

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Looking Under The Hood of Parallel
Streams with DTrace
Angelo Rajadurai Amit Hurvitz
Technology Lead Principal Engineer
ISV Engineering ISV Engineering

September 30, 2014

Oracle Confidential – Internal/Restricted/Highly Restricted

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement
The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Oracle Confidential – Internal/Restricted/Highly Restricted 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Agenda

DTrace – a quick overview

Java 8 Parallel Streams

JDTrace

Demo

Future Plans

1

2

3

4

5

Oracle Confidential – Internal/Restricted/Highly Restricted 5

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

DTrace – a quick overview

Watch Java 8 Parallel Streams

JDTrace

Demo

Future Plans

1

2

3

4

5

Oracle Confidential – Internal/Restricted/Highly Restricted 6

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What’s DTrace?

• Probably the most comprehensive monitoring tool...
• Dynamic instrumentation framework
• operating system and applications
• testing and production environments
• The power of DTrace was often described as a tool that “allows you to ask

arbitrary questions about what the system is doing, and get answers”

Oracle Confidential – Internal/Restricted/Highly Restricted 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

What’s DTrace? – cont.

• Zero performance impact when not in use
• Built for minimal impact when in use
• Completely safe; no way to cause panics, crashes, data corruption or

pathological performance degradation
• Powerful data management primitives eliminate need for most post-

processing

Oracle Confidential – Internal/Restricted/Highly Restricted 8

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DTrace – a quick overview

Description Which events we are interested in monitoring
Predicates (optional) When do we want to monitor the

events
Actions (optional) What do we want to do when the above

happens

D Language

Oracle Confidential – Internal/Restricted/Highly Restricted 9

probe description
 /predicate/
 {
 actions
 }

One liner
dtrace -n 'probe/predicate/{actions}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DTrace – a quick overview
Probes

Oracle Confidential – Internal/Restricted/Highly Restricted 10

• Programmable sensors (points of instrumentation) made available by
providers placed all over the Solaris system

• provider:module:function:name
• tcp:ip:tcp_send:entry
• Syscall:::
• Providers: syscall,io,pid,profile, hotspot, tcp, udp, jdtrace...
• Modules: nfs, zfs, cpc, …
• Names: entry,return

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DTrace – a quick overview
Predicates, Actions, Predefined Variables

Oracle Confidential – Internal/Restricted/Highly Restricted 11

• /cpu == 0/
– /execname == “date”/
– /ppid != 0 && arg0 != 0/

• Actions
– Commands separated by “;”
– trace(execname)
– printf(“%s %s %s”, execname, probefunc, copyinstr(arg0));

• Predefined Variables
– execname, probefunc, pid, ppid, cpu, timestamp, arg0, arg1, ...

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DTrace – an Example
Who wrote a string to any file?

Oracle Confidential – Internal/Restricted/Highly Restricted 12

cat method_wrote_this.d
syscall::write:entry
{
 str = copyinstr(arg1, arg2);
}

syscall::write:entry
/strstr(str, $$1) != NULL/
{
 printf("It's me, %s, pid %d, str=%s\n", execname, pid, str);
 jstack();
 exit(0);
}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DTrace – an Example (cont.)
Who wrote a string to any file?

Oracle Confidential – Internal/Restricted/Highly Restricted 13

./method_wrote_this.d foo
It's me, java, pid 672, str=foo

 libc.so.1`__write+0x8
 libjava.so`handleWrite+0x10
 libjava.so`writeBytes+0x1b8
 libjava.so`Java_java_io_FileOutputStream_writeBytes+0x48
 java/io/FileOutputStream.writeBytes([BIIZ)V*
 java/io/BufferedOutputStream.flush()V*
 java/io/PrintStream.write([BII)V*
 sun/nio/cs/StreamEncoder.writeBytes()V*
 sun/nio/cs/StreamEncoder.flushBuffer()V*
 java/io/PrintStream.write(Ljava/lang/String;)V*
 simpleloop/SimpleLoop.doo()V*
 simpleloop/SimpleLoop.coo()V*
 simpleloop/SimpleLoop.boo()V*
 simpleloop/SimpleLoop.aoo()V*
 simpleloop/SimpleLoop.main([Ljava/lang/String;)V
 StubRoutines (1)

libjvm.so`__1cJJavaCallsLcall_helper6FpnJJavaValue_pnMmethodHandle_pnRJavaCallArguments_pnG
Thread__v_+0xa50
 libjvm.so`jni_CallStaticVoidMethod+0x908
 libjli.so`JavaMain+0x770
 libc.so.1`_lwp_start

