
© 2012 IBM Corporation

Java and Real-World Compatibility
CON5243

Tim Ellison
1st October 2012

2 © 2012 IBM Corporation

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE
DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT
PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE
OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR
SUPPLIERS AND/OR LICENSORS

3 © 2012 IBM Corporation

Introduction to the speaker

■ Over 20 years experience developing and
deploying Smalltalk and Java SDKs

■ Recent work focus:

– IBM JDK architecture

– Class library engineering

– Open source participation

■ My contact information:
tim_ellison@uk.ibm.com

Photo

mailto:baileyc@uk.ibm.com
mailto:baileyc@uk.ibm.com

4 © 2012 IBM Corporation

Agenda

■ Why is compatibility important, and what do we mean by “real world” compatibility?

■ Different types of compatibility : what are they? why are they important? how do we deal with them?

■ Protecting yourself from incompatible changes in Java.

■ Ways to find and address compatibility issues in your own code.

5 © 2012 IBM Corporation

The Java promise
■ Benefits of Java SE as a universal computing platform

– Leverage investment in secure, portable, high-performance, rich function runtime
– Available across a wide variety of heterogeneous environments
– Broad ecosystem of tools, books, conferences, developers, services, etc.

■ Java SE is specification based
– There are a number of different specifications

• Java Language Specification
• Java Virtual Machine Specification
• Java Platform API Specification
• ...etc

■ These are detailed specifications for implementers and
users, to

– ensure consistency in behavior across implementations
– describe how the language is interpreted, binaries are

combined, the memory model executed, etc

■ Java has evolved through collaboration on specifications
and competition on implementation

6 © 2012 IBM Corporation

The Java compatibility promise

■ As a Java developer you are awarded certain assurances by sticking to the rules
• often described as “write once run anywhere”

– Java is therefore the ‘platform’ on which you program
• you are not programming specifically for Linux or 64-bit or NFS or …

■ Implementers try to optimize the Java platform to exploit the ‘physical’ platform

■ Strong specifications give rise to a broad ecosystem
– multiple JVMs, multiple class libraries
– goals of different implementations

• portability, research, production deployment, size, development support, ...

■ The Technology Compatibility Kit (TCK)
– ensures that implementations comply with the specifications

■ Implementers use additional test suites to ensure implementation correctness, robustness,
performance, etc

“Except for timing dependencies or other non-determinisms and
given sufficient time and sufficient memory space, a program
written in the Java programming language should compute the
same result on all machines and in all implementations.”
 http://java.sun.com/docs/books/jls/third_edition/html/binaryComp.html#13.2

7 © 2012 IBM Corporation

Real-world compatibility
■ Real-world compatibility goes beyond the language, runtime, and specifications

■ An application's dependency on the Java platform goes beyond the specifications, e.g.:
– list of, and content of system properties
– command line options
– output format: version strings, verbose GC output, etc.
– ...etc.

■ WORA is the Java philosophy that gives you portability across implementations, platforms, etc.
– the code you wrote continues to work across different Java implementations different hardware

platforms, vendors, etc.
– This is one specific aspect of compatibility
– WORA is viable for a subset of applications, typically migration help is required

■ Compatibility ensures the code you wrote continues to work as Java evolves
– you can pick up bug fixes and enhancements in the platform
– take advantage of security, performance, new places to run your code
– some compatibility trade-offs are made as the platform evolves
– there are a number of tricks and tips for ensuring compatibility and dealing with breakage

■ This talk will look at some areas and examples of intentional and unintentional compatibility breakages

8 © 2012 IBM Corporation

Types of Compatibility

■ Functional compatibility : does running your program have the same effect ?

■ Source compatibility : does your source code result in the same set of binaries ?

■ Binary compatibility : do your binaries successfully link to the new platform binaries ?

9 © 2012 IBM Corporation

Functional compatibility

■ The functional contract of Java is primarily defined by the specifications

■ Some aspects of an implementations behavior are intentionally omitted from the spec
– they are known or expected to behave differently in different implementations
– omission does not overly constrain the implementation for future evolution

■ Having application dependencies upon unspecified runtime behavior can lead to breakage
– For example,

• Hashing iteration order
• Walking the stack trace looking for a method
• Parsing message output from the launcher
• ...etc.

■ The platform is very good about preserving functional compatibility defined in the specifications
– it would be bad if programs compiled and ran on the new platform, but did something different!

