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Goal
> Learn how response time determinism and 

throughput are related and how to balance them 
with real world application examples.
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> Real Time Performance
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What is Real-Time?
> Simple definition: The addition of temporal 

constraints to the correctness conditions of a 
program
● “When” is as important as “what”
● “A late answer is a wrong answer”

> “real-time” does not mean “real-fast”
● Going faster helps but ...

> Predictability is the key
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Example Temporal Constraints
> Deadline: started task must complete by a given 

time
● Once a request for a trade is received, it must 

execute within 5ms
> Latency: difference between when an event 

happens and when it is seen to have happened
● Stop button handler must respond within 500us of 

a press
> Jitter: Variance in the time interval between 

events
● The input sensor must be sampled every 1ms +/- 

100us
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Performance: non Real-Time
> “How fast is it?”
> Defined in terms of mean execution time

● Over several iterations
● Over several threads of execution

> = “throughput”
> Worst case execution time rarely matters as long 

as:
● The application is always “reasonably” fast
● A glitch “does not happen often”

> Observed/measured performance is what matters
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Performance: Real-Time
> Worst case defines performance
> Hard Real-Time is not necessarily low latency
> Application scheduling can be proved feasible, 

guarantees are offered:
● Known Implementation/design flaw matters even if 

very unlikely
> Measured with its own metrics:

● Latency
● Jitter

> Requires its own performance tools:
● Tools that collect samples not sufficient
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But...
> Execution time still matters...
> Users don't want to totally give up on throughput

● Mix of Real-Time and non/soft Real-Time 
workload in a single app

> Some Implementation techniques used in OS or 
Java Virtual Machine (JVM™ machine):
● Are incompatible with Real-Time
● Or  lead to higher latency/jitter

> Increased determinism typically comes at the 
expense of decreased throughput
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Sun's Java Real-Time System
> Sun's implementation of the RTSJ
> Optimized Real-Time Java platform runtime 

based on Java HotSpot™ high performance 
virtual machine

> Based on Java Platform, Standard Edition 5 
(Java SE platform 5)

> Runs on:
● Solaris™ Operating System, SPARC® 

technology, and x86/x64 platforms
● Real-Time Linux on x86/x64 platforms
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Sun's Java Real-Time System (cont'd)
> Coming soon: 64 bit support (version 2.2)
> dtrace based tools offer full view of running 

system
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Throughput vs determinism: Scheduling 
and resource usage
> For better throughput (Java SE):

● Time sharing, let the system balance resources
● Aggressive lock optimization (biased locking)

> For better determinism (Java RT):
● Fixed priority, run to block scheduling, static cpu 

partitioning: not necessarily “best” overall usage 
of resources

● Mandates Priority inversion protection scheme: 
more expensive than standard locks

● Restricts use of lock-free algorithms



13

Throughput vs determinism: Native code 
generation (JIT)
> For better throughput (Java SE):

● Compile hot methods: enable profile driven 
optimizations. 

● Be optimistic: allow recompilation if optimization 
needs to be undone.

> For better determinism (Java RT):
● Compile everything in the critical path early: 

limited knowledge at compilation time
● Make the code as steady as possible
● Java RTS only supports hotspot's client compiler
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Throughput vs determinism: Garbage 
Collection
> For better throughput (Java SE):

● Stop the world GC
● Generational GC to efficiently recycle short-lived 

objects
> For better determinism (Java RT):

● Guarantee max pause time
● Offer control over pause time frequency
● Guarantee progress (recycling on time)
● Concurrent or incremental GC
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Throughput vs determinism: RTGC in 
Java RTS
> For better determinism:

● GC runs concurrently with mutator threads
● Critical threads always preempt the RTGC 

threads and allocate from reserved space
● No stop the world phase (Pause one thread at a 

time)
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Throughput vs determinism: RTGC in 
Java RTS (cont'd)
> Impact on throughput:

● Objects may be split (heavy heap fragmentation). 
Compiled code need to accommodate for that.

