An Embedded
Service Platform for
Uninterruptible
Processing

Lessons Learned

Tim Biernat
Paul Schmirler

Rockwell
Autfomation

Agenda

* Industrial Automation
» Decisions, Decisions
— Which Java? What Container? Datastore?
* OSGi
 Embedded Database
 Demo

« Some Challenges
— Performance
— Flash Memory
— Hardening
— Troubleshooting

- Q&A

Introductions

Rockwell Automation
— 20,000 employees, $4.8 billion sales

— Automotive, Food & Beverage, Pharma, Material Handling, Mining,
Oil & Gas, Electronics, and more

— Components, motor drives, industrial control and information systems

* Tim Biernat
— Worked with General Dynamics, Motorola, IBM and SoftwareMentor
— Interests: java, distributed computing, real-time fault-tolerant systems

« Paul Schmirler
— Worked with eFunds, Eagle Technology
— Interests: mobile computing, cloud computing

Industrial Automation Primer

Many kinds of production processes
— Discrete (auto assembly)

— Batch (beer brewing)

— Continuous (metal production)

 Challenging Environments
— Hot, cold, dusty, wet, EM, G shock

« Safety Concerns

Manufacturing is extremely competitive
— Downtime unacceptable

* Long-lived systems
— 15 to 20+ years in service is not uncommon
— Maintenance, spares, support can be a real challenge
Where will my Linux kernel be 10 years from now?

Software in Industrial Automation

Growing role
— Visualizing, communicating, integrating, controlling, monitoring

— Historically dominated by MS tech: Windows OS, OPC (OLE for
Process Control), D/COM, VBA

— Desire to connect factory with enterprise

« Many different platforms
— Cloud, Virtual, PC, embedded (ARM, x86)
— Windows, Linux, RTOS

 Java is compelling
— 3Ps: Portable, Productive, Performant
— Large open source palette

- Java challenges

— Largish footprint for many embedded applications
— Need for fast response, deterministic execution
— High level of abstraction = isolated from hardware

Decisions: Which Java?

Requirements

— embedded, headless

— target multiple hardware architectures
— full SE (Standard Edition) APls

— performant as native code

— OpendDK, Oracle SE, Oracle Embedded, proprietary

» Discoveries
— OpendDK JIT still immature on ARM
— benchmarks indicated decent Oracle Embedded performance
— Oracle Embedded Java is JRE only, not JDK; client JVM only

Benchmarking

Desire to evaluate various hardware/JVM combinations
— X86, ARM
— OpendDK, Oracle SE, Embedded JREs

* Representative applications
— service provider

— embedded datastore
— IDE

« DaCapo (http://dacapobench.org/

external concurrency, multiple iterations, JVM warm up

=——SE Embedded 1.5.0u10
== SE 1.6u22 client

SE 1.6u22 server
=>=(0penJDK 1.6.0 client

=¢=0OpenJDK 1.6.0 server

=@-SE Embedded 1.6.0u21

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration N

ARM & x86 — IDE Bench

45000

40000 \

35000
30000
=—=ARM 600 1.6.0u10
25000
ARM 1000 1.6.0u10
ARM 600 1.6.0u21
20000 =>=ARM 1000 1.6.0u21
x86 1667 1.6.0u21
15000
10000
TN
5000
0

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration N

Decisions: Which Container?

