
Neil Griffen - Software Architect, Liferay, Inc.

Martin Scott Nicklous. – Specification Lead, JSR 362 Portlet Specification 3.0, IBM Corp

29 September 2014

What’s New in Portlet 3.0
[BOF2210]

JSR 362 Portlet Specification 3.0

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED ENVIRONMENT. YOUR OWN
TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR INFRASTRUCTURE DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY,
WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE
RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

- CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS OR THEIR SUPPLIERS AND/OR
LICENSORS

2

3

Presenter: Scott Nicklous

 Joined IBM in 1984 as a software developer for projects in the financial sector
– Have held various roles: developer, architect, team lead, manager, consultant
– Lead OpenCard Framework effort – standardized Java framework for Smart Card access
– Security-related work in IBM Pervasive Computing Division

 Recent work focus:
– WebSphere Portal Development
– Manager responsible for portlet container & WSRP development
– Specification Lead for JSR 362 Portlet Specification 3.0

 My contact information:
– Scott.Nicklous@de.ibm.com

mailto:baileyc@uk.ibm.com
mailto:baileyc@uk.ibm.com

September 27, 2014

Presenter: Neil Griffin

 Software Architect, Liferay Inc.
 Liferay Faces Project Lead
 JSR 362 (Portlet 3.0) Expert Group Member
 JSR 344 (JSF 2.2) Expert Group Member
 Contributing Author: JSF Complete Reference

5

Agenda

 Introduction to Portlets
 JSR 362: Where we're at
 Portlet State / Parameter Handling Improvements
 Ajax Support
 Outlook

6

Introduction to Portlets

September 27, 2014

Portlet Standard

 The Portlet Specification is a JCP standard that defines requirements for portlet containers and
behavior of portlet applications

– JSR 168 – Portlet 1.0
– JSR 286 – Portlet 2.0
– JSR 362 – Portlet 3.0

September 27, 2014

Portlet Examples

September 27, 2014

Servlet Lifecycle

 Single phase associated with HTTP GET/POST/PUT/DELETE operations:

September 27, 2014

Portlet Lifecycle

 Multiple phases associated with HTTP GET/POST operations:

September 27, 2014

Portlet Lifecycle (Cont.)

HTTP GET

RENDER_PHASE

RESOURCE_PHASE

HTTP POST

ACTION_PHASE EVENT_PHASE RENDER_PHASE

RESOURCE_PHASE

September 27, 2014

IPC

 Inter-Portlet Communication (IPC) is a way of sharing data between two or more portlets
 Standard Mechanisms:

– Events IPC
– Public Render Parameters IPC

JSF
Portlet
Demo

13

JSR 362: Where we're at

14

JSR 362 Portlet Specification 3.0

 The JSR 362 Expert Group was formed in April 2013
– Participants: Apache Foundation, IBM, Liferay, Oracle, RedHat, Vaadin, Independents

 In accordance with the JCP process version 2.9, our work is public
– JCP page for JSR 362: http://www.jcp.org/en/jsr/detail?id=362
– Project web site: http://java.net/projects/portletspec3

• Interested parties can subscribe to an observers mailing list at the site
– JIRA Issue tracker: http://java.net/jira/browse/PORTLETSPEC3
– Portlet API working docs: http://msnicklous.github.io/portletspec3/apidocs/index.html

 The Portlet Specification 3.0 Reference Implementation
– Work began in 2014
– Apache Pluto subproject of Apache Portals project
– Volunteers welcome!

http://java.net/projects/portletspec3
http://msnicklous.github.io/portletspec3/apidocs/index.html

15

Status

 Discussed and accepted numerous small improvements / errata changes to the JSR 286 spec
– See JIRA issue tracker

 Adopted a proposal to support idea of portlet state in portlet API definitions
– Improves usability from developer point of view
– Clarifies use of parameter handling APIs

 Ajax Support
– Basic agreement on Portlet Hub JavaScript API
– JSdoc documentation of JavaScript API 1st draft complete
– Portlet Hub mockup 1st draft complete
– Implemented many Jasmine JavaScript test cases to verify mockup behavior

 Have begun work on the JSR 362 TCK – Apache Pluto project
 Ready to begin prototyping for portlet state & Ajax proposals

