
Energy, CO2 Savings
with Java™ Platform,
Enterprise Edition and
More: Project GreenFire
Adam Bien, Consultant
adam-bien.com
blog.adam-bien.com

1Sunday, 24 May 2009

What Is GreenFire?

> GreenFire is a a “heating tuner”, actually a heating
regulator

> Beyond heating regulation, GreenFire is also an
interesting automation platform to control ventilation
and parts of the house automation

> GreenFire is opensource: greenfire.dev.java.net
> It is already 2 years in production. Energy savings:

about 20-50%

2

2Sunday, 24 May 2009

What Is GreenFire?

> I was not very happy with the way how the heating
regulation worked.

> ...I begun to regulate the heating manually (what
was a lot of plumbing)

> The first prototype was started with Ruby On Rails
in early 2006, but the problem were the conventions
and the DB choice (only few databases were
supported that time)

> The second prototype (with hardcoded rules) was
built at a weekend with EJB 3 preview

3

3Sunday, 24 May 2009

GreenFire - And How It Started

> It was one of the very first Java EE 5 apps in 2006
> GreenFire is continually (mis)used to evaluate

some Java EE patterns and best practices as well
> It is also a nice application to test JavaFX™

capabilities

4

4Sunday, 24 May 2009

Context / What is Solar Heating?

> “Is the usage of solar energy to provide process,
space or water heating”

> Solar energy is cheap comparing it to oil/gas/wood-
pellet ..and CO2 neutral.

> But: conventional energy sources are easier to
control and manage.

> However, it is hard to predict, whether, when and
how long the sun will shine (at least in Germany /
Bavaria ☺).

5

5Sunday, 24 May 2009

GreenFire - The Intention

> Situation/context dependent prioritization of „bio“
resources (solar over wood-pellets etc.)

> Highest possible energy and CO2 savings
> Intelligent control of circulation-pumps, heating and

ventilation
> Monitoring, reports and remote control
> …and FUN (JavaFX, SunSPOTs, Groovy etc.)

6

6Sunday, 24 May 2009

Real (house) hardware - “Deployment Diagram” :-)

> TWO: upper water
temp

> TPO: upper heating
temp

> TPU: lower heating
temp

> TWO: lower heating
temp

7

7Sunday, 24 May 2009

How It Works?

> Modern heating systems use buffers to store the
(solar) energy:
• The buffer is the heart of the heating control.
• The buffer’s temperature is important for the

decision, whether the primary heating source should
be activated or turned off

> Even modern systems only use a timer driven
approach to control the heating. The current solar-
power, weather predictions, internal house
temperature are not taken into consideration :-(.

8

8Sunday, 24 May 2009

Use (Problem) Cases - Wrong Prioritization

> Buffer is cold, the sun shines, ...and the timer starts
the primary energy source (oil/wood pellet)

> Buffer is cold, you are cold, so you are going to
make fire in the wood burning stove (it is connected
with the buffer). .. your heating doesn’t know that
(more precisely - it ignores that) and starts the
primary heater again (this energy is wasted)

9

9Sunday, 24 May 2009

Use (Problem) Cases - Wrong Prioritization

> Autumn/Spring, the buffer is warm and the sun
shines.To avoid overheating the control decides to
turn the solar collectors off, instead of turning on the
heating in the basement (another kind of cooling).

> You are enjoying the wood burning stove in the
evening, however it produces too much heat (=
warm water). The house heating could be
automatically turned on for cooling, and turned off
again at a predefined point automatically.

10

10Sunday, 24 May 2009

Use (Problem) Cases - Wrong Prioritization

> The weather forecast for the next day is good
(=sun). But the primary source (oil/wood pellet)
heats the buffer in the night. Morning sun is too
weak to heat the already warm buffer. The energy is
wasted again.

> In case the sun shines – it is usually warm enough
– the house heating as well as the heater could be
turned off.

> …and many, many ideas.

11

11Sunday, 24 May 2009

Technology decisions: why EJB 3?

> EJB 3 technologies are POJOs with only few
annotations (@Stateless, @Local).

> The container cares about state, concurrency and
dependency management (it “injects” other EJB
technologies , PersistenceContext, JMS queue or
the DataSource)

> The DI (Dependency Injection) relies on convention,
rather than configuration – so XML is no more
necessary

12

12Sunday, 24 May 2009

Why EJB 3?