■ When differences are found that are not compliant with the spec, either
– the implementation is modified to fit the spec – often chosen for new code
– the spec is changed to fit the implementation – often chosen for established code

10 © 2012 IBM Corporation

Functional changes in the platform are not uncommon
■ RFE 6693236: Verification of Version 51.0 Class Files

■ RFE 6463998: Spec for java.lang.Float.parseFloat(String) and parseDouble(String) Updated to Document Exception

■ RFE : java.lang.Character.isLowerCase/isUpperCase Methods Are Updated to Comply with the Specified Unicode Definition

■ RFE 5045147: Inserting an Invalid Element into a TreeMap Throws an NPE

■ RFE 5063507: Formatter.format() Now Throws FormatFlagsConversionMismatchException

■ RFE 6621689: The Behavior for Several java.nio.channels.DatagramChannel Methods have Changed

■ RFE 4640544: Updated Socket Channel Functionality

■ RFE 7042594: Spec for java.awt.Color Method Documents Potential Exception

■ RFE 6315717: The MouseEvent.getButton() method may return values outside of the [0-3] range

■ RFE 6802853: Invoking Windows.setBackground may result in an UnsupportedOperationException exception

■ RFE 7023011: Toolkit.getPrintJob(Frame, String, Properties) now throws NullPointerException

■ RFE 4714232: The sun.awt.exception.handler System Property has Been Replaced with Official API

■ RFE : Handling Certain Color Spaces, as Indicated in the JPEG Spec are Now Optional

■ RFE 4700857: Separation of User Locale and User Interface Locale

■ RFE 5108776: Reliable Event Handling has been Added to the JMX API

■ RFE Out-of-the-Box JMX Management Has a New Keyword for ReadWrite Access

■ … and more

11 © 2012 IBM Corporation

public class Parser {
 public static void main(String[] args) {
 System.out.println(Float.parseFloat(null));
 }
}

Exception in thread "main" java.lang.NullPointerException
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:989)
at java.lang.Float.parseFloat(Float.java:422)
at Parser.main(Parser.java:5)

Simple example

What is the problem here?

Specification

Application

Result

12 © 2012 IBM Corporation

public class Parser {
 public static void main(String[] args) {
 System.out.println(Float.parseFloat(null));
 }
}

Exception in thread "main" java.lang.NullPointerException
at sun.misc.FloatingDecimal.readJavaFormatString(FloatingDecimal.java:989)
at java.lang.Float.parseFloat(Float.java:422)
at Parser.main(Parser.java:5)

In this case, the decision was made
to change the spec to fit the
implementation.

Current behaviour is well established,
and not unreasonable.

Simply changing a comment can affect
compatibility!

13 © 2012 IBM Corporation

DatagramChannel's methods #send, #receive, and #connect behavior were
changed when invoked on an unbound socket. These methods used to return null, but
now do an implicit bind and continue...

To restore the previous behavior, the sun.nio.ch.bugLevel property can be set to the
value of "1.4", "1.5", or "1.6"

“If this channel's socket is not bound then this
method will first cause the socket to be bound to an
address that is assigned automatically, as if invoking
the bind method with a parameter of null.”

Further example

Specification enhanced to say:

Experience now shows the
original design choice was
poor, but fixing it is a 'breaking'
change.

14 © 2012 IBM Corporation

More subtle behavioural changes
■ Not all functional and behavioural changes are so clearly seen...

■ Side effects from changing the VM specification
– class file format changed in Java 5 to allow for class literals in the constant pool.
– so code such as

if (foo instanceof YourClass.class)
doesn’t cause YourClass to be loaded in Java 5.0 onwards

• maybe YourClass has a static intializer that does something (fails early etc) when loaded
• code compiled with 1.4.2 will still work, but show the old class init behavior

■ Side effects from optimizations
– simple optimizations by the class library developers or JIT developers may break your

assumptions
• eg. internal hashtable ordering breaks compatiblity of iteration ordering
• jitted code can re-arrange some variable read and store within the bounds of the memory

model

■ Side effects from differences in implementation
– Class.getName() returns an interned string vs. new string in Oracle's implementation- then it is

used in an identity hash table assuming it was interned later
– locks used and ordering of lock in class loading e.g. class loader lock -> deadlock

15 © 2012 IBM Corporation

Functional compatibility in the real world

■ Functional compatibility is tested using the technology compatibility test suite

■ Functional fidelity is limited to the claims made in the specifications

■ As the platform evolves functional compatibility breakages are dealt with by:
– Changing the implementation to match the spec
– Changing the spec to match the implementation
– Providing some backwards compatibility options

■ Changes to existing function are only considered at major platform release boundaries
– … and then only after careful consideration
– Highly unlikely in update and maintenance releases
– Reflects the 'cost' of moving onto new updates

■ Changes can be hard to spot and may result in different behavior only on edge-cases
– Requires extensive testing of the application to mitigate the effects

■ Resolution requires understanding the intent of the application

16 © 2012 IBM Corporation

Types of Compatibility

■ Functional compatibility : does running your program have the same effect ?

■ Source compatibility : does your source code result in the same set of binaries ?