– JavaScript & Java APIs available for public review:
• http://msnicklous.github.io/portletspec3/apidocs/index.html

16

Portlet State -
API Usability Improvements

September 27, 2014

Idea of Portlet State
 Portlet State

– Consists of render parameters, portlet mode, & window state
– Render parameters may be either private or public
– Set during Action and Event processing
– Used during render phase to generate content
– Used during resource phase to serve resources (depending on cacheability)
– Stored on the URL (conceptually, at least)
– Enables bookmarking & back-button support

 Action Parameters
– Provided through ActionRequest to allow portlet to set up next render parameters
– May be set by the portlet on the Action URL
– May be provided by client through form submission

 Resource Parameters
– Provided through ResourceRequest to allow the portlet to discern between different resource requests
– Set by the portlet on the Resource URL

 So far, nothing new …
– Concept is implicitly defined by JSR 286 Portlet Specification 2.0
– Will be explicitly defined by JSR 362 Portlet Specification 3.0

September 27, 2014

Where's the Problem? - JSR 286 API
 The portlet state is implied

– Portlet request API designed to make portlets look like servlets
– From the point of view of the API, all parameters are just “parameters”
– Meaning of parameters must be interpreted by context (action, event, render, or resource request)

 Action processing
– No “official” idea of portlet state – all parameters are action parameters
– But often, developers must store render parameters on an action URL in order to add them again as render

parameters in the processAction method
– Real action parameters including form parameters must be separated out by code logic

 Resource serving
– Conceptually the idea of portlet state is present – there are render parameters and resource parameters
– However, the API defines only “parameters”
– Rule: if resource & render parameter have same name, resource parameter comes first in values array
– Danger of name clashes
– Must be handled by logic

 No common interface for parameter handling between URLs and Responses
– Render parameters, portlet mode, and window state have to be set on responses as well as on URLs
– However, there is no common interface, so that state handling code must be written twice

September 27, 2014

What's the Solution? - JSR 362 API

 The portlet state defined explicitly in the API
– PortletState object: render parameters, portlet mode, window state

• always present and is available from every portlet request
– MutablePortletState object allows state to be updated

• Available from portlet responses & URLs as appropriate
– REST paradigm: portlet state associated with URL

 Parameter handling
– Parameters are encapsulated in dedicated objects for better handling
– Appropriate mutable and non-mutable objects
– Clean, regular API for all types of parameters

 Common API for state handling on URLs and Responses
– Handling state within the portlet becomes more regular
– State handling code can be the same regardless of whether

• State is being set on a response for next render phase
• State is being set on a new URL during rendering

PortletState

getRenderParameters() : RenderParameters
getPortletMode() : PortletMode
getWindowState() : WindowState

MutablePortletState

getRenderParameters() : MutableRenderParameters
setPortletMode(PortletMode)
setWindowState(WindowState)

PortletParameters

getParameter(String) : String
getParameterNames() : Set<String>
getParameterValues(String) : String[]
isEmpty() : boolean
clone() : MutablePortletParameters

MutablePortletParameters

setParameter(String, String) : void
setParameter(String, String[]) : void
removeParameter(String) : void
set(PortletParameters) : void
clear() : void

September 27, 2014

What's the Solution? - JSR 362 API
 Action processing

– Action Parameters
• Separate from portlet state (render parameters)
• Can be set on the action URL explicitly
• Can be provided by client through form parameters

– Portlet state can be automatically added when action URL is created

 Resource serving
– Resource Parameters

• Separate from portlet state (render parameters)
• Can be set on the resource URL explicitly

– Portlet state added when resource URL created (like JSR286)

 Render URL
– Portlet state can be automatically added when render URL is created

 Separation of action & resource parameters from portlet state
– No possibility of parameter name clashes
– Improves clarity
– Makes API more intuitive

ActionRequest

getRenderParameters() : RenderParameters
getActionParameters() : ActionParameters

ResourceRequest

getRenderParameters() : RenderParameters
getResourceParameters() : ResourceParameters