> Applications built with EJB technology are leaner
than without:
• Dependency Injection makes ServiceLocators,

factories and even constructor invocations
superfluous

• Additional frameworks or libraries are optional
(mostly not needed)

> The integration with Java EE 5 platforms is superb.
To create a simple “CRUD” application only few
lines of code are necessary

13

13Sunday, 24 May 2009

Why EJB 3?

> Transactions and concurrency issues are already
solved for you:
• No need to use ThreadLocals, Singletons or another

hacks to associate the EntityManager with a
transaction

• The Entities inside a transaction remain consistent
• EJB 3 technology can be easily injected into a Java

Servlet API, JSP™ framework or Managed Beans –
the concurrency and transactions are correctly
handled by the application server

14

14Sunday, 24 May 2009

Why EJB 3?

> Transactions are propagated to all methods within
the same thread, even scripts (Groovy, JavaScript
etc.)

> EJB 3 are well integrated with JMS (sender and
receiver)

> JSR-223 scripts can be loaded and executed
directly into a Session Bean

> EJBs have to expose their monitoring data via JMX
(JSR-77). Monitoring is an important requirement
for a heating regulator

15

15Sunday, 24 May 2009

Why EJB 3?

> EJB 3 Timer Service is perfect for the
implementation of a heart beat

> The EntityManager is correctly “synchronized” by
the EJB container in multi-threaded environment

> Good JSR-311 (REST) and JSR-181 (SOAP)
integration

> EJB components are portable and can be deployed
to any Java™ EE 5 application server without
additional effort

16

16Sunday, 24 May 2009

Why EJB 3/JPA?

> JPA entities are just annotated POJOs
> Superb integration with scripting components -

attached entities can be directly manipulated
> The same entity can be used for XML serialization

and persistence. Its Don’t Repeat Yourself (DRY)
> DAOs and DTOs are an option - and not a

necessity (important for smaller applications)
> EJB 3 and JPA in particular are easy unit-testable

17

17Sunday, 24 May 2009

Java EE

> GreenFire is a Java EE application:
• workflow is implemented as EJB 3.0 Session Beans
• business logic is implemented in Groovy and loaded

via JSR-223 in a Session Bean
• the current state and the decisions are persisted

with JPA

18

18Sunday, 24 May 2009

19

GreenFire Glassfish v2 deployment

19Sunday, 24 May 2009

Java EE (contd.)

• the “heartbeat” is implemented with EJB timer
service

• reports (currently BIRT) are accessing the database
directly, via JDBC

• the sensor information is published via JMS topic
internally (inside the EAR), and with
shoal.dev.java.net externally

• RSS is just Servlet (JMS listener)
• the same data is also published with JSR-311

(REST, JAX-RS)
20

20Sunday, 24 May 2009

Components Overview

21

Presentation / Business GF v2

RSS/REST cache

weather
forecast

controller

configuration
provider

archiver
timer service

Integration (isolated JVM)

heating

integration

integration service

broadcaster

Swing Rich Client

monitoring UI

Java FX

monitoring UI

HTML Widget

monitoring UI

Derby DB

data

Web App

reporting

21Sunday, 24 May 2009

Heating News RSS Feed

> Updated every 5
minutes via JMS

> Data is distributed
via Topic (openmq /
Glassfish)

> RSS Feed is only
one subscriber

22

22Sunday, 24 May 2009

GreenFire Status in iPhone

> Can be accessed
from mobile phones
directly

> A restful interface is
available as well
(useful for Java FX

23

23Sunday, 24 May 2009

Portability

24

> GreenFire was initially developed on JBoss 4.0
> Porting to Glassfish™ v1, then v2 was painless

(only copy+paste of the EAR)
> It runs currently on Glassfish v2.1
> No proprietary extension are used
> The UI is based on Java FX Script, RSS, HTML and

Swing

24Sunday, 24 May 2009

IDE and Environment

> Greenfire was developed with plain Netbeans
5.5.1/6.7 without any extensions (reason: lazyness,
better compatibility between developers)

> Greenfire is tested with (www.paradigma.de).
However only a small part of the integration layer is
dependent on the proprietary heating-protocol. All
other parts are heating-equipment independent.
Actually every heating system with an accessible
interface, should be easy to integrate.

25

25Sunday, 24 May 2009

http://www.paradigma.de
http://www.paradigma.de

Packaging and Prerequisites

> GreenFire is an ear, which consists of several ejb-
jar modules and some WAR applications.

