
BOF3024 - Learning Scala:

A Practical Approach

Bob Treacy (@bobtreacy)
http://www.iq.harvard.edu/people/robert-‐‑treacy

Michael Bar-‐‑Sinai (@michbarsinai)
http://www.iq.harvard.edu/people/michael-‐‑bar-‐‑sinai
http://mbarsinai.com

1 / 38

Agenda
1. Why Scala?
2. Colliding Concepts
3. New Concepts
4. Tools
5. Tips or, how to learn Scala and keep your job
6. Case study
Slides and code:

https://github.com/IQSS/javaone2014-‐‑bof3024F

2 / 38

Why Scala
Implement a project based on a template that's relatively close to the

final project

Such as Akka distributed worker template

Create a web application using Play!

has a Java flavor as well, but template engine uses Scala only

Try some functional programming

Scala may not be your best choice

Try some postfunctional programming

If you look at the features Scala provides, it is substantially a

functional language, but... it does not force you to adopt the

functional style. I think postfunctional is a good term for that

blend.

Martin Odersky, http://www.scala-‐‑lang.org/old/node/4960

Everyone's favorite reasons:

Learn a new and interesting language

Bend your mind in new ways.

Just because

3 / 38

Colliding Concepts
While sharing the JVM, and Java's extensive libraries, Scala and Java are very
different languages. Some words have different meanings.

Intuitions created by years of working with Java can be misleading. You may
end up doing as much unlearning as you do learning.

It's a good thing, if you're ready for it.

So We've gathered a few examples.
4 / 38

Syntax
Semicolon inference
Semi-‐‑colons are optional at the end of a line containing an expression

Two expressions, two lines

print("hello, ")
println("world!")

Two expressions, one line

print("hello, "); println("world!")

One expression, multiple lines: a line ending is treated as a semicolon

unless:

1. End in a word that would not be legal at the end of a expression

2. Next line begins with a word that cannot start a expression

3. Line ends while inside parentheses or bracket

Colliding
Concepts

5 / 38

Syntax
[]s, ()s and {}s
[] are for type parameters, <> are for XML literals and operators, () and {}
are interchangeable.

→ Array access is done using array(index), not array[index]!

CollidingConcepts

6 / 38

Scala:

 myString: String

Java:

String myString;

Syntax
Type name goes after the variable name

Personal goal: stop getting confused as early as Q3 of 2041.

However, declaring a value's type is not always necessary -‐‑ in many cases
Scala can infer types on its own:

val myString = "Hello!" //myString is a String

Colliding
Concepts

7 / 38

Constructors, Reconstructed
Unlike Java, each class has a single primary constructor, whose definition

dovetails the class' definition:

class BOF(var title:String,

 val num:Int,

 topic: String) {

 def desc = title + ", a BOF about " + topic

}

var v:T becomes a mutable field of the class

val v:T becomes a final field of the class

v:T is a value that can be used inside the class

The body of the primary constructor is all the code directly within the

class.

Alternative description (Odersky):

Classes have parameters, just like methods do.

Colliding
Concepts

8 / 38

Auxiliary Constructors
It is also possible to define auxiliary constructors.

Auxiliary Constructors:

Are called this(...)

Have to begin by calling the primary constructor, or another auxiliary

constructor.

Either way, that constructor is referred to as this.

class Bof(var title:String,
 val num:Int,

 topic: String) {

 def desc = title + ", a BOF about " + topic

 def this(title:String) = {
 this(title, title.size, "the topic of '%s'".format(title))
 }

}

Colliding
Concepts

9 / 38

Method invocation
Methods that take no parameters may be invoked by just calling them -‐‑
no need for () after the name.

scala> def f()={ println("hello") }
f: ()Unit
scala> f // prints "hello"
scala> f() // prints "hello"
scala> f _
res9: () => Unit = <function0>

Single parameter methods can be invoked using an alternative to the
dot-‐‑notation:
a + b is the same as a.+(b)
Right associative methods: When last character of method name is :
a +: b is the same as b.+:(a)
The apply() method -‐‑ creates a "default" method for objects -‐‑ no need
to type the apply part.
instance() is really instance.apply which is really
instance.apply()

scala> (f _)() // prints "hello"

CollidingConcepts

10 / 38

The Point of No return
All methods return values. Thus, the return keyword is often
superfluous.

In the absence of an explicit return keyword, a method will return the last
value computed.

return is useful as a type of break that returns a value.

These samples are functionally the same:

class SumWithInt {
 var sum = 0
 def add(b: Int):Int={
 sum += b
 return sum
 }
 def add1(i:Int)={
 sum += i
 sum
 }
}

CollidingConcepts

Code: Returns.scala at presentation repo 11 / 38

Unit filling the void
All methods return values. Thus, declaring a method to be of a void type
is impossible.