ResourceURL
RenderParameters

ResourceParameters

ActionURL
RenderParameters

ActionParameters

September 27, 2014

What's the Solution? - JSR 362 API

 Public render parameters
– Handled in RenderParameters object
– Method for determining if a parameter is public
– But setting / removing public render parameter uses same

API as regular parameters

PortletParameters

getParameter(String) : String
getParameterNames() : Set<String>
getParameterValues(String) : String[]
isEmpty() : boolean
clone() : MutablePortletParameters

MutablePortletParameters

setParameter(String, String) : void
setParameter(String, String[]) : void
removeParameter(String) : void
set(PortletParameters) : void
clear() : void

RenderParameters

clone() : MutableRenderParameters
isPublic(String)

MutableRenderParameters

clearPrivate() : void
clearPublic() : void

22

Ajax Support

September 27, 2014

Ajax Support – Main Goals

 Background: JSR 286 added resource serving concept
– Enabled basic Ajax support by allowing portlets to retrieve content taking into account the portlet state
– But did not provide for portlets to change their state within an Ajax paradigm

 JSR 362 Portlet Specification 3.0 adds stateful Ajax support
– Portlets can update their public & private render parameters while remaining within an Ajax paradigm
– Portlets can perform an action (with HTTP POST method) while remaining within an Ajax paradigm
– Allow portlets to obtain resource URLs on the client that reflect the current page state

 JSR 362 defines a JavaScript API to accomplish these goals
– Provides for a JavaScript component that manages state for portlets on the page

September 27, 2014

Ajax Support – Main Goals

Portlet
Hub

Portal
Portlet
Client

 Terminology
– The Portlet Client is JavaScript code provided by the portlet that represents the portlet on the client.
– The Portlet Hub is JavaScript code running on the client.

• Communicates with both the Portal and the Portlet Client.
• Manages the portlet state (render params, portlet mode, window state) for all portlets on the page
• Part of the portal implementation; implementation is vendor specific.
• must implement the API methods described by JSR 362
• The goal of the Portlet Hub API is to define its external semantics while allowing each portal vendor

freedom to implement in the manner most suitable for the Portal implementation.
• Covered by TCK tests

– Communication between the Portal and its Portlet Hub implementation is unspecified and is vendor specific.

25

Portlet Client A Portal

Portlet Client B

Portlet Client C

Portlet Hub

Sequence:
1) The portlet retrieves markup as needed through 0 or more resource

requests
1) The portlet gets a resource URL for current portlet / page state
2) The portlet retrieves markup from the server

1.2.
serveResource
for Portlet A

1.2. Resource request

1.2. Resource response
1.1. createResourceUrl

Portlet Client obtains resource URL for current page / portlet
state in order to retrieve markup from the server. Free to
use any JS library to perform Ajax request.

Manages the
portlet state for all
portlets on the
page:

* Parameters
* Portlet Mode
* Window State

Scenario: Portlet retrieves data through resource request

26

Sequence:
1) Portlet A calls setPortletState with new render parameter values
2) The Portlet Hub calls onStateChange for the initiating portlet
3) The portlet retrieves data as needed through resource requests

1) The portlet gets a resource URL corresponding to the new portlet / page state
2) The portlet retrieves markup from the server

Portlet Client A Portal

Portlet Client B

Portlet Client C

Portlet Hub

1. setPortletState

2. onStateChange

3.2 Resource request

3.2 Resource response
3.1 createResourceUrl

Moves the portlet to a new navigational state by
changing private render parameters. Example: view
different tab or new page of data within portlet. Affects
only a single portlet.

Manages the
portlet state for all
portlets on the
page:

* Parameters
* Portlet Mode
* Window State

3.2.
serveResource
for Portlet A

Set portlet state – only private render parameters

27

Sequence:
1) Portlet A calls setPortletState with new PRP values
2) The Portlet Hub calls onStateChange for each affected portlet (A&B)
3) Each affected portlet retrieves resource URLs from the hub as needed
4) Each affected portlet retrieves markup as needed

Portlet Client A Portal

Portlet Client B

Portlet Client C

Portlet Hub

1. setPortletState

2. onStateChange

2. onStateChange

4. Resource request

4. Resource response
3. createResourceUrl

3. createResourceUrl

4. Resource request

4. Resource response

setPortletState with PRPs acts like a simple eventing
mechanism, since other affected portlets on the page are
updated with the new PRP values.

