
A Java-powered FIRST Robot

Noel Poore
FRC Team 1519

Mechanical Mayhem
noel.poore@oracle.com

The Team

The Game

l  Basketball
l  8” foam balls
l  Four hoops at each end

l  A robot must weigh less than 120lb
l  Size less than 38” x 28” x 60”
l  Each match is 3 robots against 3

l  15s autonomous
l  120s teleoperated

The Game

Balancing

Mechanical Mayhem 2012
l  Wide robot

l  takes up less space on bridge, easier to balance

l  8 pneumatic wheels
l  Traverse both bridge and barrier
l  Can hang over the end of the bridge

l  Harvest balls from both sides
l  Camera-controlled shooter with azimuth,

elevation and wheel speed control
l  Simple bridge tipper
l  Lots of sensors

Robot Software
l  Written in Java
l  Using WPILibJ on the robot

l  Open source library sponsored by WPI
l  Running IMP (Information Module Profile)

l  “Headless MIDP”

l  Using Java SE on the driver station
l  Running on a small laptop under Windows 7
l  We only ever used about 20% of the CPU

l  Field provides WiFi wireless network

Subsystems
l  Drivebase
l  Ball Harvester
l  Shooter
l  Bridge tipper
l  Autonomous
l  Camera
l  Define your own class – must extend library

Subsystem class

Buttons
l  The control inputs
l  Usually real buttons on a joystick or gamepad
l  Can be virtual buttons

l  If tilt sensor says we are tilted by > 15 degrees
l  If harvester motor current > 20A for >1s

l  Very easy to change or remap on the fly
l  Makes the drive team happy

l  Buttons cause Commands to be scheduled

Commands
public class DisabledOnlyJoystickButton extends Button {

 private GenericHID joystick;
 private int buttonNumber;
 private DriverStation ds;

 public DisabledOnlyJoystickButton(GenericHID joystick,

 int buttonNumber) {
 this.joystick = joystick;
 this.buttonNumber = buttonNumber;
 ds = DriverStation.getInstance();
 }

 public boolean get() {
 return joystick.getRawButton(buttonNumber) &&

 ds.isDisabled();
 }
}

Commands
l  Instructions to a subsystem to do something
l  CommandGroup allows you to create a

sequence of commands
l  We created 65 commands

l  Including debug and calibration commands
l  And Autonomous programs
l  Automatic and manual operation

l  Important to have a manual backup system
l  And have the drive team practice using it

Commands
public class SetTarget extends CommandBase {
 private int target;

 public SetTarget(int target) {
 requires(shooter);
 this.target = target;
 }

 // Called just before this Command runs the first time
 protected void initialize() {
 }

 // Called repeatedly when this Command is scheduled to run
 protected void execute() {
 shooter.setTarget(target);
 }

Commands
 // Make this return true when this Command no longer needs to run
 protected boolean isFinished() {
 return true;
 }

 // Called once after isFinished returns true
 protected void end() {
 }

 // Called when another command which requires one or more of the
 // same subsystems is scheduled to run
 protected void interrupted() {
 }
}

Shooter Targeting

l  The hoops have a rectangle of retro-reflective
tape above them

l  The robot illuminates this with green LEDs
l  Webcam video stream sent to the driver station
l  Video processed to find vision targets
l  Each frame processed independently
l  Candidate target coordinates identified
l  Target information sent back to the robot

Shooter Targeting

l  Robot receives target information (X, Y)
l  X value è adjust azimuth PID set point
l  Y value è a proxy for “how far”
l  Use linear regression to calculate desired

shooter elevation and wheel speed
l  Quintic polynomials
l  Thank you Wolfram Alpha!