* Requirements
— embeddable (lightweight, proven, manageable)
— modular deployment
— dynamic “hot” deploy, update; concurrent software versions
— Dependency Injection (DI) to minimize hardwiring, reduce coupling
— support for native code
* Options
— iPOJO, Guice, SpringDM, straight OSGi
 Discoveries
— SpringDM is feature full, well integrated DI support
* but fairly steep learning curve
— OSGi a good fit
* lightweight, mature and manageable
« mature implementations (using Equinox, Felix DI was incomplete)
 course-grained DI support, introduce full DI framework later

10

OSGi

* Modularity
— Bundle — Physical and logical unit of modularity
— Classloader model — Classloader per bundle
— Imports/Exports — Restricts visibility to public API
— ldentity — Bundle-SymbolicName + Bundle-Version
— Native code — Embedded in bundle / multi-platform
 Lifecycle
— Dynamic — Independent of JVM

— States — Installed, Resolved, Starting, Active, Stopping, Uninstalled
— Activators — Hook for lifecycle events / access to OSGi framework

* Services
— Decoupled, Dynamic, Pluggable

* Management Console

11

OSGi Lifecycle

|
install
update
(" INSTALLED H’eﬁes"
/
= = STARTING
2 &
_ 5 -
3 / . |
g RESOLVED ACTIVE
=
stop

uninstall

/
S(UNINSTALLED)

STOPPING

ref. OSGI Service Platform Release 4, The OSGi Alliance

12

OSGi Footprint

 Single OSGi JVM vs. multiple service provider JVMs
— shared Java code loaded once
— shared 3" party libraries loaded once
— shared native code loaded once
— additional one time OSGi runtime overhead: 2 - 3 MB

120.0

—=Service Processes

100.0 OSGi Host

80.0
60.0
40.0 —
20.0

0.0

13

H2 Database

« Small footprint (1MB jar), pure Java solution

« Capable with 16MB of heap

 Best performance in class (vs. Derby, HSQLDB, PostgreSQL)
» Well-tested, good support ecosystem

* Other features
— standard SQL support
— dual open source license
— fully transactional
— highly tunable (buffers, cache, sync)
— embedded and client-server modes
— user-defined functions and stored procedures (in Java!)
— built in full-text search or Lucerne support
— built in profiling and performance statistics
— engine-level encryption (2-3X slower)

14

]

Lu

interfaces]

]

]

Lu

implementations]

[database][messaging][logging] Bundles

0SGi (Equinox)

15

Cloud Architecture

;M =

Guwh Vebey O¥reed Expmetton.. | Towt | % Tk Petermance

Truck Performance

Generic Internet

End Users,
@ PC / Tablet /Phone Cloud Admins
Q * Receive alerts
Performance e Visualize and Analyze
Analysis Clients

T

{ } https / SSL

Rockwell Cloud Platform (Saa$) W

Core Services JSON Web Service Federated Security
Application Services Extensions Services
Presentation Services

[y Powered by
£ Windows Azure
- A - https / SSL T Tt
Monitoring Equipment outwarss ony Wired, WiFi, or 3G/4G
and Processes
— Small Footprint, runnable on
e PC
» e Controller
'S 2
-» e Miniature embedded Linux systems
‘ D&Q (e.g. credit card size)

Cloud Gateway with

Ll :‘W Store & Forward

emo - Cloud Gateway

ot

(=@ Fracturing

MGBryan

@ TypesOfTruck

% Trucks
ConsumableMasterList
Orders

Customers

82 Big Oil Corp.

8 FieldTrials Only

(-88 Small Oil LLC.

(-@8 Wolverine Construction
#-{3 Public

{1 System

17

Cloud Gateway

=2
Fracturing
) MGBryan
- TypesOffruck
¥ Trucks

-4l ConsumableMasterList
24, Orders
) Customers

@ Big Ol Corp.

+-@8 FieldTrials Only

-8 Small Oil LLC.

@ Wolverine Construction
#-{3 Public
(-{ System

0000 0oOO

8

§ 6% 0%

P2 %

v we e c3g

~19 13p22R23 €27
28

Cloud Gateway

=2
2 Fracturing
j MGBryan
@ TypesOfTruck
% Trucks
ConsumableMasterList
Orders
=@ Customers
+-@ Big il Corp.
+-@ FieldTrials Only
-8 Small Oil LLC.
+-@8 Wolverine Construction
#-{3 Public
(-{ System

0000 0oOO

A

ca..
"% 30 g

ro2R23 c27 0 -G

~*R28 C31 S7 |

CIP PCCC TAIP

(GPS)

Cloud Gateway

ConsumableMasterList
Orders
-8 Customers

+-@4 Big Oil Corp.