● Write barrier is more complex than standard 
hotspot

● Not generational, non moving: higher cpu usage
● Cost can be paid by extra CPUs 
● Cost of RTGC impacts only non-critical threads
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Configuring Java RTS for best 
determinism

> Java RTS has a “soft real-time” behavior by 
default and need to be configured for hard 
realtime:
● Configure garbage Collector
● Preload/preinitialize classes, precompile methods: 

Init Time Compilation configuration
● Use processor partitioning
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Response Time Benchmark
> Single Real-Time periodic thread

● Wakes up at a pre-programmed fixed interval 
(absolute release dates)

● Does not produce garbage in steady mode
> Simple but representative

● Simple control loop: thread wakes up to read 
sensor and take some action

> At every release, wake-up latency is measured
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Response Time Benchmark (cont'd)
> Benchmark measures:

● Max difference between effective release time and 
expected release time is computed = max 
latency

● Difference between smaller and larger latency = 
jitter

> Runs with RT thread in a single processor 
partition and Init Time Compilation
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Response Time Benchmark (cont'd)
public void run(){
  for(int i = 0; i < iterations; i++) {
    Clock.getRealtimeClock().getTime(actualStartTimes[i]);
    waitForNextPeriod();
  }
}

Time
period

latency

RT thread
running

work
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Response Time Benchmark: Sample 
Result

Java RTS 2.1, NHRT/Serial GC on Solaris/quad-core 2.8Ghz Opteron
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Response Time: Load
> Non Real-Time garbage producer threads
> Load the CPUs, exercise the system scheduler
> Triggers GC cycles: observe GC pauses
> Plan to add other types of load: I/O, network
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Response Time Benchmark: Non Real-
Time GC

Java RTS 2.1, RTT/Serial GC/2GP on Solaris/quad-core 2.8Ghz Opteron
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Response Time Benchmark: Real-Time 
GC

Java RTS 2.1, RTT/RTGC/2GP on Solaris/quad-core 2.8Ghz Opteron
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Agenda
> Real Time Performance
> Response Time Benchmark
> Customer case study
> Summary
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Customer Case Study
> Lots of work in the financial services space

● Exchanges
● Investment banks
● Trading floors
● And so on...

> Most are message-processing applications
> Throughput is important, but so is latency
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Customer Case Study
> For example:

● Order requests from distributed clients
● Order execution
● Response sent back to client
● Important factors:

● Round-trip response time subject to quality of service 
agreement

● Requests per second
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Customer Case Study
> Architecture:

Client A
Client B

Client C

Client n. . .

Server
Server

Server. . .

Back end



30

Customer Case Study
The Goal
> Reduce latency
> Remove all outliers
> Maintain throughput as much as possible
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Customer Case Study
One Example
> Common Java SE issues:

● GC pauses
● Lack of thread priorities
● Lack of priority inversion control

> Let's examine a graph on Java SE...
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Slide Heading: 36pt
Subhead: 28pt
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Customer Case Study
Real-time Approach
> Common approach:

● Quantify memory requirements and allocation rate
● Identify time-critical code path
● Use javax.realtime.RealtimeThread (RTT)
● Apply appropriate priority to each RTT
● Methodical testing with careful measurement
● Use DTrace and TSV
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Customer Case Study
Real-time Approach, continued
> Some other considerations:

● Use the RTSJ clock API
● Possible RTGC tuning
● Processor sets and RTT binding
● Initialization-Time Compilation
● Possible use of critical reserved bytes

> Same application tuned for Java RTS...
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Slide Heading: 36pt
Subhead: 28pt
> All text is Arial
> Level One bullet point: 28pt

● Level Two bullet: 26pt
● Level Three: 22pt

● Level Four and subsequent: 18pt
> Text block is aligned to the left
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Customer Case Study
> Most satisfied with

● RTGC – removes GC interference
● Ability to measure and tune with Java RTS
● Control:

● Java RTS gives control to the developer for many run-
time factors

● Tools
● DTrace and TSV, in particular...
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The Thread Scheduling Visualizer (TSV):

> All text is Arial
> Level One bullet point: 28pt

● Level Two bullet: 26pt
● Level Three: 22pt

● Level Four and subsequent: 18pt
> Text block is aligned to the left
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Summary
> SE implementations can be tuned for low latency 

to some extent...
> … But can't offer guaranteed determinism.
> Need to balance throughput and 

determinism/latency
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Java RTS Book
> “Real-Time Java Programming: With Java RTS”

● By Eric J. Bruno and Greg Bollella
● http://my.safaribooksonline.com/9780137153626
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