsaMax: Double;
public var currentPower: Double;
public var dailyGain: Integer;
public var totalGain: Integer;
public var timestamp: Long;

»

Sunday, 24 May 2009 34

avalOne

Java FX - XML Parsing

> With Java FX parsing *
of XML data is fairly
easy

> A HttpRequest can
be directly connected
with the parser,
which invokes a
function:

onInput:

@Sun

microsystems

documentType:
input: is;

onEvent: parseEventCallback

parser.parse();
is.close();

else if (gname

heatingState.

else if (gname

heatingState.

else if (gname

heatingState.

else if (gname
heatingState

-0

function run(){
def httpRequest = HttpRequest ({

location: " nttp://: alho
method: HttpRequest.CET

try {

processResults(io);

} finally {

public function processResults(is:
def parser = PullParser {
PullParser. X!

parseEventCallback = function(event:
if (event.type == PullParser.START ELEMENT)
processStartEvent(event)

} else if (event.type == PullParser.END ELEMENT) {
processEndEvent(event)

} else if (event.type == PullParser.END DOCUMENT)
println(parsed

)i

function processEndEvent(event:
def eventText = event.text.trim();

def gname = event.gname.name.trim();

if (gname == "report

} else if (event.level == 1) {

if (gname == "twu

heatingState.

} else if (gname

heatingState.

and event.level == ()

)

twu = Double.parseDouble(eventText);

ta

ti

totalGain = Long.parseLong(eventText);

Lpo = Double.parseDouble(eventText);

. tpu -'Double.parseDouble(eventText);

function(io:java.io.InputStream)

io.close();

}

Sunday, 24 May 2009

InputStream)

= Double.parseDouble(eventText);

= Double.parseDouble(eventText);

reRestMock/repor

JavaOne

Data distribution

> The current data is broadcasted every five minutes
using JMS internally (inside the application server)

> The shoal.dev.java.net / fishfarm.dev.java.net is
used to broadcast the data in the local network

> Broadcasted data can be accessed with every
device (currently multi-media system, PCs, working
on Java ME) over W-LAN

@:@ 5,1--!7’1

JavaOne

Design Decisions

> The rules for the heating can be changed without
redeploying and especially recompiling the application.

> For the implementation the Fluid Kernel, Persistent
Anemic Objects, Lookup Utility etc.. pattern were used
(see: http://p4|5.dev.java.net).

> |nitially Groovy was chosen (JDK 1.5 time, no JSR-223)
for the implementation of the rules. In the next release
JavasScript is going to be used (is already shipped with
Java 6, faster and totally sufficient for GreenFire's
purposes).

‘%i% SZ;”Z

http://p4j5.dev.java.net
http://p4j5.dev.java.net

JavaOne

> Especially in the first phase, the rules had to be
often changed for fine tuning

> The rules for the heating can be changed without
redeploying and especially recompiling the
application

> For the implementation the Fluid Kernel pattern was
chosen

> Drools, JavaScript, JRuby etc. could be used for the
rule validation as well

@:@ 5,1--!7’1

JavaOne

Lessons Learnt

> Java EE 5 Is pragmatic and productive even for
small projects. The first attempt was started with
Ruby On Rails — it was not as efficient as expected
(no built in monitoring, no support for free,
opensource database that time).

> Mocking is great — but can cause a lot of trouble as
well (who thinks about two's complement accessing
hardware in Java).

> It Is worth to try out even strange ideas

@:z@ SZ{ L

JavaOne

Interesting

> @reenkFire reflects real world projects surprisingly well:
* robust integration of legacy resources
* batch processing (timer service)

* Impedance mismatch between reports/services and
domain driven design (JPA)

* unit tests challenges (mocking, integration tests)
» fast and robust deployments

» GreenFire’s patterns were introduced into many real
world Java EE projects

@Sun -

JavaOne

Conclusion

> Hacking Java EE 5 is good for the environment!

N

JavaOne

Resources

> greenfire.dev.java.net
> shoal.dev.java.net

> fishfarm.dev.java.net

> glassfish.dev.java.net
> blog.adam-bien.com

> WWW.javafx.com

»

http://www.javafx.com
http://www.javafx.com

Java

Adam Bien

blog.adam-bien.com

abien@adam-bien.com

Sunday, 24 May 2009

mailto:abien@adam-bien.com
mailto:abien@adam-bien.com