+-@ FieldTrials Only

-84 small Ol LLC.

3-8 Wolverine Construction
#-{3 Public
G- System

P2T we e .
19 |3p2R23 €27 RP-9

|

0000 0oOO

20

Cloud Gateway

=2
=@ Fracturing
=) j MGBryan
i @@ TypesOffruck
P g Trucks
ConsumableMasterList
Orders

HG)
=@ Customers

+-@4 Big Oil Corp.

+-@ FieldTrials Only

-84 small Ol LLC.

+-@8 Wolverine Construction

#-{3 Public
(-{ System

21

Provisioning the Cloud Gateway

=Er=
) 1> sebesce =
€ 5 C # [1521811420090 ® =
Ot Mot @ eeros Jo avence [J> seatonce () . B L 0 [] 25 e nare (3 oo e

Provisioning
Server

N

Component
Repository

Deployment
Administration

Metadata
Repository

Management

(1] Pegets

n
i)

4600

ci1 Bl

o |ic12
C1dpg

Apache Ace

* Management Agent

— Identification, Discovery, Scheduler, Deployment, Audit Logs
* Deployment Administration

— Versioned, Transactional, Deltas, Digital Signatures, Extensible
 Provisioning Server

— Maps components to targets

— Only stores metadata

« Component Repository
— OBR, Maven, anything reachable by URL
— Can be deployed separately from the server
— May be replicated

23

Challenges - Performance

Startup Time
— How to speed up OSGi initialization?
« Use bundle cache
» Deferred startup
» Concurrent startup: bundle activator threads
« Strict bundle loading faster than dynamic
— Jar consolidation

* Runtime
— Deterministic Response Time
* Impeded by periodic processing or DB transaction log
« Impacted by various DB housekeeping chores
— Limit use of JNI
* Managing Memory

— Consider more aggressively releasing heap to OS

24

Java Cipher Performance on ARM

12000
10000
8000
6000
M encrypt(us)
M decrypt (uS)
4000
2000
0 - - lll
(o] e} o0 O [o0] o] (o) (o] (e} o0 (e}
o~ wn (o} N (o] (g} N o~ wn (g} LN
< N by N < b o < o by By
%] (%) = Ny %] n n [Ye] Vo] < <
2 e £ £ 2 g g 2 S i 5
3 3 K < <
o° k) o
o o =
'_
SunJCE SunJCE SunJCE SunJCE SunJCE BC BC BC BC BC BC

H2 Encryption Performance

3500

3000

2500

2000 -

1500 -

1000 -

500 -

Create Read Update

¥ None

B AES

W XTEA

26

Challenges — Flash Memory

» Automation systems are long lived
* Flash memory wears out: limited # of write/erase cycles
* Write cycles must be considered

- Database
— updates
— Index generation
— transaction logs
— Housekeeping

« Swap

* Temp file systems
* Trace / log data
 Diagnostics

27

Challenges - Hardening

* How to protect Intellectual Property
* How to make it tamperproof

* How to handle secrets?
— Device must have access to keys when disconnected
— Hide in filesystem
— Hide in code
— Encrypt on dongle

 Build time techniques
— Identify critical components
— Use “Clean room” development
— Code signing, encryption
— Obfuscation
« Challenge for debugging

28

Code Obfuscation

 Desire to protect code and intellectual property

* Approaches
— Layout, Data, Control, Encryption

« Consequences
— Difficult to debug
— May execute more slowly, particularly with encryption

— Bytecode manipulation may introduce unintended behavior, as when a
dynamically loaded a class

— Engineering work must be performed to determine which classes must
be excluded from obfuscation.

— Additional build steps may be required to process code.

