
Building a Java™ Technology-
Based Automation Controller:
What, Why, How

Greg Bollella
Sun Microsystems

2

Outline
> Programmable Logic Controllers (PLC)
> Why we think they need to be replaced
> Fundamental differences between PLCs and PCs
> Not your Grandfather's Solaris
> The Sun Java Real-Time System (arguments)
> RTComms (Ethernet on steroids)
> Fieldbus support
> Health metric APIs
> The Sun Java Automation Controller

3

Programmable Logic Controller
Dinosaurs of the controls industry
> Everyone know what a

'relay' is?
> Think of a bank of relays

with somewhat arbitrary
connections and a bit of
Boolean logic along the
connections

> Well, a PLC is a digital
version of the above

4

Wikipedia

A programmable logic controller (PLC) or programmable controller is a digital computer

used for automation of electromechanical processes, such as control of machinery on factory

 assembly lines, amusement rides, or lighting fixtures......

Early PLCs were designed to replace relay logic systems. These PLCs were programmed in "ladder logic",

which strongly resembles a schematic diagram of relay logic. Modern PLCs can be programmed in a variety

of ways, from ladder logic to more traditional programming languages such as BASIC and C. Another method

is State Logic, a Very High Level Programming Language designed to program PLCs based on

 State Transition Diagrams.

http://en.wikipedia.org/wiki/Programmable_logic_controller

http://en.wikipedia.org/wiki/Digital_computer
http://en.wikipedia.org/wiki/Automation
http://en.wikipedia.org/wiki/Electromechanical
http://en.wikipedia.org/wiki/Assembly_line
http://en.wikipedia.org/wiki/Ladder_logic
http://en.wikipedia.org/wiki/State_Logic
http://en.wikipedia.org/wiki/Very_High_Level_Programming_Language
http://en.wikipedia.org/wiki/State_diagram

5

Ladder Logic

| X001 Y001 Y001 |
|-| |---|/|---[01000 TON T002]-[01000 TOF T003]---------()--| rung one
| |
| X001 Y002 |
|--| |----+---()--| rung two
Y002		
--		----+
X001 R006		
--		--
	R006	
+---[01000 TOF T005]--()--		
Y003		
-[D150 >200]---()--	rung four	
Y003		
-		---[0 MOV D150]--
--{END}---	END rung	

6

C for PLCs
> More modern PLCs allow the developer to write

in C
> However,

● It's a pretty limited set of the C language
● Typically proprietary compiler and libs

> Not conducive to large complex code bases

7

What's wrong with the Status Quo
> Greenhouse gases
> Fossil fuel costs
> Road rage
> Elevator wait time
> Commute time
> PLC costs (initial and lock-in issues)
> Network isolation
> Come on, really, let's just get with it factor ...

8

http://www.freefoto.com

9

Differences between a PLC and a PC
> Real-time
> I/O
> Reliability
> Availability

10

Differences: Real-Time (1)
> Lots more later
> Controllers 'control' physical things

● cf Computers manipulate virtual things
> Physical things have some interesting properties

● Mass, inertia, temperature, velocity, wear, etc.
> Cannot actually change the laws of physics ...

● cf Computer games
> The execution of logic is subservient to the physical

parts of the system (not visa versa), thus ...

11

Differences: Real-Time (2)

> Logic must execute, with very little variation,
when the physical system requires and needs
it to execute

● No time for Blue Screen of Death
● No time for malloc to find some free memory
● No time for garbage collection
● No time for SMI
● No time for OS housekeeping

> These are cyber-physical systems and inherently
real-time

12

Differences: I/O
> Control is 50 % I/O
> General purpose I/O
> Analog and Digital
> These are the 'points' to which the sensors and

actuators are connected to the controller
> I/O Slaves are small micro-controllers in

themselves
> Communicate with higher level controllers over

real-time communications channels typically
called field buses

13

Differences: Reliability

> The IEEE definition: “... the ability of a system or
component to perform its required functions under
stated conditions for a specified period of time

> OK, think of your PC ... nuff said
> But, control systems operate in a much more

restricted environment

14

Differences: Availability

> The degree to which a system, subsystem, or
equipment is operable and in a committable state
at the start of a mission, when the mission is
called for at an unknown, i.e., a random, time.
Simply put, availability is the proportion of time a
system is in a function condition

> E.g., we test a system for 5 days, so, over a 5
day period it has 100% reliability.