Method that has nothing to return, can return Unit, a type with a single
value, marked as (). This allows everything to be an expression -‐‑ Scala has
no statements.

These samples are functionally the same:

class SumWithUnit {
 var sum = 0
 def add(b: Int): Unit ={
 sum += b
 return ()
 }
 def add1(i:Int) {
 sum += i
 ()
 }
 def add2(i:Int) = {
 sum += i
 }
 def add3(i:Int) = sum += i
}

CollidingConcepts

Code: Returns.scala at presentation repo 12 / 38

class vs. object
Using the object keyword, programs can declare and construct an instance

at design time. This is different from the class keyword, where instance

construction is done at runtime, using the new keyword.

object Counter {
 var count = new java.util.concurrent.atomic.AtomicInteger(0)
 def up() = count.addAndGet(1)
 def down() = count.addAndGet(-1)
 def value = count.get
}

scala> Counter.up
res5: Int = 1

The created object is a singleton, initialized the first time its called.

Objects can extend classes, and traits, as usual.

The object's type is implicitly defined, but can be accessed (e.g. when

creating DSLs).

Colliding
Concepts

13 / 38

Companion Objects replace

static
There is no static class members in Scala. Functionality that belongs to a
class (rather than to its instances) goes in that class' Companion Object.

class Burrito private(val filling:String) { ... }

object Burrito {
 var count = new java.util.concurrent.atomic.AtomicInteger(0)
 def makeWith(filling:String) = {
 count.incrementAndGet()
 new Burrito(filling)
 }
 def brag() = "%,d burritos served".format(count.get)
}

scala> Burrito makeWith "beans"
res22: Burrito = Burrito with beans
...
scala> Burrito.brag
res14: String = 6 burritos served

CollidingConcepts

14 / 38

apply() is the new new
Define an apply method on a companion object, and you can skip new:

object Burrito {
 var count = new java.util.concurrent.atomic.AtomicInteger(0)
 def makeWith(filling:String) = {
 count.incrementAndGet()
 new Burrito(filling)
 }
 def apply(filling:String) = makeWith(filling)
 ///...
}

scala> Burrito("Everything")
res28: Burrito = Burrito with Everything

CollidingConcepts

15 / 38

Starting an Application
No static → No public static void main.

Implementing the App trait turns objects into executable applications. It
uses the body of the object as a main method.

object MyApplication extends App {
 if (args.contains("-h")) printHelpAndQuit();
 // rest of code goes here

}

To access the argument list, use args.
There is a main method -‐‑ normally, it does not need to be explicitly
overridden.
The object's fields will not be initialized when the object's body is
executed.
Trait Application is deprecated as of version 2.9.0

CollidingConcepts

16 / 38

Collection Library
Scala's collection library is very different from Java's. Scala approach to
collections is different.

Most collections have a mutable and immutable version. Same name,
different package.

If the package is not imported or the full name is not used, default
is immutable version

Java collections have minimal API, whereas Scala's collections has large
API

java.util.List doesn't have a last() method, as it can be
implemented by size() and get()

This may be one of the areas where it's simpler to read the official intro
rather than learn as you go.

http://docs.scala-‐‑lang.org/overviews/collections/introduction.html

17 / 38

What Do Mean By List?
Java's List
Ordered collection of elements.

Scala's List
The classic linked list from CS 101 / intro to functional programming (with

some extras thrown in, and without the annoying TA).

When you want a Java type of List, use Scala's Seq or Buffer

18 / 38

New Concepts
Scala introduces many concepts that are not present in Java. Often, when

you look at Scala code, it's unclear where values come from, how can objects

extends so many classes, and so on.

This confused us too.

So We've gathered a few examples.

19 / 38

val vs. var
val -‐‑ immutable value
var -‐‑ variable (mutable value)
def -‐‑ defines methods, but can also be used to define immutable
values.
Immutability bias -‐‑ when possible, use immutable values and data
structures.

 val workerId = UUID.randomUUID().toString
 var currentWorkId: Option[String] = None

New
Concepts

20 / 38

Traits, not Interfaces
Traits define signatures of supported methods, like Java interfaces, but can
also provide method implementations and fields.

trait Foo {
 def bar(b:Baz)
}

They can also be "mixed in" to create quasi-‐‑multiple inheritance

trait Fudge {
 def drip(s:Shirt) = {...}
}

trait Sprinkles
trait Peanuts

class Food
class IceCream extends Food

class TraitTest {
 var desert = new IceCream with Fudge with Sprinkles with Peanuts
}

New
Concepts

21 / 38

Case Classes
A class that's specialized for storing compound immutable values. By
deciding to use a case class rather than a normal class, you get:

