

# An Embedded Service Platform for Uninterruptible Processing

Lessons Learned

Tim Biernat Paul Schmirler



### Agenda

- Industrial Automation
- Decisions, Decisions
  - Which Java? What Container? Datastore?
- OSGi
- Embedded Database
- Demo
- Some Challenges
  - Performance
  - Flash Memory
  - Hardening
  - Troubleshooting
- Q & A

### Introductions

#### **Rockwell Automation**

- 20,000 employees, \$4.8 billion sales
- \_
- Automotive, Food & Beverage, Pharma, Material Handling, Mining,
   Oil & Gas, Electronics, and more
- Components, motor drives, industrial control and information systems

#### Tim Biernat

- Worked with General Dynamics, Motorola, IBM and SoftwareMentor
- Interests: java, distributed computing, real-time fault-tolerant systems

#### Paul Schmirler

- Worked with eFunds, Eagle Technology
- Interests: mobile computing, cloud computing

### **Industrial Automation Primer**

#### Many kinds of production processes

- Discrete (auto assembly)
- Batch (beer brewing)
- Continuous (metal production)
- Challenging Environments
  - Hot, cold, dusty, wet, EM, G shock
- Safety Concerns

#### Manufacturing is extremely competitive

- Downtime unacceptable
- Long-lived systems
  - 15 to 20+ years in service is not uncommon
  - Maintenance, spares, support can be a real challenge Where will my Linux kernel be 10 years from now?

### Software in Industrial Automation

### Growing role

- Visualizing, communicating, integrating, controlling, monitoring
- Historically dominated by MS tech: Windows OS, OPC (OLE for Process Control), D/COM, VBA
- Desire to connect factory with enterprise
- Many different platforms
  - Cloud, Virtual, PC, embedded (ARM, x86)
  - Windows, Linux, RTOS
- Java is compelling
  - 3Ps: Portable, Productive, Performant
  - Large open source palette
- Java challenges
  - Largish footprint for many embedded applications
  - Need for fast response, deterministic execution
  - High level of abstraction → isolated from hardware

### **Decisions: Which Java?**

#### Requirements

- embedded, headless
- target multiple hardware architectures
- full SE (Standard Edition) APIs
- performant as native code

•

- OpenJDK, Oracle SE, Oracle Embedded, proprietary
- Discoveries
  - OpenJDK JIT still immature on ARM
  - benchmarks indicated decent Oracle Embedded performance
  - Oracle Embedded Java is JRE only, not JDK; client JVM only

## **Benchmarking**

#### Desire to evaluate various hardware/JVM combinations

- X86, ARM
- OpenJDK, Oracle SE, Embedded JREs
- Representative applications
  - service provider
  - embedded datastore
  - IDE
- DaCapo (<a href="http://dacapobench.org/">http://dacapobench.org/</a>

external concurrency, multiple iterations, JVM warm up

## x86 JVMs - IDE Bench



### ARM & x86 - IDE Bench



### **Decisions: Which Container?**

#### Requirements

- embeddable (lightweight, proven, manageable)
- modular deployment
- dynamic "hot" deploy, update; concurrent software versions
- Dependency Injection (DI) to minimize hardwiring, reduce coupling
- support for native code

#### Options

iPOJO, Guice, SpringDM, straight OSGi

#### Discoveries

- SpringDM is feature full, well integrated DI support
  - but fairly steep learning curve
- OSGi a good fit
  - lightweight, mature and manageable
  - mature implementations (using Equinox, Felix DI was incomplete)
  - course-grained DI support, introduce full DI framework later

### **OSGi**

#### Modularity

- Bundle Physical and logical unit of modularity
- Classloader model Classloader per bundle
- Imports/Exports Restricts visibility to public API
- Identity Bundle-SymbolicName + Bundle-Version
- Native code Embedded in bundle / multi-platform

#### Lifecycle

- Dynamic Independent of JVM
- States Installed, Resolved, Starting, Active, Stopping, Uninstalled
- Activators Hook for lifecycle events / access to OSGi framework

#### Services

- Decoupled, Dynamic, Pluggable
- Management Console

## **OSGi Llfecycle**



## **OSGi Footprint**

- Single OSGi JVM vs. multiple service provider JVMs
  - shared Java code loaded once
  - shared 3<sup>rd</sup> party libraries loaded once
  - shared native code loaded once
  - additional one time OSGi runtime overhead: 2 3 MB



#### **H2** Database

- Small footprint (1MB jar), pure Java solution
- Capable with 16MB of heap
- Best performance in class (vs. Derby, HSQLDB, PostgreSQL)
- Well-tested, good support ecosystem
- Other features
  - standard SQL support
  - dual open source license
  - fully transactional
  - highly tunable (buffers, cache, sync)
  - embedded and client-server modes
  - user-defined functions and stored procedures (in Java!)
  - built in full-text search or Lucerne support
  - built in profiling and performance statistics
  - engine-level encryption (2-3X slower)

