
Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 2

Custom Static Code Analysis

Jan Lahoda

Software Developer, NetBeans

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to outline our general product direction. It is intended

for information purposes only, and may not be incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release,

and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 4

Motivation

 Big projects tend to have project-specific antipatterns

 In NetBeans, rather then (for Project p;):

p.getLookup().lookup(ProjectInformation.class)

 One should do:
ProjectUtils.getProjectInfo(p)

 Is there a way to guard against the anti-patterns?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 5

Custom Static Code Analysis

 There is: use NetBeans’ language for declarative refactorings?

– Can use just the “find” part to implement code analysis

– Rule:
$prj.getLookup().lookup(ProjectInformation.class)

 :: $prj instanceof Project

=> ProjectUtils.getProjectInfo($prj);;

 How to check violations?

– Netbeans shows them in the editor&Source/Inspect…

– Why not check for them also during continuous build?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 6

Standalone runner

 “Standalone” runner for the custom rules:

https://bitbucket.org/jlahoda/jackpot30/wiki/StandaloneJackpot

 Can also run the standard NetBeans warnings (hints)

 Can even perform the changes

 Contains bindings to ant and maven

 Still work in progress

https://bitbucket.org/jlahoda/jackpot30/wiki/StandaloneJackpot

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 7

Custom Declarative Refactorings Language

 Allows to define refactorings (almost) declaratively

 Custom Java-like DSL

 Makes API/structure/relationship changes much easier

 Can check for antipatterns

 Can also be used to ask questions like

How many clients are calling this method (in a specified context)?

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 8

Custom Declarative Refactorings Language

 Project Jackpot: founded 2000 to improve IDEs and the way devs

develop (by Tom Ball, Michael Van De Vanter, James Gosling)

 Incl. code transformation engine

– Structure/AST based

– Working prototype existed

– Transformations: in Java or a custom declarative language

 Its write model adopted by NetBeans in 2006 (NB 6.0)

 Declarative language for transformations revived for NetBeans IDE 7.1

project “Jackpot 3.0”

History

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 9

The Language

 Basic rule format:

 <source-pattern> :: <conditions>

 => <target-pattern> :: <conditions>

 => <target-pattern> :: <conditions>

 ;;

 Any number of such rules in a file

 Place the rule in a .hint file into META-INF/upgrade

File Format

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 10

Patterns

 Java expression, statement(s), class, variable, method

 Identifiers starting with $ represent variables: a tree node will be bound

to them: $1, $lock, etc.

 Identifiers starting and ending with $ consume any number of tree

nodes:

– java.util.Arrays.asList($param)

– java.util.Arrays.asList($params$)

Basics

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 11

Patterns

 A variable used multiple times: all must be the same

 $var = $var (“assignment to itself”)

 private int a, b;

 a = a;

 this.a = a;

 a = b;

Repeated Variables

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 12

Patterns

 Statement: $statement; (more: $statements$;)

 0 or 1: if ($cond) $then; else $else$;

 Modifiers: $mods$ $type$ $variableName;

 Multiple catches: try {} $catches$ finally {}

 More special forms for specific uses

Special Forms

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 13

Conditions

 Three types:

– Language – instanceof, otherwise

– Standard (predefined) – method invocations

– Custom

 Condition result can be negated (!)

 && works on condition results

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 14

Conditions

 $variable instanceof <type>

– True if expression bound to $variable of type <type>

 otherwise

– Valid only on fixes

– True when no other fix available for that rule

Language Conditions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 15

Conditions

 Like method invocations:

 hasModifier($variable, PRIVATE)

 Conditions for:

– Pattern matching (parentMatches, matchesAny, ...)

– Referred element inspection (hasModifier, elementKindMatches)

– Occurrence location (inClass, inPackage)

– Assorted checks (isNullLiteral, sourceVersionGE, referencedIn)

Standard Conditions

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 17

Demo – Jackpot 3.0 in
Hudson

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 18

See Also

 Much more details on the language in:

Custom Declarative Refactoring (TUT3702)

tomorrow, 3:00 PM, Hilton - Continental Ballroom 1/2/3

 Static Analysis with Javac Tutorial (TUT4285)

tomorrow, 12:30 PM, Hilton - Continental Ballroom 1/2/3

 Language description:

 http://wiki.netbeans.org/JavaDeclarativeHintsFormat

 Examples:

 https://bitbucket.org/jlahoda/jackpot30-demo-examples/

http://wiki.netbeans.org/JavaDeclarativeHintsFormat
http://wiki.netbeans.org/JavaDeclarativeHintsFormat
http://wiki.netbeans.org/JavaDeclarativeHintsFormat
http://wiki.netbeans.org/JavaDeclarativeHintsFormat
http://wiki.netbeans.org/JavaDeclarativeHintsFormat
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/
https://bitbucket.org/jlahoda/jackpot30-demo-examples/

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 19

Conclusion

 Use the NetBeans’ custom refactorings to check for antipatterns

 Can check for violations during continuous build

 Can also produce standard NetBeans warnings

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 20

Q&A

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. 21

