

Lessons Learned

Tim Biernat
Paul Schmirler

An Embedded
Service Platform for
Uninterruptible
Processing

1

Agenda

•  Industrial Automation
•  Decisions, Decisions

– Which Java? What Container? Datastore?

•  OSGi
•  Embedded Database
•  Demo
•  Some Challenges

–  Performance
–  Flash Memory
– Hardening
–  Troubleshooting

•  Q & A Q & A

2

Introductions
Rockwell Automation Rockwell Automation
– –  20,000 employees, $4.8 billion sales 20,000 employees, $4.8 billion sales
– – HQ’d in Milwaukee since 1903, customers in 80 countries HQ’d in Milwaukee since 1903, customers in 80 countries
– –  Automotive, Food & Beverage, Pharma, Material Handling, Mining, Automotive, Food & Beverage, Pharma, Material Handling, Mining,

Oil & Gas, Electronics, and more Oil & Gas, Electronics, and more
– – Components, motor drives, industrial control and information systems Components, motor drives, industrial control and information systems

• •  Tim Biernat Tim Biernat
– – Worked with General Dynamics, Motorola, IBM and SoftwareMentor Worked with General Dynamics, Motorola, IBM and SoftwareMentor
– –  Interests: java, distributed computing, real-time fault-tolerant systems Interests: java, distributed computing, real-time fault-tolerant systems

• •  Paul Schmirler Paul Schmirler
– – Worked with eFunds, Eagle Technology Worked with eFunds, Eagle Technology
– –  Interests: mobile computing, cloud computing Interests: mobile computing, cloud computing

3

Industrial Automation Primer
Many kinds of production processes
– Discrete (auto assembly)
–  Batch (beer brewing)
– Continuous (metal production)

•  Challenging Environments
– Hot, cold, dusty, wet, EM, G shock

•  Safety Concerns
•  Security Issues (heard of Stuxnet?)
•  Manufacturing is extremely competitive

– Downtime unacceptable

•  Long-lived systems
–  15 to 20+ years in service is not uncommon
– Maintenance, spares, support can be a real challenge

Where will my Linux kernel be 10 years from now? Where will my Linux kernel be 10 years from now?

4

Software in Industrial Automation
Growing role Growing role
– –  Visualizing, communicating, integrating, controlling, monitoring Visualizing, communicating, integrating, controlling, monitoring
– – Historically dominated by MS tech: Windows OS, OPC (OLE for Historically dominated by MS tech: Windows OS, OPC (OLE for

Process Control), D/COM, VBA Process Control), D/COM, VBA
– – Desire to connect factory with enterprise Desire to connect factory with enterprise

• •  Many different platforms Many different platforms
– – Cloud, Virtual, PC, embedded (ARM, x86) Cloud, Virtual, PC, embedded (ARM, x86)
– – Windows, Linux, RTOS Windows, Linux, RTOS

• •  Java is compelling Java is compelling
– –  3Ps: Portable, Productive, Performant 3Ps: Portable, Productive, Performant
– –  Large open source palette Large open source palette

• •  Java challenges Java challenges
– –  Largish footprint for many embedded applications Largish footprint for many embedded applications
– – Need for fast response, deterministic execution Need for fast response, deterministic execution
– – High level of abstraction è isolated from hardware
 5 5

Decisions: Which Java?
Requirements Requirements
– –  embedded, headless embedded, headless
– –  target multiple hardware architectures target multiple hardware architectures
– –  full SE (Standard Edition) APIs full SE (Standard Edition) APIs
– –  performant as native code performant as native code

• •  Options Options
– – OpenJDK, Oracle SE, Oracle Embedded, proprietary OpenJDK, Oracle SE, Oracle Embedded, proprietary

• •  Discoveries Discoveries
– – OpenJDK JIT still immature on ARM OpenJDK JIT still immature on ARM
– –  benchmarks indicated decent Oracle Embedded performance benchmarks indicated decent Oracle Embedded performance
– – Oracle Embedded Java is JRE only, not JDK; client JVM only Oracle Embedded Java is JRE only, not JDK; client JVM only

6

Benchmarking
Desire to evaluate various hardware/JVM combinations Desire to evaluate various hardware/JVM combinations
– –  X86, ARM X86, ARM
– – OpenJDK, Oracle SE, Embedded JREs OpenJDK, Oracle SE, Embedded JREs

• •  Representative applications Representative applications
– –  service provider service provider
– –  embedded datastore embedded datastore
– –  IDE IDE