> For the installation only a datasource (for archiving)
and a JMS-topic (for publishing) are needed.

> The Java EE 5 application talks to an integration
unit, which is realized as a lean RMI-server.

26

26Sunday, 24 May 2009

...and how it works

> Every 5 minutes the timer service (the archiver,
actually the heartbeat) completes the following
tasks:
• It gathers the data (heating + configuration, weather

forecast) and passes it to the „brain“
• The brain is asked what to do (heating on/off, etc.)
• The decision is passed to the integration layer and

executed
> All the data is stored in the Derby DB and can be

used in reports.
27

27Sunday, 24 May 2009

> The data in the Derby DB is used for reports and
monitoring independently (it stores every 5 minutes
all the data since about 3 years – and performs still
very well -> no problems).

> The UI is accessing Derby DB to access the
information – not directly the heating system
(decoupling – the serial port seems not to be thread
safe)

28

28Sunday, 24 May 2009

The “driver”

29

29Sunday, 24 May 2009

The decider

30

30Sunday, 24 May 2009

The “rule engine”

31

31Sunday, 24 May 2009

The Script (variable initialization)

32

32Sunday, 24 May 2009

Groovy Script - Control Logic

33

33Sunday, 24 May 2009

Java FX - XML Parsing

> GreenFire’s state is
also available via
REST / XML

> The Java FX Script
class HeatingState is
a DTO - which is
used as a model

34

34Sunday, 24 May 2009

Java FX - XML Parsing

> With Java FX parsing
of XML data is fairly
easy

> A HttpRequest can
be directly connected
with the parser,
which invokes a
function:

35

35Sunday, 24 May 2009

Data distribution

> The current data is broadcasted every five minutes
using JMS internally (inside the application server)

> The shoal.dev.java.net / fishfarm.dev.java.net is
used to broadcast the data in the local network

> Broadcasted data can be accessed with every
device (currently multi-media system, PCs, working
on Java ME) over W-LAN

36

36Sunday, 24 May 2009

Design Decisions

> The rules for the heating can be changed without
redeploying and especially recompiling the application.

> For the implementation the Fluid Kernel, Persistent
Anemic Objects, Lookup Utility etc.. pattern were used
(see: http://p4j5.dev.java.net).

> Initially Groovy was chosen (JDK 1.5 time, no JSR-223)
for the implementation of the rules. In the next release
JavaScript is going to be used (is already shipped with
Java 6, faster and totally sufficient for GreenFire‘s
purposes).

37

37Sunday, 24 May 2009

http://p4j5.dev.java.net
http://p4j5.dev.java.net

> Especially in the first phase, the rules had to be
often changed for fine tuning

> The rules for the heating can be changed without
redeploying and especially recompiling the
application

> For the implementation the Fluid Kernel pattern was
chosen

> Drools, JavaScript, JRuby etc. could be used for the
rule validation as well

38

38Sunday, 24 May 2009

Lessons Learnt

> Java EE 5 is pragmatic and productive even for
small projects. The first attempt was started with
Ruby On Rails – it was not as efficient as expected
(no built in monitoring, no support for free,
opensource database that time).

> Mocking is great – but can cause a lot of trouble as
well (who thinks about two‘s complement accessing
hardware in Java).

> It is worth to try out even strange ideas

39

39Sunday, 24 May 2009

Interesting

> GreenFire reflects real world projects surprisingly well:
• robust integration of legacy resources
• batch processing (timer service)
• impedance mismatch between reports/services and

domain driven design (JPA)
• unit tests challenges (mocking, integration tests)
• fast and robust deployments
• GreenFire’s patterns were introduced into many real

world Java EE projects

40

40Sunday, 24 May 2009

Conclusion

> Hacking Java EE 5 is good for the environment!

41

41Sunday, 24 May 2009

Resources

> greenfire.dev.java.net
> shoal.dev.java.net
> fishfarm.dev.java.net
> glassfish.dev.java.net
> blog.adam-bien.com
> www.javafx.com

42

42Sunday, 24 May 2009

http://www.javafx.com
http://www.javafx.com

Adam Bien
blog.adam-bien.com

abien@adam-bien.com

43Sunday, 24 May 2009

mailto:abien@adam-bien.com
mailto:abien@adam-bien.com