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DEMO
Basic DTrace

Oracle Confidential – Internal/Restricted/Highly Restricted 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

DTrace Providers

Oracle Confidential – Internal/Restricted/Highly Restricted 15

cpc
HW counters

fbt
HW counters

pfuinfo
HW counters

io
disk operation

lockstat
Lock statistics

mib
MIB counters

profile
Time-base
interuppt firing

sched
CPU scheduing

syscall
System calls

sysinfo
Kstat sys field
statistics

vminfo
Kstat sys field
statistics

pid
User processes

plockstat
User-level
synchronization

proc
Process life
cycle

perl
Perl scripts
tracing

ip
Ip provider

iscsi
Iscsi provider

nfsv3
Nfsv3 provider

nfsv4
Nfsv3 provider

srp
Srp provider

tcp
Tcp provider

udp
Udp provider

dtrace
Begin/end/error

sdt
User probes

hotspot
JVM probes

• And You can create your own with SDT/JSDT

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Hotspot Built-In Probes

Oracle Confidential – Internal/Restricted/Highly Restricted 16

• vm-init-begin, vm-init-end, vm-shutdown
• thread-start, thread-end
• class-loaded, class-unloaded
• gc-begin, gc-end, mem-pool-gc-begin, mem-pool-gc-end
• method-compile-begin, method-compile-end
• compiled-method-load, compiled-method-unload

monitor-contended-enter, monitor-contended-entered, monitor-contended-
exit, monitor-wait, monitor-waited, monitor-notify, monitor-notifyAll
method-entry, method-return
object-alloc

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Hotspot Built-In Probes

Oracle Confidential – Internal/Restricted/Highly Restricted 17

• Probes are in JVM
• So very useful for looking at JVM
• Not very useful for looking into Java code
• Overhead can be non-trivial
• Method invocation tracing has high overhead
• Solutions

– Use Byte Code instrumentation – tools like BTrace
– Java 7 and later has ways to instrument Java Apps to add probes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

Dtrace – a quick overview

Java 8 Parallel Streams

JDTrace

Demo

Future Plans

1

2

3

4

5

Oracle Confidential – Internal/Restricted/Highly Restricted 18

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 19

Long get occurencesNumber() {
 List<Document>dlist = AllDocuments.getList();
 dlist.parallelStream()
 .mapToLong(doc -> occurrencesCount(doc, searchedWord))
 .sum();
}

Java 8 Parallel Streams

Generate a parallel
stream

Call occrencesCount()
for each element
element

Map each result to long

Generate a parallel
stream

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

Dtrace – a quick overview

Watch Java 8 Parallel Streams

JDTrace

Demo

Future Plans

1

2

3

4

5

Oracle Confidential – Internal/Restricted/Highly Restricted 21

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JDTrace
Introduction

Oracle Confidential – Internal/Restricted/Highly Restricted 22

• Java Method entry/return probes, line number probes, call probes
– jdtrace:className:methodName:entry {}
– jdtrace:className:methodName:lineNumber {}
– jdtrace:className:methodName:callMethodName {}

• Zero impact when not activated
• Minimal impact when activated

– Probe firing is instrumented in the target process when activated, deinstrumented
when deactivated

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JDTrace

Oracle Confidential – Internal/Restricted/Highly Restricted 23

• Implemented by:
– Java Statically Defined Probes (JSDT)

• Java API for firing DTrace probes

– Java Byte Code Instrumentation and Attach API
• Uses ASM for byte code manipulations

– No Prior Setting to the Target Application is Required
• Just Java 7 or higher

– Wraps Around dtrace
• Takes same flags
• Just instrument probe calls and invokes dtrace
• Cleans instrumentation at the end

Introduction

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 24

JDTrace – an Example

cat method_time.d
jsdt$target:simpleloop.SimpleLoop:foo:entry
/pid == $target/
{
 self->starttime = timestamp;
}

jsdt$target:simpleloop.SimpleLoop:foo:return
/self->starttime/
{
 @total[“total time(ns):”] = sum(timestamp - self->starttime);
 self->starttime = 0;
}

jdtrace –s method_time.d –p process-id
 total time(ns): 6001590233

Get method execution time

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 25

JDTrace – an Example

static int counter == 0;

private static void foo() {
 System.out.println("foo");
 try {
 Thread.sleep((counter++ % 10) == 0 ? 1000 : 0);
 } catch (InterruptedException ex) {
 Logger.getLogger(SimpleLoop.class.getName()).log(Level.SEVERE, null, ex);
 }
 goo();
}