### Stack



#### **Cloud Architecture**





# **Demo - Cloud Gateway**





























# **Provisioning the Cloud Gateway**







## **Apache Ace**

- Management Agent
  - Identification, Discovery, Scheduler, Deployment, Audit Logs
- Deployment Administration
  - Versioned, Transactional, Deltas, Digital Signatures, Extensible
- Provisioning Server
  - Maps components to targets
  - Only stores metadata
- Component Repository
  - OBR, Maven, anything reachable by URL
  - Can be deployed separately from the server
  - May be replicated

## **Challenges - Performance**

### Startup Time

- How to speed up OSGi initialization?
  - Use bundle cache
  - Deferred startup
  - Concurrent startup: bundle activator threads
  - Strict bundle loading faster than dynamic
- Jar consolidation
- Runtime
  - Deterministic Response Time
    - Impeded by periodic processing or DB transaction log
    - Impacted by various DB housekeeping chores
  - Limit use of JNI
- Managing Memory
  - Consider more aggressively releasing heap to OS

# Java Cipher Performance on ARM



# **H2 Encryption Performance**



## Challenges – Flash Memory

- Automation systems are long lived
- Flash memory wears out: limited # of write/erase cycles
- Write cycles must be considered
- Database
  - updates
  - index generation
  - transaction logs
  - Housekeeping
- Swap
- Temp file systems
- Trace / log data
- Diagnostics

## **Challenges - Hardening**

- How to protect Intellectual Property
- How to make it tamperproof
- How to handle secrets?
  - Device must have access to keys when disconnected
  - Hide in filesystem
  - Hide in code
  - Encrypt on dongle
- Build time techniques
  - Identify critical components
  - Use "Clean room" development
  - Code signing, encryption
  - Obfuscation
    - Challenge for debugging

### **Code Obfuscation**

- Desire to protect code and intellectual property
- Approaches
  - Layout, Data, Control, Encryption
- Consequences
  - Difficult to debug
  - May execute more slowly, particularly with encryption
  - Bytecode manipulation may introduce unintended behavior, as when a dynamically loaded a class
  - Engineering work must be performed to determine which classes must be excluded from obfuscation.
  - Additional build steps may be required to process code.

#### ProGuard

- Flexible, open source obfuscator
- Also optimizes execution, shrinks jar footprint ~ 1/3
- Retracing file allows stack traces to be reconstructed

# **ProGuard jar sizing**



# **Challenges - Troubleshooting**

- Embedded Java provides a JRE not a JDK
- Typical JDK diagnostic tools are unavailable on the target
  - -jmap, jps, jstat, etc.
- The JRE can support remote connection via JMX protocol
- Attach VisualVM from remote workstation
  - Note: run with same major Java version and arch
  - Monitor memory & CPU
  - Generate and analyze heapdumps
  - Profiling (sampling)

# **VisualVM Monitoring**



## VisualVM Heap Analysis



# VisualVM Profiling



## **More Troubleshooting**

- Development
  - Monitoring: memory leaks, GC
  - Sampling / Profiling: hotspots, latencies
- Production
  - Postmortem: system crashes, hangs
- Lots of troubleshooting tools available
  - JVM cmd line options like -XX:+HeapDumpOnOutOfMemoryError
  - JDK tools like hprof, jmap, jstack and jhat (not on Embedded JRE!)
  - JConsole and VisualVM
  - Native tools like dtrace (Solaris) and strace (Linux)
- Troubleshooting Guide for Java SE 6
  - http://www.oracle.com/technetwork/java/javase/tsg-vm-149989.pdf

# **Troubleshooting Scenarios**

| <b>Memory Utilization</b>               | -verbose:class displays classes loaded                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------|
|                                         | • -XX:+HeapDumpOnOutOfMemoryError generates a heap dump on                               |
|                                         | OOME                                                                                     |
|                                         | stack dump summarizes heap memory usage                                                  |
|                                         | heap analysis shows detailed memory usage, potential leaks                               |
|                                         | <ul> <li>monitoring exhibits runtime memory allocation and GC behaviors</li> </ul>       |
| Garbage Collection                      | -verbose:gc displays GC statistics                                                       |
|                                         | monitoring exhibits runtime memory allocation and GC behaviors                           |
|                                         | heap analysis shows large instances counts and GC roots                                  |
| Poor Performance                        | stack dump summarizes memory usage, indicating potential memory                          |
|                                         | utilization issues                                                                       |
|                                         | monitoring exhibits runtime CPU usage, thread count & activity                           |
|                                         | monitoring exhibits runtime memory allocation and GC behaviors                           |
|                                         | stack dump indicates deadlocks                                                           |
| Hanging / Looping                       | stack dump indicates busy threads, deadlocks (may need to force)                         |
|                                         | dump)                                                                                    |
|                                         | monitoring exhibits runtime CPU usage, thread count & activity                           |
| System Crash                            | examine application and Fatal Error logs for clues                                       |
|                                         | look in filesystem working dir for stack/heap dumps                                      |
|                                         | restart JVM with monitoring enabled                                                      |
|                                         | • restart JVM with -XX:+HeapDumpOnOutOfMemoryError option                                |
|                                         | <ul> <li>restart JVM with -XX:OnError executing script to assist w/ debugging</li> </ul> |
| t e e e e e e e e e e e e e e e e e e e |                                                                                          |