 ProGuard

— Flexible, open source obfuscator
— Also optimizes execution, shrinks jar footprint ~ 1/3
— Retracing file allows stack traces to be reconstructed

29

ProGuard jar sizing

X
X
X X
X X
X X X obfuscate

30

Challenges - Troubleshooting

 Embedded Java provides a JRE not a JDK
» Typical JDK diagnostic tools are unavailable on the target
—jmap, jps, jstat, etc.
* The JRE can support remote connection via JMX protocol
+ Attach VisualVM from remote workstation
— Note: run with same major Java version and arch
— Monitor memory & CPU
— Generate and analyze heapdumps
— Profiling (sampling)

31

VisualVM Monitoring

|#" VisualVM 1.3.2

_——

— —
- -

File Applications View Tools Window Help

=6 BE0E

[ppplications

s localhost:3333 = |

Z localhost:3333

Monitor

Uptime: 46 min 40 sec

CPU

CPU usage: 0.0%

Overview| k| Monitor | =] Threads | £ Sampler]

X | Heap | PermGen

GC activity: 0.0%

CPU Memory Classes Threads

[Perform GC H Heap Dump]

X

Size: 266,403,840 B
Max: 266,403,840 B

Used: 173,659,152 B

100%
200 MB 4
50%
l | 1 100 MB 4 [|
0% L—+ ' L 1 ' ' 0 Mg == : “, ! ! .
3:46 PM 3:48 PM 3:50 PM 3:52PM 3:54PM 3:56 3:46 PM 3:48 PM 3:50 PM 3:52PM 3:54PM 3:56
[CPU usage M GC activity [Heap size W Used heap
Classes X | Threads X
Total loaded: 3,347 Shared loaded: 0 Live: 56 Daemon: 36
Total unloaded: 29 Shared unloaded: 0 Live peak: 59 Total started: 102
60 4
3,000 s
40_
2,000 ﬁ’——l_ﬁ_’_
1,000 20+
01— : : : : : 0
1 3:46 PM 3:48 PM 3:50 PM 3:52PM 3:54PM 3:56 3:46 PM 3:48 PM 3:50 PM 3:52PM 3:54PM 3:56
[Total loaded classes M Shared loaded classes [Live threads B Daemon threads
T

32

VisualVM Heap Analysis

-

%" VisualVM 1.3.2

File Applications View Tools Window Help

(=S8 E W

i applications

L=

=3

& <Unknown Application> (pid 2484) sel
| 8 overview | [Monitor | (=] Threads | £ Sampler | © Profiler| & [heapdump] 04:57:42 PM x
Z <Unknown Application> (pid 2484)
Heap Dump
&L = ‘ [£ Classes © Instances (@ OQL Console
’ © Overview x || Q Inspect x
3 Basic info: “ || Find 205 biggest objects by retained size: =
Date taken: Tue Aug 16 16:57:42 CDT 2011
File: Class Name Retained Size
c:\temp\visualvm.dat\IocaIhost_2484\heapdump-1313531862381.hprof org.h2.store.PageStore#8 10,840,743
File size: 53.2 MB
org.h2.result.Row#269 9,990,144
Total bytes: 50,319,389 org.h2.value.Value[]#298 9,990,110
Igg: ;:‘lztassean;:315676 s34 org.h2.value.ValueBytes#11 9,990,079
Classloaders: 127 _ ||| byte[1#10235 9,990,063 | =
GC r(:;ts:fl,?t:’:s PR I org.h2.store.PageStore#2 355,685
Number of objects pending for finalization: 0
pe 9 org.h2.store.PageStore#7 343,481
=) environment: sun.net.www.protocol.jar.URDJarFile#1 343,392
0S: Windows 7 (6.1) Service Pack 1 org.h2.store.PageStore£6 334,674
Architecture: x86 32bit org.h2.store.PageStore#5 334,585
Java Home: C:\data\tools\jdk\x86\jre |9
_ . . org.h2.store.PageStore#4 334,585
JVM: Java HotSpot(TM) Client VM (20.1-b02, mixed mode, sharing)
1 org.h2.store.PageStore#1 329,960
System properties: org.h2.util.CacheLRU#8 262,200
Show System Properties org.h2.util.CachelRUZ7 262,200
v org.h2.util. CachelLRU#6 262,200 ~