Automatic, proper toString, equals, hashCode, getters.
copy method to create new objects based on existing ones.
Companion object, complete with apply and unapply methods

abstract class Session

case class BOF(num:Int, title:String) extends Session

case class Tutorial(num:Int, technology:String) extends Session

case class Keynote(title:String, speaker:String) extends Session

case class JUG(groupName: String) extends Session

scala> val jos = BOF(3024,"Learning Scala the Practical Way")

jos: BOF = BOF(3024,Learning Scala the Practical Way)

scala> val jos2 = jos.copy(num = 1024)

jos2: BOF = BOF(1024,Learning Scala the Practical Way)

New
Concepts

22 / 38

Pattern Matching
object SessionPrinter {
 def print(s:Session)={
 s match {
 case BOF(n,t) => "%d: BOF %s".format(n,t)
 case Tutorial(n,t) => "Learn about %s! (%d)".format(t,n)
 case JUG(g) => "Meet with friends from %s".format(g)
 case _ => s.toString
}}}

scala> val mySched = Seq(BOF(1,"Learn Scala"), Tutorial(40,"NetBeans"), JUG(

scala> mySched.map(SessionPrinter.print(_)).foreach(println(_))

1: BOF Learn Scala

Learn about NetBeans! (40)

Meet with friends from jArgentina JUG

Pattern matching is a very versatile control structure, whose full options are
beyond the scope of this talk. In short, it the mother of all switch
statements. And then some.

New
Concepts

23 / 38

Implicits
implicit keyword

implicit conversion
if compiler comes across a type error it will look for an appropriate
conversion method
when you wish you could add a method to a class you didn't write

implicit parameters
arguments to a method call can be left out
compiler will look for default values to supply with the function call

New
Concepts

24 / 38

Not Covered
Scala has many other new concept we can't cover here, but are worth
looking into:

Option type
Either type
Scoping of private field modifiers
Various import options
Delimited Continuations
Macros
Rich type system
Currying
Working with functions
Advanced pattern matching
Tuples
…

New
Concepts

25 / 38

Tools
scala REPL -‐‑ play around with code

IDEs

NetBeans -‐‑ Scala Plugin

Intellij IDEA

Eclipse

Or, text editors such as SublimeText, Atom

ScalaDoc

26 / 38

Tools
SBT

import com.github.retronym.SbtOneJar._
name := "galileowrapper"
version := "1.0"
scalaVersion := "2.10.3"
libraryDependencies ++= Seq(
 "com.typesafe.akka" %% "akka-contrib" % "2.2.1",
 ...
 "edu.harvard.iq" % "consilience-core" % "1.0-SNAPSHOT",
 "junit" % "junit" % "4.4")
resolvers ++= Seq(
 "Typesafe Repository" at
 "http://repo.typesafe.com/typesafe/releases/",
...
 "Local Maven Repository" at
 "file://"+Path.userHome.absolutePath+"/.m2/repository")

oneJarSettings
mainClass in oneJar := Some("worker.Main")

27 / 38

Tips
Spotting a good starter project

Look at activator templates
One-‐‑offs
Scripts

Resources
Books

Scala for the impatient by Cay S. Horstmann 1 chapter per lunch, and
you're done in 22 business days.

Meetups
Typesafe

Webcasts, Newsletters
DZone Refcard (Scala + Akka)

MOOCs

Tips

28 / 38

Don't Believe Everything You

Hear About FP

Functional programming is great for some things, and not-‐‑so-‐‑great for
others. It is somewhat hyped at the moment.

Scala, a postfunctional language, allows you to choose the approach you
deem best, or just feel like trying. Don't be confused by the internets.

Mutability is OK, as long as there's no concurrent updates
java.util.concurrent is still there for you
Object creation and clean-‐‑up may be cheap, but it's not free!
Side-‐‑effects are hard to reason about formally. This is why we still
have jobs.

Tail recursion is not the best thing since sliced bread
It's a way to coerce an recursive algorithm into a shape that will
allow the compiler to further coerce it into a loop.
Makes total sense in Lisp, ML etc. where there are no loops.
You're writing in Scala. You can actually use a loop.
When you do use a tail recursion, don't forget @tailrec.

Tips

Having said that...
29 / 38

Ease Into Functional
Programming
At your leisure, consider re-‐‑writing existing, "Scala-‐‑with-‐‑Java-‐‑accent" code

using functional programming idioms.

Case study: Re-writing in Scala
Problem: Create a poor-‐‑man's Markdown to HTML conversion, supporting

<p>s and single level s.

Input: Sequence of Strings in markdown syntax

Lines starting with * should become s, grouped and nested in a

 element.

Output: Sequence of <p> and elements, according to Markdown rules.

