
Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 1

What’s New in
Java Transaction Processing

Paul Parkinson, Oracle

Monica Riccelli, Oracle

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to outline our general product direction. It is intended

for information purposes only, and may not be incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release,

and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 4

Agenda

 JTA 1.2

 JTA 1.3

 Beyond

 Discussion

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 5

Java Transaction API 1.2

 First release of JTA in over 10 years

 Complete backward compatibility (essential)

 Two major new features @Transactional and

@TransactionScoped annotations

 Clarification on delistment of resources before prepare.

Overview

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 7

Java Transaction API 1.2

 Annotation provides the application the ability to control transaction

boundaries on CDI managed beans

 Defined in terms of a system interceptor

 Option to specify exception handling behavior

 Declare which exceptions should cause the transaction to be marked for

rollback

@Transactional

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 8

Java Transaction API 1.2

 Can be placed on class or method level

 Overriding rules apply

 Business methods, not lifecycle methods

 Can invoke TransactionSynchronizationRegistry, but not

UserTransaction

 Disallowed on EJB components

 Allowable transaction types match existing CMT tx types

Some @Transactional Details

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 9

Java Transaction API 1.2

 TxType.REQUIRED – start new tx if none already in progress

 TxType.REQUIRES_NEW – start new tx, suspend if already in progress

 TxType.MANDATORY – tx must already be in progress

 TxType.SUPPORTS – use existing tx if in progress, or none if it isn’t

 TxType.NOT_SUPPORTED – suspend tx if in progress

 TxType.NEVER – tx must not be in progress

@Transactional TxType

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 10

Java Transaction API 1.2

 Default behavior

 Runtime exceptions - transaction will be marked for rollback

 Checked exceptions - transaction will not be marked for rollback

 Can override using rollbackOn and dontRollbackOn elements

 Overriding behavior will be applied to the specified exception class

and its subclasses

 Rollback behavior applies to the current transaction (regardless of

whether it was actually started by the @Transactional method)

Exception Handling

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 11

Java Transaction API 1.2

@Transactional(value=Transactional.TxType.REQUIRED,

 rollbackOn={SQLException.class},

 dontRollbackOn={SQLWarning.class})

public class MyBean {

 //…

 @Transactional(value=Transactional.TxType.SUPPORTS)

 private void myMethod(String param) { … }

 //…

}

@Transactional Example

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 12

Java Transaction API 1.2

 Declaratively scope a CDI bean to the current transaction

 Independent of the way the transaction was started

 E.g. @Transactional, UserTransaction, or EJB CMT

 Context is maintained across transaction suspend, resume, etc.

 Context lasts until transaction is committed/rolledback.

 Invoking a contextual instance after its enclosing transaction
completes results in ContextNotActiveException being thrown

@TransactionScoped

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 13

Java Transaction API 1.2

@TransactionScoped

private class ValueBean {

 private static int Value = 0;

 private int myValue;

 public ValueBean() { myValue = ++Value; }

 public int getValue() { return myValue; }

}

@TransactionScoped Example Bean

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 14

Java Transaction API 1.2

private class Invoker {

 @Transactional

 public String method1(@Inject ValueBean bean) {

 System.out.println("Value=" + bean.getValue());

 method2(bean);

 }

 @Transactional(TxType.REQUIRES_NEW)

 public String method2(ValueBean bean) {

 System.out.println("Value=" + bean.getValue());

 }

}

@TransactionScoped Example Injection

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 15

Java Transaction API 1.2

 A container only needs to call delistResource to explicitly dissociate a

resource from a transaction and it is not a mandatory container

requirement to do so as a precondition to transaction completion.

 A transaction manager is required to implicitly delist the resource

before tx completion; that is before prepare (or commit/rollback in the

onephase-optimized case).

Minor Clarifications

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 16

JTA 1.2 Summary

 More flexible container-managed transactional demarcation

– Any CDI managed bean

– All CMT tx options

– Control over rollback behavior

 Transactional scope for CDI managed beans

– Simpler model for programming using transactions

 Full backward compatibility to all existing JTA providers

 Good foundation for any necessary features going forward

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 17

Java Transaction API 1.3

 JTA_SPEC-4/ordered commit

 JTA_SPEC-9/setRollbackOnly(Exception) API addition

Committed

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 18

Java Transaction API 1.3

 Ordering issues exist in the case where a message and database row

update exist in the same transaction. If the message is committed and

processed by another transaction before the database update is

committed, the uncommitted row can then be processed prematurely.

 Provide a standard for the ordering of the XAResource commits.

 In addition correct ordering of commits can allow readonly one-phase

commit.

JTA_SPEC-4/support explicit ordering of commits for XAResources

enlisted in a transaction

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 19

Java Transaction API 1.3

 Should it be only first and last or weighted.

 Should this be part of resource-ref configuration?

 Should there also be an interface defined for this?

JTA_SPEC-4/support explicit ordering of commits for XAResources

enlisted in a transaction - continued

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 20

Java Transaction API 1.3

 Add a new setRollbackOnly(Exception exception) API method to

Transaction, TransactionManager, and UserTransaction where the

resultant RollbackException later thrown has the exception parameter

as a nested exception that can be inspected by the application.

JTA_SPEC-9/new api for setRollbackOnly so that it can take a nested

exception

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 21

Java Transaction API 1.3 or Beyond

 JTA_SPEC-2/standard way to represent XAResources to restore

XAResources

 JTA_SPEC-8/specify XAResource(s) transaction timeout value be set

to the value of the encompassing JTA transaction's timeout value by

default for portability

 No JIRA currently/add a new begin(properties) API to provide

information such as expected resource count or read/write

characteristics. For example the container could enlist a local-tx mode

db connection rather than an XA one if it is know that only one

resource will be used in the transaction.

Ideas

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 22

Java Transaction API 1.3 or Beyond

 JTA_SPEC-11/elaborate on ordering semantics for Synchronization

calls in a distributed transaction

 JTA_SPEC-6/Clarify transaction interactions/restrictions in TX

Synchronization callbacks

Smaller items and clarifications

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 23

 JSR 907 page:

 http://jcp.org/en/jsr/detail?id=907

 JTA java.net project page:

 http://java.net/projects/jta-spec/

 JTA Jira:

 http://java.net/jira/browse/JTA_SPEC

 Distribution list:

 users@jta-spec.java.net

Resources

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 24

The preceding is intended to outline our general product direction. It is intended

for information purposes only, and may not be incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release,

and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 25

Graphic Section Divider

Copyright © 2013, Oracle and/or its affiliates. All rights reserved. 26