• •  DaCapo (DaCapo (http://dacapobench.org/http://dacapobench.org/

external concurrency, multiple iterations, JVM warm up

7

x86 JVMs – IDE Bench

8

0

2000

4000

6000

8000

10000

12000

14000

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration N

SE Embedded 1.5.0u10

SE 1.6u22 client

SE 1.6u22 server

OpenJDK 1.6.0 client

OpenJDK 1.6.0 server

SE Embedded 1.6.0u21

ARM & x86 – IDE Bench

9

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

iteration 1 iteration 2 iteration 3 iteration 4 iteration 5 iteration N

ARM 600 1.6.0u10

ARM 1000 1.6.0u10

ARM 600 1.6.0u21

ARM 1000 1.6.0u21

x86 1667 1.6.0u21

Decisions: Which Container?
•  Requirements

–  embeddable (lightweight, proven, manageable)
– modular deployment
–  dynamic “hot” deploy, update; concurrent software versions
– Dependency Injection (DI) to minimize hardwiring, reduce coupling
–  support for native code

•  Options
–  iPOJO, Guice, SpringDM, straight OSGi

•  Discoveries
–  SpringDM is feature full, well integrated DI support

•  but fairly steep learning curve
– OSGi a good fit

•  lightweight, mature and manageable
•  mature implementations (using Equinox, Felix DI was incomplete)
•  course-grained DI support, introduce full DI framework later

10

OSGi
•  Modularity

–  Bundle – Physical and logical unit of modularity
–  Classloader model – Classloader per bundle
–  Imports/Exports – Restricts visibility to public API
–  Identity – Bundle-SymbolicName + Bundle-Version
–  Native code – Embedded in bundle / multi-platform

•  Lifecycle
–  Dynamic – Independent of JVM
–  States – Installed, Resolved, Starting, Active, Stopping, Uninstalled
–  Activators – Hook for lifecycle events / access to OSGi framework

•  Services
–  Decoupled, Dynamic, Pluggable

•  Management Console

11

OSGi LIfecycle

12

ref. OSGI Service Platform Release 4, The OSGi Alliance

•  Single OSGi JVM vs. multiple service provider JVMs
–  shared Java code loaded once
–  shared 3rd party libraries loaded once
–  shared native code loaded once
–  additional one time OSGi runtime overhead: 2 - 3 MB

OSGi Footprint

13

0.0

20.0

40.0

60.0

80.0

100.0

120.0

1 2 3 4 5 6 7 8 9

Service Processes

OSGi Host

H2 Database
•  Small footprint (1MB jar), pure Java solution
•  Capable with 16MB of heap
•  Best performance in class (vs. Derby, HSQLDB, PostgreSQL)
•  Well-tested, good support ecosystem
•  Other features

–  standard SQL support
–  dual open source license
–  fully transactional
–  highly tunable (buffers, cache, sync)
–  embedded and client-server modes
–  user-defined functions and stored procedures (in Java!)
–  built in full-text search or Lucerne support
–  built in profiling and performance statistics
–  engine-level encryption (2-3X slower)

14

Stack

15

ARM, x86
Linux

Java (SE Embedded)
OSGi (Equinox)

Bundles

ces interfaces implementations

logging database messaging

services

Cloud Architecture

Demo - Cloud Gateway

17

Cloud Gateway

18

Cloud Gateway

19

RESTful / JSON HTTPS / Basic Auth

CIP PCCC TAIP

(GPS)

Cloud Gateway

20

RESTful / JSON HTTPS / Basic Auth

CIP PCCC TAIP

(GPS)

Aggregation
&

Mapping

Cloud Gateway

21

RESTful / JSON HTTPS / Basic Auth

CIP PCCC TAIP

(GPS)

Aggregation
&

Mapping

Provisioning the Cloud Gateway

22

Apache Ace

23

•  Management Agent
–  Identification, Discovery, Scheduler, Deployment, Audit Logs

•  Deployment Administration
–  Versioned, Transactional, Deltas, Digital Signatures, Extensible

•  Provisioning Server
– Maps components to targets
– Only stores metadata

•  Component Repository
– OBR, Maven, anything reachable by URL
– Can be deployed separately from the server
– May be replicated

Challenges - Performance
Startup Time Startup Time
– – How to speed up OSGi initialization? How to speed up OSGi initialization?

• •  Use bundle cache Use bundle cache
• •  Deferred startup Deferred startup
• •  Concurrent startup: bundle activator threads Concurrent startup: bundle activator threads
• •  Strict bundle loading faster than dynamic Strict bundle loading faster than dynamic

– –  Jar consolidation Jar consolidation

• •  Runtime Runtime
– – Deterministic Response Time Deterministic Response Time

• •  Impeded by periodic processing or DB transaction log Impeded by periodic processing or DB transaction log
• •  Impacted by various DB housekeeping chores Impacted by various DB housekeeping chores

– –  Limit use of JNI Limit use of JNI

• •  Managing Memory Managing Memory
– – Consider more aggressively releasing heap to OS Consider more aggressively releasing heap to OS