Tips

30 / 38

Initial code:

 def html1(rawStrings : Seq[String]):String = {
 val cleaned = mutable.Buffer[String]()
 for (l <- rawStrings) {
 cleaned += l.trim
 }
 val curUl = mutable.Buffer[String]()
 val html = mutable.Buffer[String]()
 for (l <- cleaned) {
 if (l.startsWith("*")) {
 curUl += "" + l.substring(1).trim + ""
 } else {
 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 curUl.clear
 }
 html += "<p>" + l + "</p>"
 }
 }

 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 }
 return html.mkString
 }

Code
Rewrite

Code: Rewrite.scala in presentation repo 31 / 38

Initial code:

 def html1(rawStrings : Seq[String]):String = {
 val cleaned = mutable.Buffer[String]()
 for (l <- rawStrings) {
 cleaned += l.trim
 }
 val curUl = mutable.Buffer[String]()
 val html = mutable.Buffer[String]()
 for (l <- cleaned) {
 if (l.startsWith("*")) {
 curUl += "" + l.substring(1).trim + ""
 } else {
 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 curUl.clear
 }
 html += "<p>" + l + "</p>"
 }
 }

 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 }
 return html.mkString
 }

Code
Rewrite

32 / 38

Somewhat more functional:

def html2(rawStrings : Seq[String]) = {
 val cleaned = rawStrings.map(_.trim)

 val curUl = mutable.Buffer[String]()
 val html = mutable.Buffer[String]()
 for (l <- cleaned) {
 if (l.startsWith("*")) {
 curUl += "" + l.substring(1).trim + ""
 } else {
 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 curUl.clear
 }
 html += "<p>" + l + "</p>"
 }
 }

 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 }
 html.mkString
}

Code
Rewrite

33 / 38

Somewhat more functional:

def html2(rawStrings : Seq[String]) = {
 val cleaned = rawStrings.map(_.trim)

 val curUl = mutable.Buffer[String]()
 val html = mutable.Buffer[String]()
 for (l <- cleaned) {
 if (l.startsWith("*")) {
 curUl += "" + l.substring(1).trim + ""
 } else {
 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 curUl.clear
 }
 html += "<p>" + l + "</p>"
 }
 }

 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 }
 html.mkString
}

Code
Rewrite

34 / 38

Somewhat more functional:

def html2(rawStrings : Seq[String]) = {
 val cleaned = rawStrings.map(_.trim)

 val curUl = mutable.Buffer[String]()
 val html = mutable.Buffer[String]()
 for (l <- cleaned) {
 if (l.startsWith("*")) {
 curUl += "" + l.substring(1).trim + ""
 } else {
 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 curUl.clear
 }
 html += "<p>" + l + "</p>"
 }
 }

 if (! curUl.isEmpty) {
 html += ""+curUl.mkString + ""
 }
 html.mkString
}

Code
Rewrite

Seq(1,2,3,4).foldLeft(0)((p,i)=>p+i)
// yields 10

35 / 38

Even more functional:

def html3(rawStrings : Seq[String]) = {
 val elements = rawStrings.map(_.trim)
 .map(s => if (s.startsWith("*"))
 {""+s.substring(1).trim+""}
 else
 {"<p>" + s + "</p>"})

 val grouped = elements.tail.foldLeft(List(List(elements.head)))(
 (l,s) => {
 if (l.last.head(1) != s(1))
 l :+ List(s)
 else
 l.dropRight(1) :+ (l.last :+ s)})

 grouped.flatMap(l => if (l.head.startsWith(""))
 List(""+l.mkString+"")
 else
 l).mkString
}

Using foldLeft, we create a list of lists of Strings, and operate on them.

Then, use flatMap to convert the result to a list of strings, and then use

mkString to create the final string.

Code

Rewrite

Actual code included in presentation repo at GitHub.
36 / 38

Other Sessions

Scala
CON1740 -‐‑ Scala Macros: What Are They, How Do They Work,
and Who Uses Them? Thursday, Oct 2, 11:30 AM -‐‑ 12:30 PM -‐‑
Hilton -‐‑ Continental Ballroom 7/8/9
CON1849 -‐‑ Event-‐‑Sourced Architectures with Akka Wednesday,
Oct 1, 8:30 AM -‐‑ 9:30 AM -‐‑ Hilton -‐‑ Continental Ballroom 7/8/9

IQSS
BOF5619 -‐‑ Lean Beans (Are Made of This): Command Pattern
Versus MVC
BOF5475 When The PrimeFaces Bootstrap Theme Isnʼ’t Enough
Tuesday, Sep 30, 9:00 PM -‐‑ 9:45 PM -‐‑ Hilton -‐‑ Plaza A
CON5575 Bean Validation: Practical Examples from a Real World
Java EE7 Application
Tuesday, Sep 30, 4:00 PM -‐‑ 5:00 PM -‐‑ Parc 55 -‐‑ Cyril Magnin I

37 / 38

Thanks
Visit the IQSS data science team at http://datascience.iq.harvard.edu

Presentation created using remark.js. 38 / 38