Consider this foo() method:

1/10 of the calls should sleep for a second

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 26

JDTrace - example

cat method_time.d
 …
 /* @total[“total time:”] = sum(timestamp - self->starttime); */
 @total["total time:"] = lquantize((timestamp - self->starttime) / 1000000, 0, 10000, 100);
…

jdtrace –s method_time.d –p process-id
distribution time:
value ------------- Distribution ------------- count
 < 0 | 0
 0 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 31
 100 | 0
 200 | 0
 300 | 0
 400 | 0
 500 | 0
 600 | 0
 700 | 0
 800 | 0
 900 | 0
 1000 |@@@@ 3
 1100 | 0

Get method execution time distribution

(time is in milliseconds)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 27

JDTrace - example

String[] wordsIn(String line) {
 return line.trim().split("(\\s|\\p{Punct})+");
}

Long occurrencesCount(Document document, String searchedWord) {
 long count = 0;
 for (String line : document.getLines()) {
 for (String word : wordsIn(line)) {
 if (searchedWord.equals(word)) {
 count = count + 1;
 }
 }
 }
 return count;
}

Real Parallelism Level

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 28

JDTrace - example

cat jmethod_on_cpu.d
BEGIN
{
 starttime = timestamp;
}

jsdt$target:wordcount.*.WordCounter:occurrencesCount:entry
{
 inmethod[tid] = 1;
 starttime = starttime ? starttime : timestamp;
}

jsdt$target:wordcount.*.WordCounter:occurrencesCount:return
{
 inmethod[tid] = 0;
}

profile-97
{
 @oncpu[pid == $target ? (inmethod[tid] ? "in method" : "other method") : "other process"] = count();
 @oncpu[“total polls”] = count();
}

END
{
 n_of_polls = (timestamp - starttime) * 97 / 1000000000;
 normalize(@oncpu, n_of_polls);
}

Real Parallelism Level – How much of my large machine does my app use?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 29

JDTrace - example

./jdtrace_3 -x jstackstrsize=2048 -s jmethod_on_cpu.d –p pid
 other method 8
 other process 74
 in method 161
 total polls 243

Real Parallelism Level – How Parallelized is the Core Method

Concurrent Running Statistic on the 256 HW Threads of an Oracle T5-2 Server

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 30

JDTrace - example

String[] wordsIn(String line) {
 String [] result;
 synchronized(this) {
 result = line.trim().split("(\\s|\\p{Punct})+");
 }
 return result;
}

Long occurrencesCount(Document document, String searchedWord) {
 long count = 0;
 for (String line : document.getLines()) {
 for (String word : wordsIn(line)) {
 if (searchedWord.equals(word)) {
 count = count + 1;
 }
 }
 }
 return count;
}

Real Parallelism Level – Now let’s add a scaling problem and run again

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 31

JDTrace - example

./jdtrace_3 -x jstackstrsize=2048 -s jmethod_on_cpu.d –p pid
 other method 0
 in method 1
 other process 250
 total polls 252

(previous good results:
 other method 8
 other process 74
 in method 161
 total polls 243
}

Real Parallelism Level – Run the jdtrace script again

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 32

DTrace - example

cat off-cpu.d
BEGIN
{
 start_timestamp = timestamp;
}

sched:::off-cpu
/pid == $target/
{
 self->ts = timestamp;
}

sched:::on-cpu
/self->ts && timestamp - self->ts < 5000000000/ /* 5 seconds wait threshold */
{
 @[jstack()] = sum(timestamp - self->ts);
}