> Based on component MTBF we can compute an
availability over some longer time period

15

Why Solaris?
> A major value of the SJAC is to bring modern

computing environments to the control
environment

> JavaRTS + Solaris provides an excellent real-
time application execution environment as well as
an excellent non-real-time application execution
environment

> Solaris provides, to the controller infrastructure all
the benefits it provides to the IT data center

RTSJ and JRTS Timeline

 Real-Time
Specification
for Java
(JSR-001)
proposal
submitted

Sun among
the leading
technology
companies
defining
JSR-001

2002 2009
JSR-001
approved by
the Java
Community
Process

JSR-282
submitted

Sun Java
Real-Time
System 1.0
 – fully
compliant
with JSR-1.
Sun
contributes
to JSR-282

1998 2006 2007
Sun Java
Real-Time
System
2.0
 –
innovative
real-time
garbage
collector

2008
Sun Java
Real-Time
System 2.1
– Linux
support,
improved
development
tools

Sun Java Real-
Time System 2.2
*64-bit support
*J7 C1 Compiler
*optimized locks

17

Core Areas of the RTSJ
> Scheduling and Dispatching
> Synchronization

● Priority inversion avoidance
> Memory Management
> Asynchronous events and responses
> Time, Clocks and Timers
> Asynchronous Transfer of Control
> System functions

● Signal interaction

18

Schedulable Objects

> Notion of a Schedulable object
● Interface implemented by executable entities
● Execution managed by a Scheduler

> RTSJ semantics are defined only for pre-
defined types of Schedulable objects,
referred to as “schedulable objects” (SO)

● Instances of RealtimeThread and its subclasses (RTTs
● Instances of AsyncEventHandler and its subclasses (AEHs)

> A plain java.lang.Thread (JLT) is not a SO

19

Real-Time Threads

> Class RealtimeThread
● Extends java.lang.Thread
● Implements Schedulable

> Defines static methods to operate on the
current real-time thread:

● boolean waitForNextPeriod()

20

No-Heap Real-Time Threads

> Class NoHeapRealtimeThread
● Extends RealtimeThread

> Forbidden from accessing any object allocated
in the Java heap

● Always executes in either scoped or immortal
memory

> Can be immune to interference from the GC,
provided

21

Release Characteristics
> Scheduling theory characterises tasks by their pattern of

release
● i.e. when, and how often, the task is ready for

execution
> A release is triggered by some event and defines an

arrival of the SO
> A release completes when the SO “stops executing”
> Periodic: released regularly based on a set period
> Aperiodic: release pattern is unknown
> Sporadic: release pattern is unknown, as for aperiodic,

except that the minimum inter-arrival time (MIT) is known

22

The Sun Java Real-Time System
> An implementation of the RTSJ
> Product available since 2006
> Java SE compliant
> JSR-01 compliant
> Available for over 800 h/w platforms
> Maximum latencies of 15 microseconds possible
> Full real-time garbage collection

Sun's Java Real-Time System – absolute
execution predictability with all the benefits
of the Java platform

> Truly predictable
● Formal mechanisms to

eliminate latency issues
> Open

● Based on open,
community-driven
standards SPARC x86

SOLARIS 10

Sun Java RTS VM

Standard
Java SE libraries

Linux

Java RTS
libraries

Sun Java RTS VM

Overall System Model

Soft
real-time

Non
real-time

> Standard Java Heap or Scoped or
Immortal memory

> Real-Time threads

> Real-Time Garbage Collector

> Scoped or Immortal memory

> Real-Time threads

> NoHeapReal-Time threads

> Real-Time Garbage Collector

> Standard Java Heap

> Regular Java threads

Hard
real-time

25

Example: Henriksson's GC

Delayed GC Work
Non-Critical Threads

Protected, Critical Threads

Priority

Time

Thread pre-empted in favor of higher priority thread
Application thread doing work Delayed GC for

allocations by
critical threads.

Distinction between
critical and non-critical

threads
Allocation occurs here.

