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Goal of this presentation

Show how to tune and monitor a real-time 
application using Java Real-Time System tool 

set



3

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future



4

Outline
> Tuning for Real-Time
> Tuning Compilation
> Tuning Priorities
> Tuning Memory Managers
> The Future



5

Java Platforms and Real-Time
> Real-Time Specification for Java (RTSJ)

● Provides an Application Programming Interface that  
enables the creation, verification, analysis, execution and 
management of Java threads whose correctness 
conditions include timeliness constraints

> Java Real-Time System
● Sun's implementation of the RTSJ
● Based on JDK 5 platform (32-bit and 64-bit) 
● Real-Time Garbage Collector
● Initialization-Time Compilation
● DTrace instrumentation
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Why tuning is required
> Tuning for determinism

● No deadline miss
> A real-time virtual machine is not a crystal ball

● Application's requirements unknown
> Virtual machine adapts itself

● Based on current or past requirements of the 
application

> Dynamic Adaptation 
● Makes developer's life easier
● Introduces jitter
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Auto-adaptation
> Not a magic bullet

● Requires a warm-up phase
● Time consuming
● Difficult to be accurate
● Cannot solve all the tuning issues

> Tuning required when auto-adaptation is not 
enough

> Tuning helps to optimize adaptation
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Tool: Thread Scheduling Visualizer

> Tool to record and 
analyze thread 
execution
● Events are recorded 

during execution
● Off-line visualization

> Provide graphical 
time-line based views
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Class Loading / Compilation
> Default behavior:

● On-demand class loading
● Just-In-Time compilation of hot methods

> Neither policy is well suited for RT
● Jitter late in application's execution
● Generally happens at worst time: error handling, 

uncommon situations, ...
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Demo RTImageProcessing 

Class initialization
performed by a
real-time thread

Compilation occurs
during first period

Delays cause
first deadline
to be missed
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Initialization Time Compilation
> List of pre-loaded classes
> List of pre-initialized classes
> List of methods to be compiled at class 

initialization time
> Java RTS can generate these lists automatically
> Developers can edit them

● List format supports wild cards 
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ITC Configuration
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Demo RTImageProcessing with ITC

Class initialization and
compilation are performed
by the VM at startup time

The real-time thread has
deterministic behavior 
as of its first execution: 
no deadline miss
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CPU Resources
> Shared among all threads

● Real-Time Threads / Non Real-Time Threads
● Virtual Machine Threads

> Importance of the scheduling policy
● Time-sharing scheduler apportions CPU time out 

to all threads 
● Real-Time Scheduling always gives CPU to the 

highest priority threads
● Can cause starvation, delays, dead-locks

> Priorities control access to CPU
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Application with Multiple Threads

> Difficult to see the 
relationships 
among threads

> Very hard to 
evaluate the 
CPU load
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Per CPU View

> CPUs are clearly 
overloaded

> RTTs cannot run 
during GC cycle

> Thread migrations 
are easy to see
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Configuring RTGC Threads
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Giving Priority to the Application

> Application threads run 
at a higher priority 
than the RTGC.

> It doesn't solve the 
problem: deadline 
misses still occur.

> Threads need memory.
> RTGC cannot run to 

recycle memory on 
time.
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Giving Priority to the RTGC
> RTGC runs at a 

higher priority than 
the application.

> RTGC runs with a 
single worker 
thread.

> Enough CPU time for 
the application.

> Memory recycled on 
time.

> No deadline miss.
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Shared locks and real-time scheduling 
> Priority inversion

● When a high priority thread A tries to acquire a lock 
held by a low priority thread B

● Worse if a medium priority thread C preempts B and 
prevents it from running: unbounded priority inversion

> Priority Inheritance
● When A blocks while acquiring the lock held by B then 

B is boosted to A's priority until it releases the lock
● Solve the issue if both threads execute deterministic 

code
● Danger: having real-time threads depending on non 

deterministic code executed at a real-time priority
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Tracking Application Locking Issues
> A non real-time 

thread blocks a real-
time thread.

> The non real-time 
thread inherits from 
the real-time priority.

> Contentions cause 
deadline misses

> TSV provides the call 
stack when the 
contention occurs.
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Real Case Log

> 32 cores
> 900+ threads
> 5 sec of execution
> Per CPU view
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Zoom into the Real Case Log

> Zooming in helps
> Still hard to analyze
> Data synthesis missing
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Log summary

CPU time

Migrations

Contentions

Blocked times

Per-thread summary
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Memory Areas in JavaRTS
> Garbage-collected Heap

● Tune the Real-Time Garbage Collector if needed
> Immortal memory consumption

● Identify and remove Immortal Memory leaks
> Scoped memory recycling

● Tune the size of each scoped memory area
● Check when each area is reset
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Demo: Dumping Immortal Consumption 
on Thread Death
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Real Time Garbage Collector Monitoring
> RTGC threads are visible in TSV

● Check how they compete with application threads
> Efficient per-thread memory consumption 

monitoring
> RTGC events available 

● Boosting of RTGC threads when memory falls low
● Blocking non-critical threads when memory falls 

very low
● Information for each GC cycle



31

Tuning the RTGC for Soft Real Time
> Tuning the default number of GC threads
> Understanding soft real-time jitter

● Using GC logs to check the auto-tuning
● Using GC MBeans to (remotely) monitor the GC
● Enhancing DTrace scripts or TSV view with GC 

statistics or memory consumption information
● Improved GC logs
● Correlate scheduling events with memory usage in 

TSV
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Demo: Visualizing Heap Consumption in 
TSV

Global non-RT 1M 'ticks'

Per Thread 1M 'ticks'

Global RT 1M 'ticks'
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Tuning the RTGC for Hard Real Time...> Evaluating behavior considering only hard real-
time threads:
● CPU consumption by hard RT threads
● Time needed to execute two RTGC cycles with 

the remaining CPU power (two might be needed 
to guarantee the recycling of dead objects)

● Memory consumed by hard RT threads during 
that time

> Deducing the memory limit under which non hard 
real-time threads must block (critical mode)
● RTGCCriticalReservedBytes

>
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… and Tuning the Application
> Even if stable, the critical mode executes only 

parts of your application
> Tips:

● Keep RTGCCriticalReservedBytes low to ensure 
the RTGC will recycle enough memory and 
unblock the non hard RT threads

● Minimize the work in hard RT tasks to do only 
what needs to be done during the critical phase

● Ensure RTGCCriticalReservedBytes  is sufficient 
for these hard RT tasks
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Demo: Fine Grain Allocation Rate 
Monitoring
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Benefiting from DTrace Improvements
> Graphical view of DTrace aggregates with Chime 

(already available on OpenSolaris)

> Example: Tracking memory usage over time
● Available Memory
● Per-thread allocation rates
● Per-priority allocation rate
● ...
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Demo: Per Priority
 Memory Usage

Consumption per priority
(interval 0.5s)

Plotting for a critical priority
(varies from 10.5MB/0.5ms

to 11.5MB/0.5ms)

Plotting for a soft real-time priority
(varies from 25MB/0.5s

to 150MB/0.5ms)
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Building other DTrace based tools
> Prototype of DTrace based sampling profiler

● Very limited interference on the application
● Used to successfully identify a performance 

degradation on a complex user application

> Now leveraging this efficient raw sampler to build 
a real profiler 
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Real-Time Linux Support
> TSV is platform independent
> The issue is to gather the relevant data

● Need user probes for JVM events
● Need documented probes for scheduling events

> The Linux community is investigating different 
probe mechanisms
● SystemTap, ftrace, utrace, Kprobes, ...
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