END
{
 printf("elapsed time: %d\n", timestamp - start_timestamp);
 printa(@);
}

Another Way to Watch Locking/Waiting – Off CPU tracing

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 33

DTrace - example

…
wordcount_sync/WordCounter.wordsIn(Ljava/lang/String;)[Ljava/lang/String;*

wordcount_sync/WordCounter.occurrencesCount(Lwordcount_sync/Document;Ljava/lang/String;)Ljava/lang/Long;*
 java/util/stream/ReferencePipeline$5$1.accept(Ljava/lang/Object;)V*
 java/util/Spliterators$ArraySpliterator.forEachRemaining(Ljava/util/function/Consumer;)V*
 java/util/stream/AbstractPipeline.copyInto(Ljava/util/stream/Sink;Ljava/util/Spliterator;)V*
 java/util/stream/AbstractPipeline.wrapAndCopyInto(Ljava/util/stream/Sink;Ljava/util/Spliterator;)Ljava/util/stream/Sink;*
 java/util/stream/ReduceOps$ReduceTask.doLeaf()Ljava/lang/Object;*
 java/util/stream/AbstractTask.compute()V*
 java/util/concurrent/CountedCompleter.exec()Z*
 java/util/concurrent/ForkJoinTask.doExec()I*
 java/util/concurrent/ForkJoinPool.scan(Ljava/util/concurrent/ForkJoinPool$WorkQueue;I)I*
 java/util/concurrent/ForkJoinPool.runWorker(Ljava/util/concurrent/ForkJoinPool$WorkQueue;)V
…
 35908605737

A snippet from the output

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 35

DTrace - example
Off CPU tracing – What is my Application Thread Waiting for?

Use Flame Graph to Show Results

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 36

DTrace - example

cat off-cpu.d
BEGIN
{
 start_timestamp = timestamp;
}

sched:::off-cpu
/pid == $target/
{
 self->ts = timestamp;
}

sched:::on-cpu
/self->ts && timestamp - self->ts < 5000000/ /* 5 milliseconds wait threshold */
{
 @[jstack()] = sum(timestamp - self->ts);
}

END
{
 printf("elapsed time: %d\n", timestamp - start_timestamp);
 printa(@);
}

If we Reduce Wait Threshold to 5 Milliseconds

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 37

DTrace - example
We’ll get this

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 38

DTrace - example

cat off-cpu.d
BEGIN
{
 start_timestamp = timestamp;
}

sched:::off-cpu
/pid == $target/
{
 self->ts = timestamp;
}

sched:::on-cpu
{
 @[jstack()] = quantize(timestamp - self->ts);
}

END
{
 printf("elapsed time: %d\n", timestamp - start_timestamp);
 printa(@);
}

We can also get wait time distribution of each stack trace (a small change to the script)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 39

DTrace - example

…
wordcount_sync/WordCounter.wordsIn(Ljava/lang/String;)[Ljava/lang/String;*
 wordcount_sync/WordCounter.occurrencesCount(Lwordcount_sync/Document;Ljava/lang/String;)Ljava/lang/Long;
 wordcount_sync/WordCounter.lambda$countOccurrencesByPStreams$2(Ljava/lang/String;Lwordcount_sync/Document;)J
 wordcount_sync/WordCounter$$Lambda$2.applyAsLong(Ljava/lang/Object;)J
 java/util/stream/ReferencePipeline$5$1.accept(Ljava/lang/Object;)V
…
value ------------- Distribution ------------- count
 262144 | 0
 524288 |@@ 1
 1048576 | 0

libc.so.1`___lwp_cond_wait+0x4
 libc.so.1`_lwp_cond_timedwait+0x20
 libjvm.so`__1cCosNPlatformEventEpark6Ml_i_+0x254
 libjvm.so`__1cHMonitorFIWait6MpnGThread_l_i_+0x11c
 libjvm.so`__1cHMonitorEwait6Mblb_b_+0x2b4
 libjvm.so`__1cMCompileQdDueueDget6M_pnLCompileTask__+0x15c
 libjvm.so`__1cNCompileBrokerUcompiler_thread_loop6F_v_+0x258
 libjvm.so`__1cKJavaThreadRthread_main_inner6M_v_+0x8c
 libjvm.so`__1cKJavaThreadDrun6M_v_+0x400
 libjvm.so`java_start+0x35c
 libc.so.1`_lwp_start

 value ------------- Distribution ------------- count
4503599627370496 | 0
9007199254740992 |@@ 144
18014398509481984 | 0

We can also get wait time distribution of each stack trace (a small change to the script)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

Dtrace – a quick overview

Watch Java 8 Parallel Streams

JDTrace

Demo

Future Plans

1

2

3

4

5

Oracle Confidential – Internal/Restricted/Highly Restricted 40

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Parallel Streams Tracing – an Example
Actual Parallelism on a Massively Scaled Platform – Oracle T5-2

