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The following is intended to outline our general product direction. It is intended  

for information purposes only, and may not be incorporated into any contract.  

It is not a commitment to deliver any material, code, or functionality, and should 

not be relied upon in making purchasing decisions. The development, release, 

and timing of any features or functionality described for Oracle’s products 

remains at the sole discretion of Oracle. 
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Motivation 

 Big projects tend to have project-specific antipatterns 

 In NetBeans, rather then (for Project p;): 

p.getLookup().lookup(ProjectInformation.class) 

 One should do: 
ProjectUtils.getProjectInfo(p) 

 Is there a way to guard against the anti-patterns? 
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Custom Static Code Analysis 

 There is: use NetBeans’ language for declarative refactorings? 

– Can use just the “find” part to implement code analysis 

– Rule: 
$prj.getLookup().lookup(ProjectInformation.class) 

 :: $prj instanceof Project 

=> ProjectUtils.getProjectInfo($prj);; 

 How to check violations? 

– Netbeans shows them in the editor&Source/Inspect… 

– Why not check for them also during continuous build? 
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Standalone runner 

 “Standalone” runner for the custom rules: 

https://bitbucket.org/jlahoda/jackpot30/wiki/StandaloneJackpot 

 Can also run the standard NetBeans warnings (hints) 

 Can even perform the changes 

 Contains bindings to ant and maven 

 Still work in progress 

https://bitbucket.org/jlahoda/jackpot30/wiki/StandaloneJackpot
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Custom Declarative Refactorings Language 

 Allows to define refactorings (almost) declaratively 

 Custom Java-like DSL 

 Makes API/structure/relationship changes much easier 

 Can check for antipatterns 

 Can also be used to ask questions like 

How many clients are calling this method (in a specified context)? 
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Custom Declarative Refactorings Language 

 Project Jackpot: founded 2000 to improve IDEs and the way devs 

develop (by Tom Ball, Michael Van De Vanter, James Gosling) 

 Incl. code transformation engine 

– Structure/AST based 

– Working prototype existed 

– Transformations: in Java or a custom declarative language 

 Its write model adopted by NetBeans in 2006 (NB 6.0) 

 Declarative language for transformations revived for NetBeans IDE 7.1 

project “Jackpot 3.0” 

 

 

History 
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The Language 

 Basic rule format: 

    <source-pattern> :: <conditions>  

 => <target-pattern> :: <conditions> 

 => <target-pattern> :: <conditions> 

 ;; 

 Any number of such rules in a file 

 Place the rule in a .hint file into META-INF/upgrade 

 

 

File Format 
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Patterns 

 Java expression, statement(s), class, variable, method 

 Identifiers starting with $ represent variables: a tree node will be bound 

to them: $1, $lock, etc. 

 Identifiers starting and ending with $ consume any number of tree 

nodes: 

– java.util.Arrays.asList($param) 

– java.util.Arrays.asList($params$) 

 

 

Basics 
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Patterns 

 A variable used multiple times: all must be the same 

 $var = $var (“assignment to itself”) 

 private int a, b; 

 a = a; 

 this.a = a; 

 a = b; 

 

 

 

Repeated Variables 
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Patterns 

 Statement: $statement; (more: $statements$;) 

 0 or 1: if ($cond) $then; else $else$; 

 Modifiers: $mods$ $type$ $variableName; 

 Multiple catches: try {} $catches$ finally {} 

 More special forms for specific uses 

 

 

Special Forms 
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Conditions 

 Three types: 

– Language – instanceof, otherwise 

– Standard (predefined) – method invocations 

– Custom  

 Condition result can be negated (!) 

 && works on condition results 
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Conditions 

 $variable instanceof <type> 

– True if expression bound to $variable of type <type> 

 otherwise 

– Valid only on fixes 

– True when no other fix available for that rule 

 

 

 

Language Conditions 
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Conditions 

 Like method invocations: 

 hasModifier($variable, PRIVATE) 

 Conditions for: 

– Pattern matching (parentMatches, matchesAny, ...) 

– Referred element inspection (hasModifier, elementKindMatches) 

– Occurrence location (inClass, inPackage) 

– Assorted checks (isNullLiteral, sourceVersionGE, referencedIn) 

 

 

Standard Conditions 
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Demo – Jackpot 3.0 in 
Hudson 
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See Also   

 Much more details on the language in: 

Custom Declarative Refactoring (TUT3702) 

tomorrow, 3:00 PM, Hilton - Continental Ballroom 1/2/3 

 Static Analysis with Javac Tutorial (TUT4285) 

tomorrow, 12:30 PM, Hilton - Continental Ballroom 1/2/3 

 Language description: 

 http://wiki.netbeans.org/JavaDeclarativeHintsFormat 

 Examples: 

 https://bitbucket.org/jlahoda/jackpot30-demo-examples/ 
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Conclusion 

 Use the NetBeans’ custom refactorings to check for antipatterns 

 Can check for violations during continuous build 

 Can also produce standard NetBeans warnings 
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Q&A 
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