GC doing work for each allocation, may be delayed

The Arguments
> The Java Platform provides tools (development

and debug), libraries, and an environment
appropriate for easily developing complex control
algorithms

> The RTSJ provides sufficiently high-level real-
time development abstractions

> The RTSJ abstracts timing details
> Exactly the same code can run in a simulation as

well as the target system
> Graphical interface and control code execute w/in

the same JVM

The Arguments
> The Java Platform provides tools (development

and debug), libraries, and an environment
appropriate for easily developing complex control
algorithms

> The RTSJ provides sufficiently high-level real-
time development abstractions

> The RTSJ abstracts timing details
> Exactly the same code can run in a simulation as

well as the target system
> Graphical interface and control code execute w/in

the same JVM

The Java Platform
> Vibrant Community

● 6M developers
> Tools, IDEs, debug, profiling, real-time
> Libraries, thousands
> Google what you need to know
> Ubiquitous byte code (runs anywhere)

29

NetBeans IDE Support
Download the Java RTS plugin, and

- cross-develop on
the host

- write ALL code in
Java

- deploy over the
network

- execute on the
target

The Arguments
> The Java Platform provides tools (development

and debug), libraries, and an environment
appropriate for easily developing complex control
algorithms

> The RTSJ provides sufficiently high-level real-
time development abstractions

> The RTSJ abstracts timing details
> Exactly the same code can run in a simulation as

well as the target system
> Graphical interface and control code execute w/in

the same JVM

High Level RT Development
> Release characteristics

● periodic, aperiodic, sporadic
> Deadline Miss and Cost Overrun Handlers
> Periodic and One-Shot Timers
> AsyncEvent and AsyncEventHandler
> Real-Time Garbage Collection
> Precise Dispatch Semantics

The Arguments
> The Java Platform provides tools (development

and debug), libraries, and an environment
appropriate for easily developing complex control
algorithms

> The RTSJ provides sufficiently high-level real-
time development abstractions

> The RTSJ abstracts timing details
> Exactly the same code can run in a simulation as

well as the target system
> Graphical interface and control code execute w/in

the same JVM

Abstraction of Timing

while (condition) {
 readSensors();
 computeControl();
 sendCommands();

waitForNextPeriod();
}

The Arguments
> The Java Platform provides tools (development

and debug), libraries, and an environment
appropriate for easily developing complex control
algorithms

> The RTSJ provides sufficiently high-level real-
time development abstractions

> The RTSJ abstracts timing details
> Exactly the same code can run in a simulation as

well as the target system
> Graphical interface and control code execute w/in

the same JVM

Simulation – Target; Same Code
> Java3D

visualization
> Simple dynamics

simulation
> Runs on J2SE

● Exactly the
same control
code as for the
physical robot

● Debugging on
the desktop

The Arguments
> The Java Platform provides tools (development

and debug), libraries, and an environment
appropriate for easily developing complex control
algorithms

> The RTSJ provides sufficiently high-level real-
time development abstractions

> The RTSJ abstracts timing details
> Exactly the same code can run in a simulation as

well as the target system
> Graphical interface and control code execute

w/in the same JVM

Graphical Interface + Control
> Project Sydney
> BlueWonder

System
> ProfiBus
> Industrial

Automation
Sensors and
Actuators

> GUI and Control
in Two Weeks

Integration (Yesterday)
Factory Floor Organization Intranet

Integration (Yesterday)
Factory Floor Organization Intranet

Integration (Today)
Factory Floor Organization Intranet

Integration (Tomorrow / Today)
Factory Floor Organization Intranet

Integration (Today with BlueWonder)
Factory Floor Organization Intranet

43

RTComms
>Real-time communication over Ethernet
>Application <--> DD <--> e1000g
>Point-to-point
>Synchronous protocol
>Packet corruption handled
>Redundancy if two interfaces available

44

Fieldbus Support
>Industrial automation uses a variety of real-time,
synchronous communications protocols to connect
I/O slaves and controllers
>ProfiBus, ProfiNet, Modbus, DeviceNet,
>Support through PC104+ cards and Solaris device
drivers

45

Health Metric APIs
>Java APIs and Hardware support for:
●CPU and system temp
●Power supply and battery voltages
●CPU utilization
●Memory utilization
●Network and disk utilization
●System serial number
●Easily extended for additional kstat

46

SJAC Additional APIs

SPARC x86

SOLARIS 10

Sun Java RTS VM

Standard
Java SE libraries

Java RTS
libraries

RTComm Field BusHealth
Monitor

Pure Java API

Java JNI API

Solaris Driver

Sun Java Automation Controller

Greg Bollella
greg.bollella@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Core Areas Addressed by the RTSJ
	Schedulable Objects
	Real-Time Threads
	No-Heap Real-Time Threads
	Release Characteristics
	Slide 22
	Slide 23
	Slide 24
	Example: Henriksson's GC
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