Oracle Confidential – Internal/Restricted/Highly Restricted 41

• Count Word Occurrences in Files (again):
– Parallel read

• listOfDocs.parallelStream().forEach(doc -> doc.readLines());

– Now assume we want to read look for word occurrences only on the end (last 10%) of
the files
• Looks like reading the files should be much quicker

– Using RandomAccessFile to start reading from the 9/10*fileLength position
• But…

Demo

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Parallel Streams Tracing – an Example
Actual Parallelism on a Massively Scaled Platform – Oracle T5-2

Oracle Confidential – Internal/Restricted/Highly Restricted 42

– Before:
 listOfDocs.parallelStream().forEach(doc -> doc.readLines());
 public void readLines() {
 …
 lines = new LinkedList<>();
 RandomAccessFile raf = new RandomAccessFile(file, "rw");
 raf.seek(raf.length() * 9 / 10);
 String line = line = raf.readLine();
 while (line != null) {
 lines.add(line);
 line = raf.readLine();
 }
 …
 }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Parallel Streams Tracing – an Example
Actual Parallelism on a Massively Scaled Platform – Oracle T5-2

Oracle Confidential – Internal/Restricted/Highly Restricted 43

– Before:
 listOfDocs.parallelStream().forEach(doc -> doc.readLines());
 public void readLines() {
 …
 lines = new LinkedList<>();
 RandomAccessFile raf = new RandomAccessFile(file, "rw");
 BufferedReader br = new BufferedReader(new FileReader(raf.getFD()));
 raf.seek(raf.length() * 9 / 10);
 String line = br.readLine();
 while (line != null) {
 lines.add(line);
 line = br.readLine();
 }
 …
 }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda with Highlight

Dtrace – a quick overview

Watch Java 8 Parallel Streams

JDTrace

Demo

Future Plans

1

2

3

4

5

Oracle Confidential – Internal/Restricted/Highly Restricted 44

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JDTrace – Plans
Want to help?

Oracle Confidential – Internal/Restricted/Highly Restricted 45

• JDTrace Project
– Maybe the name will change…
– A java.net project to come (soon)

• jdtrace Provider Probes:
– jdtrace$target:className:methodName:entry|return {}

• Already done

– jdtrace$target:className:methodName:lineNumber {}
– jdtrace$target:className:methodName:call_className:methodName {}
– Make method arguments visible to jdtrace actions

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

JDTrace Questions / Suggestions?

Oracle Confidential – Internal/Restricted/Highly Restricted 46

Email:
 Amit Hurvitz amit.hurvitz@oracle.com
 Angelo Rajadurai angelo.rajadurai@oracle.com

mailto:amit.hurvitz@oracle.com
mailto:angelo.rajadurai@oracle.com

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Thank You!

Oracle Confidential – Internal/Restricted/Highly Restricted 47

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | Oracle Confidential – Internal/Restricted/Highly Restricted 48

	Slide Number 1
	Slide Number 2
	Looking Under The Hood of Parallel�Streams with DTrace
	Slide Number 4
	Agenda
	Program Agenda with Highlight
	What’s DTrace?
	What’s DTrace? – cont.
	DTrace – a quick overview
	DTrace – a quick overview
	DTrace – a quick overview
	DTrace – an Example
	DTrace – an Example (cont.)
	DEMO
	DTrace Providers
	Hotspot Built-In Probes
	Hotspot Built-In Probes
	Program Agenda with Highlight
	Java 8 Parallel Streams
	Program Agenda with Highlight
	JDTrace
	JDTrace
	JDTrace – an Example
	JDTrace – an Example
	JDTrace - example
	JDTrace - example
	JDTrace - example
	JDTrace - example
	JDTrace - example
	JDTrace - example
	DTrace - example
	DTrace - example
	DTrace - example
	DTrace - example
	DTrace - example
	DTrace - example
	DTrace - example
	Program Agenda with Highlight
	Parallel Streams Tracing – an Example
	Parallel Streams Tracing – an Example
	Parallel Streams Tracing – an Example
	Program Agenda with Highlight
	JDTrace – Plans
	JDTrace Questions / Suggestions?
	Thank You!
	Slide Number 48
	Slide Number 49
	Slide Number 50