■ Binary compatibility : do your binaries successfully link to the new platform binaries ?

17 © 2012 IBM Corporation

Source compatibility

■ Does your source code result in the 'same' set of binaries as the platform changes?

■ Most obviously, does the source still compile on the later versions of Java?
– language changes may invalidate previously acceptable programs
– may make previously invalid programs valid – but not such an interesting set

■ Main requirement is, if I compile this source again on a different/newer Java implementation does the
compiler resolve your application's name references to the same or equivalent things in the new
binary?

■ Why would that not happen?
– introduction of new language keywords (strictfp, assert, enum)
– introduction of new types may cause ambiguity where non existed in prior releases

18 © 2012 IBM Corporation

Simple example

java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn142sr1aifx-20060318
(142SR1a + 98226) (JIT enabled: jitc))
false

public class Parser {
 public static void main(String[] args) {
 boolean assert = args.length != 0;
 System.out.println(assert);
 }
}

19 © 2012 IBM Corporation

Compiling the same source on Java 5.0 ...

“assert” was a legal variable name in Java 1.4.2, but became a keyword of the
Java language in Java 5.0

20 © 2012 IBM Corporation

An example of naming issues in the JDK

import java.lang.reflect.*;
import java.net.*;
public class Parser {
 public static void main(String[] args) {
 System.out.println(Proxy.isProxyClass(Parser.class));
 }
}

java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn142sr1aifx-20060318
(142SR1a + 98226) (JIT enabled: jitc))
false

21 © 2012 IBM Corporation

Compiling the same source on Java 5.0 ...

A second type with the same name was introduced in Java 5.0.
This may happen in your application code too.

22 © 2012 IBM Corporation

Method overloading

import java.math.BigDecimal;
public class Parser {
 public static void main(String[] args) {
 System.out.println(new BigDecimal(1));
 }
}

Actual parameter
(int)1 undergoes
widening primitive
conversion

Matched constructor

23 © 2012 IBM Corporation

import java.math.BigDecimal;
public class Parser {
 public static void main(String[] args) {
 System.out.println(new BigDecimal(1));
 }
}

Adding a more specific
constructor means the same
program now compiles
against a different method...

Compiling the same source on Java 5.0 ...

24 © 2012 IBM Corporation

Source compatibility in the real world

■ Java's update releases will maintain source compatibility, but major releases may break source
compatibility with sufficient, considered justification

– General policy:
• maintenance releases dot-dot releases do not introduce new language features or APIs
• functionality and major releases are upwards but not downwards source compatible
• deprecated APIs are only there to support backwards compatibility, and programs are advised

to move off these APIs

■ Some code is reachable in the platform (e.g. com.sun.*) but does not form part of the Java platform
specification, so comes with no compatibility or WORA promises.

– looking ahead to modularity, these may be permanently hidden by module scope visibility

■ The same source may not compile correctly due to
– changes to the language
– changes to the set of types referrable during compilation

■ Some of these problems can be resolved by 'mechanical' transform of source code
– e.g. type and variable renaming

25 © 2012 IBM Corporation

Types of Compatibility

■ Functional compatibility : does running your program have the same effect ?

■ Source compatibility : does your source code result in the same set of binaries ?

■ Binary compatibility : do your binaries successfully link to the new platform binaries ?

26 © 2012 IBM Corporation

Binary compatibility

■ What assurances are given for your existing binary program files?

■ Maybe your applications are third-party libraries
– you want to ensure that new versions of your program are

drop-in replacements for the current version
– important to understand as it is often infeasible or impossible

to recompile the whole application stack

■ Java implementer: how can Java evolve and ensure we continue
to run the billions of lines of Java code out there?

■ Each Java version goal is to be upwards binary compatible with
earlier versions

– code compiled for Java 5 will work on Java 6 and Java 7 etc,
with caveats (to be discussed)

“A change to a type is binary compatible with (equivalently, does
not break binary compatibility with) pre-existing binaries if
pre-existing binaries that previously linked without error will
continue to link without error. “
http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html

27 © 2012 IBM Corporation

Binary file version loading compatibility

■ Tools like javac can emit specific class file format for different sources
– e.g., javac -target 1.4
– of course, your code must only use the APIs that are available in the earlier runtime...