l  Separate PID controls for elevation and wheel

Shooter Wheel Speed

Shooter Azimuth Control

l  Shooter position measured using an encoder
l  Camera X value converted to encoder offset
l  Desired shooter azimuth =

 current azimuth + delta from X value
l  Need to account for time lag
l  We keep an “azimuth history”

l  So we can look up what the “current” azimuth was
when the picture was taken

The original image

Processing the Images

l  Images are converted to HSV
l  Then a color threshold is applied to convert to

a binary image
l  Beware of cvInRangeS() upper threshold

l  This image has gaps because of the hoops

Processing the Images

Processing the Images

l  The image is then closed
l  Dilate then erode
l  Grow the white area then selectively shrink it again

l  This fills in most of the gaps
l  The rest of the gaps are dealt with later

Processing the Images

Processing the Images

l  Contour detection
l  Convert contours to polygons
l  Approximate the outline of the polygon

l  Use heuristics to complete broken outlines

Processing the Images

l  Keep polygons which have
l  Right size, # corners, angles and aspect ratio

l  Discard “inner” polygons
l  Did not have any problems with false positive

target recognition

Processing the Images

What the Drivers See

Shooter automatic mode

l  Shooter will track the target whenever visible
l  Operator can manually adjust azimuth
l  Soft and hard limit switches
l  Operator presses “Fire when ready” button
l  Robot will shoot when

l  Shooter on target
l  Target Y value within limits

l  Depends on which hoop

l  Robot more or less stationary

Match Video

Sensor Usage
l  Encoders

l  Drive wheels – drive straight and measure distance
l  Shooter wheels – PID control of wheel speed
l  Shooter hood – PID control of elevation
l  Azimuth – PID control for camera targeting

l  Heading gyro used for autonomous spins

l  Tilt

l  Gyro & 3-axis accelerometer
l  Use Kalman filter to reduce noise and eliminate gyro drift

l  Analog potentiometer

l  Bridge tipper position
l  Infra-red distance sensors to detect balls and stop harvester

Kalman Filter

l  Used to mix tilt gyro and accelerometer
readings to get a more reliable tilt reading for
the robot

l  Removes high frequency noise from the
accelerometer readings

l  Removes low frequency noise (drift) from the
gyro readings

l  Results in a much more reliable tilt reading
l  Important for automatic balancing

Automatic Balancing

l  Driver presses joystick button to initiate and
controls speed of robot up the bridge

l  Robot code monitors tilt to automatically
position the robot at the right balance point

l  Code will automatically move the robot back
(and forwards as necessary) to find the
balance point

l  Camera lights flash when bridge is balanced
l  Can rebalance if another robot moves

Bridge Tipper

l  Simple mechanism
l  Window motor moves arm, servo moves hook

to relieve stress on motor
l  Software control uses 6 stage state machine

l  To synchronize tipper position and servo-controlled
hold-down

l  Operator presses one button to deploy, a
second button to retract

l  Driver can also toggle bridge tipper when
necessary

Call for Action

l  If you have children, get them involved in
FIRST Lego League or FIRST Robotics
Competition

l  Get involved as a coach
l  Help find sponsors
l  Have fun teaching high school students how to

use Java

Commands
public class TipOurBridge extends CommandGroup {

 public TipOurBridge(int firstGoal, boolean gear) {

 addSequential(new AzOffset(-348));

 addSequential(new ChangeGear(Drive.HIGH_GEAR));

 addSequential(new SetTarget(firstGoal));

 addSequential(new WaitForShooterWheels(3.0));

 addSequential(new ShootBalls(2, 3.0));

 addSequential(new SpecialShot(Shooter.SPECIAL_CENTER_AZ));

 addSequential(new HarvesterOnOrOff(Harvester.ON));

 addSequential(new DriveStraight(Drive.HIGH_GEAR, -1.0, 7*12 + 9));

 if (gear != Drive.HIGH_GEAR) {

 addSequential(new ChangeGear(gear));

 }

 addSequential(new SpinBy(55, gear));

 addSequential(new BridgeTipperInOrOut(BridgeTipper.POS_DEPLOYED));

 addSequential(new WaitForBridgeTipper(BridgeTipper.DEPLOYED));

 addSequential(new DriveStraight(gear, -0.5, 4.0*12));

 addSequential(new WaitForBalls(3, 2.5, true));

 addSequential(new SetTarget(Shooter.TARGET_RIGHT_MID));

 addSequential(new DriveStraight(gear, 1.0, 3*12));

 addSequential(new BridgeTipperInOrOut(BridgeTipper.POS_RETRACTED));

 addSequential(new Delay(500));

 addSequential(new SpinBy(-30, gear));

 addSequential(new Shoot(10.0));

 }