Manages the
portlet state for all
portlets on the
page:

* Parameters
* Portlet Mode
* Window State

4. serveResource
for Portlet A

4. serveResource
for Portlet B

Set portlet state with public render parameters

28

Sequence:
1) Portlet A initiates an Ajax action by calling the P.H. action method.
2) Portlet Hub transmits the request to the portal
3) On the server, the portal

1) Executes the Action & Event phases for all portlets on the page
2) Generates the resulting new page state and transmits it to the Portlet Hub

4) The Portlet Hub decodes the new page state and calls onStateChange for each affected portlet (A&B)
5) Each affected portlet retrieves a resource URL from the hub
6) Each affected portlet retrieves markup as needed

Portlet Client A Portal

Portlet Client B

Portlet Client C

Portlet Hub
2. Ajax action request

3.2 Ajax action
response containing new
page state

1. action

4. onStateChange

4. onStateChange

6. Resource request

6. Resource response
5. createResourceUrl

5.createResourceUrl
6. Resource request

6. Resource response

Basic idea is to allow an action request to be executed
within the Ajax paradigm.

Manages the
portlet state for all
portlets on the
page:

* Parameters
* Portlet Mode
* Window State

6. serveResource for
Portlet B

6. serveResource for
Portlet A

3.1 Perform standard
action processing for
Portlet A.

3.2 Generate updated
page state. Pass
page state back to
Portlet Hub

3.1 Execute Event
Phase if portlet fires
event.

Action Processing Sequence

29

Sequence:
1) Portlet A starts a partial action, obtaining P.A. URL & update page state callback
2) Portlet A initiates partial action through JSF.js module
3) On the server, the Portlet Conainer:

1) Drives the Action phase for portlet A, allowing events & parameter updates
2) Drives the Event Phase as req'd.
3) Generates new page state & passes it to Portlet A serveResource via reserved parameter.
4) Portlet A generates content including page state and transmits it to jsf.js FW code

4) Jsf.js handles the response, passing response data & state info to Portlet A
5) Portlet A updates the Portlet Hub with the new page state data
6) The Portlet Hub decodes the state data, calls onStateChange for affected portlets

Portlet Client A
(JSF)

Portal2. Partial action req

Portlet Client B

Portlet Client C

JSF Ajax Support
(jsf.js)

JSF
portlet
bridge
Ajax Portlet Hub

3.1 Perform standard
action processing for
Portlet A.

4. Partial action resp

2. Partial action request

3.4 Partial action
response
(response data) and
(page state data)

The page state data could
be passed in a JSF
extension element.

3.3 Generate updated
page state. Pass
page state to
serveResource
method of initiating
portlet.

5. Update page state

6. onStateChange

6. onStateChange

6. onStateChange

(may be „NOP“)

1. Start partial action

This is a special execution path to enable UI framework (JSF) support. (Resource requests left out for clarity)

Manages the
portlet state for all
portlets on the
page:

* Parameters
* Portlet Mode
* Window State

3.2 Execute Event
Phase if portlet fires
event.

3.4 Generate markup
including page state in
serveResource
method.

Partial Action Overview

30

Additional features under consideration

September 27, 2014

Portlet 3.0 Features
 CDI Scopes and the Portlet Lifecycle

– CDI scopes to support portlet lifecycle
 Improvements to Portlet Events

– Programmatic event definition, Broadcast events

 Improvements to Public Render Parameters
– Programmatic PRP definition

 WebSocket Support
 Mobile Device Support

– Allow Portlets to declare supported devices / user agents
– Dedicated window state / portlet mode for mobile

 Resource sharing / dependency declaration
 Offline Support - allow portlets to sync data to client
 Servlet 3.1 Alignment

– Async support
– Multipart form support
– Componentization (Portlet Fragments)

32

Discussion

33

Copyright and Trademarks

© IBM Corporation 2013. All Rights Reserved.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corp., and registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web – see the IBM “Copyright and trademark
information” page at URL: www.ibm.com/legal/copytrade.shtml

http://www.ibm.com/legal/copytrade.shtml

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	page1
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Questions
	page43