33

VisualVM Profiling

File Applications View Tools Window Help

(=SB S
4 localhost:3333 x| D EE
| [8 overview | [Monitor | [Threads| &% Sampler ’

Z localhost:3333

Sampler

Sample: & cpu @ Memory Stop

Status: sampling inactive

[applications

CPU samples

O ‘ Snapshot Thread Dump
Hot Spots - Method Self time [%)] Self time Self time (CPU) +
org.h2.store.fs.FileObjectDisk.sync () 1 1252 ms (34.6%) 1252 ms -
org.h2.store.FileStore.write ()] 747 ms (20.7 747 ms ‘El
org.h2.store.FileStore.readFully () [] 634 ms (17.¢ 634 ms
org.h2.util.Utils.newBytes () [| 371 ms (10.3%) 371 ms
org.h2.store.FileLock.save () 0 292 ms (8. 292 ms
org.h2.value.ValueBytes.getNoCopy () | 134 ms (3 134 ms
org.h2.store.PageStore.createData () | 93.2ms (2 93.2 ms
org.h2.index.PageDatalLeaf.getRowALt () | 89.0 ms (2. 89.0 ms
org.h2.jdbc.JdbcConnection.<init> () 0.000 ms (0.000 ms
org.h2.engine.Engine.openSession () 0.000 ms 0.000 ms
org.h2.store.FileLock.run () 2816 ms 0.000 ms
org.h2.store.WriterThread.run () 1509 ms 0.000 ms
org.h2.store.PageStore.open () 0.000 ms 0.000 ms
org.h2.engine.Database.getPageStore () 0.000 ms 0.000ms ~
£ | [Method Name Filter] -

E—————————————.——.—.—————.——.——.—————————

34

More Troubleshooting

* Development
— Monitoring: memory leaks, GC
— Sampling / Profiling: hotspots, latencies

* Production
— Postmortem: system crashes, hangs

* Lots of troubleshooting tools available
— JVM cmd line options like -XX:+HeapDumpOnOutOfMemoryError
— JDK tools like hprof, jmap, jstack and jhat (not on Embedded JRE!)
— JConsole and VisualVM

— Native tools like dfrace (Solaris) and strace (Linux)

* Troubleshooting Guide for Java SE 6

— http://www.oracle.com/technetwork/java/javase/tsg-vm-149989.pdf

35

Troubleshooting Scenarios

Memory Utilization

-verbose:class displays classes loaded
-XX:+HeapDumpOnOutOfMemoryError generates a heap dump on
OOME

stack dump summarizes heap memory usage

heap analysis shows detailed memory usage, potential leaks
monitoring exhibits runtime memory allocation and GC behaviors

Garbage Collection

-verbose:gc displays GC statistics
monitoring exhibits runtime memory allocation and GC behaviors
heap analysis shows large instances counts and GC roots

Poor Performance

stack dump summarizes memory usage, indicating potential memory
utilization issues

monitoring exhibits runtime CPU usage, thread count & activity
monitoring exhibits runtime memory allocation and GC behaviors
stack dump indicates deadlocks

Hanging / Looping

stack dump indicates busy threads, deadlocks (may need to force
dump)
monitoring exhibits runtime CPU usage, thread count & activity

System Crash

examine application and Fatal Error logs for clues

look in filesystem working dir for stack/heap dumps

restart JVM with monitoring enabled

restart JVM with -XX:+HeapDumpOnOutOfMemoryError option
restart JVM with -XX:OnError executing script to assist w/ debugging

36

37