• Use javac -source and -bootclasspath options

■ Byte code optimizers and obfuscators may produce class files that violate class file format spec

$ java Test
The java class could not be loaded. java.lang.UnsupportedClassVersionError: Test
(Unsupported major.minor version 50.0)

Java version Version accepted
1.0.2 45.0 → 45.3
1.1.x 45.0 → 45.66535
1.n 45 → (44+n).0 e.g. 1.6 45.0 -> 50.0

■ VM checks class file format generated by the compiler

28 © 2012 IBM Corporation

Evolving Java APIs in the platform and applications (while preserving linkage)

■ Some modifications are binary compatibility preserving
– Adding a new API package, type, field, method
– Adding an element to an annotation type with a default value
– Adding or deleting unchecked exceptions thrown
– Add, delete, or change static or instance initializers
– Change abstract classes to non-abstract classes
– Change final classes to non-final classes
– Change body of method or constructor
– Increase method access; that is, from protected access to public access
– ...and more

■ Others break binary compatibility
– Deleting an API package, type, field, method
– Changing a method name
– Changing the method return type
– Re-ordering type parameters
– Adding a public or protected method to an interface
– Changing a type from non-abstract to abstract
– Adding checked exceptions thrown
– ...and more

http://wiki.eclipse.org/Evolving_Java-based_APIs

29 © 2012 IBM Corporation

Evolving Java APIs

■ Some modifications are binary compatibility preserving
– Adding a new API package, type, field, method
– Adding an element to an annotation type with a default value
– Adding or deleting unchecked exceptions thrown
– Add, delete, or change static or instance initializers
– Change abstract classes to non-abstract classes
– Change final classes to non-final classes
– Change body of method or constructor
– Increase method access; that is, from protected access to public access
– ...and more

■ Others break binary compatibility
– Deleting an API package, type, field, method
– Changing a method name
– Changing the method return type
– Re-ordering type parameters
– Adding a public or protected method to an interface
– Changing a type from non-abstract to abstract
– Adding checked exceptions thrown
– ...and more

http://wiki.eclipse.org/Evolving_Java-based_APIs

Virtual extension methods proposed for Java 8

interface Collection<T> {
 ...
 void forEach(Block<T> block)
 default Collections.<T>forEach;
}

Allows interfaces to evolve while preserving binary compatibility.
Provides a default for implementing classes that do not
implement the extension method.

30 © 2012 IBM Corporation

Example: modest, considered, binary breaking changes

Path2D.Double was never intended to be overridden. The spec was changed in
Java 7.0 causing types that try to override to fail to link.

31 © 2012 IBM Corporation

Serialization compatibility

■ Serialization is used for object persistence and interchange (e.g. RMI)

■ The binary representation of a serialized object contains a serialVersionUID embodying a type version
identifier.

■ Classes writing and reading instance representations must be compatible
– If the class is Serializable then you must consider the impact of Class changes
– Even internal, private methods and fields may affect the compatibility of serialized objects

■ The specification tells you the list of compatible and incompatible changes
– See http://docs.oracle.com/javase/6/docs/platform/serialization/spec/version.html

■ General rule:
– Take control of the version identifier by specifying it explicitly

• private static final long serialVersionUID = 1L;
– Update the version identifier when you are no longer compatible

32 © 2012 IBM Corporation

Final thoughts...

33 © 2012 IBM Corporation

Evolving Java code safely

■ As an API producer you should consider the implications of changes on compatibility

■ As an API consumer there are steps you can take to minimize impact of JDK compatibility changes

■ API docs and compiler warnings are your friend

■ Addressing compatibility and complexity
– access to early builds in OpenJDK to help uncover issues
– forum for direct discussion on proposals with designers
– ability to submit fixes and workarounds, and get feedback on issues you may encounter
– not a place to ask for help with your application, this is platform issues

■ Modularity will be a real test of application compliance
– well-behaved applications will see benefits from a modular runtime
– poorly behaved applications will have to run in a compatibility mode

34 © 2012 IBM Corporation

IBM WebSphere Application Server Migration Toolkit

■ Free download

■ Contains rules covering functional,
source, and binary compatibility impact

■ Analyzes your source and offers advice
and quick fixes

websphere migration toolkit

35 © 2012 IBM Corporation

References

■ Get Products and Technologies:
– IBM Java Runtimes and SDKs:

• https://www.ibm.com/developerworks/java/jdk/
– IBM Monitoring and Diagnostic Tools for Java:

• https://www.ibm.com/developerworks/java/jdk/tools/
– IBM WebSphere Application Server Migration Toolkit

• http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/

■ Learn:
– IBM Java InfoCenter:

• http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp

■ Discuss:
– IBM Java Runtimes and SDKs Forum:

• http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

https://www.ibm.com/developerworks/java/jdk/
https://www.ibm.com/developerworks/java/jdk/tools/
http://www.ibm.com/developerworks/websphere/downloads/migtoolkit/
http://publib.boulder.ibm.com/infocenter/javasdk/v6r0/index.jsp
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=367&start=0

36 © 2012 IBM Corporation

Copyright and Trademarks

© IBM Corporation 2012. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright and trademark
information” page at URL: www.ibm.com/legal/copytrade.shtml

http://www.ibm.com/legal/copytrade.shtml

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