24

Java Cipher Performance on ARM

25

0	

2000	

4000	

6000	

8000	

10000	

12000	

AE
S:
12
8	

AE
S:
25
6	

Bl
ow

fis
h:
12

8	

Bl
ow

fis
h:
25

6	

Tr
ip
le
DE

S:
16
8	

RC
5:
12
8	

RC
5:
25
6	

RC
6:
12
8	

RC
6:
25
6	

XT
EA

:1
28
	

XT
EA

:2
56
	

SunJCE	
 SunJCE	
 SunJCE	
 SunJCE	
 SunJCE	
 BC	
 BC	
 BC	
 BC	
 BC	
 BC	

encrypt(uS)	

decrypt	
 (uS)	

H2 Encryption Performance

26

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

Create	
 Read	
 Update	
 Delete	

None	

AES	

XTEA	

Challenges – Flash Memory
•  Automation systems are long lived
•  Flash memory wears out: limited # of write/erase cycles
•  Write cycles must be considered
•  Database

–  updates
–  index generation
–  transaction logs
– Housekeeping

•  Swap
•  Temp file systems
•  Trace / log data
•  Diagnostics

27

Challenges - Hardening
•  How to protect Intellectual Property
•  How to make it tamperproof
•  How to handle secrets?

– Device must have access to keys when disconnected
– Hide in filesystem
– Hide in code
–  Encrypt on dongle

•  Build time techniques
–  Identify critical components
– Use “Clean room” development
– Code signing, encryption
– Obfuscation

•  Challenge for debugging

28

Code Obfuscation
•  Desire to protect code and intellectual property
•  Approaches

–  Layout, Data, Control, Encryption

•  Consequences
– Difficult to debug
– May execute more slowly, particularly with encryption
–  Bytecode manipulation may introduce unintended behavior, as when a

dynamically loaded a class
–  Engineering work must be performed to determine which classes must

be excluded from obfuscation.
–  Additional build steps may be required to process code.

•  ProGuard
–  Flexible, open source obfuscator
–  Also optimizes execution, shrinks jar footprint ~ 1/3
– Retracing file allows stack traces to be reconstructed

29

ProGuard jar sizing

30

input jars library jars

shrink

optimize

obfuscate

output jars

reduction (%)	
 shrink	
 optimize	
 obfuscate	

8.8	
 X	
 	
 	

0*	
 	
 X	
 	

29.6	
 	
 	
 X	

11.7	
 X	
 X	
 	

34.9	
 X	
 	
 X	

36.2	
 X	
 X	
 X	

Challenges - Troubleshooting
•  Embedded Java provides a JRE not a JDK
•  Typical JDK diagnostic tools are unavailable on the target

– jmap, jps, jstat, etc.
•  The JRE can support remote connection via JMX protocol
•  Attach VisualVM from remote workstation

– Note: run with same major Java version and arch
– Monitor memory & CPU
– Generate and analyze heapdumps
– Profiling (sampling)

31

VisualVM Monitoring

32

VisualVM Heap Analysis

33

VisualVM Profiling

34

More Troubleshooting
•  Development

– Monitoring: memory leaks, GC
–  Sampling / Profiling: hotspots, latencies

•  Production
–  Postmortem: system crashes, hangs

•  Lots of troubleshooting tools available
–  JVM cmd line options like -XX:+HeapDumpOnOutOfMemoryError
–  JDK tools like hprof, jmap, jstack and jhat (not on Embedded JRE!)
–  JConsole and VisualVM
– Native tools like dtrace (Solaris) and strace (Linux)

•  Troubleshooting Guide for Java SE 6
–  http://www.oracle.com/technetwork/java/javase/tsg-vm-149989.pdf

35

36

Troubleshooting Scenarios

Memory Utilization •  -verbose:class displays classes loaded
•  -XX:+HeapDumpOnOutOfMemoryError generates a heap dump on

OOME
•  stack dump summarizes heap memory usage
•  heap analysis shows detailed memory usage, potential leaks
•  monitoring exhibits runtime memory allocation and GC behaviors

Garbage Collection •  -verbose:gc displays GC statistics
•  monitoring exhibits runtime memory allocation and GC behaviors
•  heap analysis shows large instances counts and GC roots

Poor Performance •  stack dump summarizes memory usage, indicating potential memory
utilization issues

•  monitoring exhibits runtime CPU usage, thread count & activity
•  monitoring exhibits runtime memory allocation and GC behaviors
•  stack dump indicates deadlocks

Hanging / Looping •  stack dump indicates busy threads, deadlocks (may need to force
dump)

•  monitoring exhibits runtime CPU usage, thread count & activity

System Crash •  examine application and Fatal Error logs for clues
•  look in filesystem working dir for stack/heap dumps
•  restart JVM with monitoring enabled
•  restart JVM with -XX:+HeapDumpOnOutOfMemoryError option
•  restart JVM with -XX:OnError executing script to assist w/ debugging

Q & A

37

