UD .I_CI.-lNE Text Processing with Hadoop and Mahout
Key Concepts for Distributed NLP

Bridge Consulting

e Based in Florence, Italy
e Foundedin 1998
e 98 employees

e Business Areas \ o8 [
: : ARTEN . e
— Retail, Manufacturing and L S— I
Fashion RV) /O

— Knowledge Management
— SOA Integration projects

— Bl and Analytics solutions
— DBA services and support

ORACLE: Sold

Partner

E EVOLUTION AND CONTINUITY ©O

Bridge Consulting CONgULTING

INFORMATION TECHNOLOGY

Manuel Zini

Distributed Systems and Emerging
Technologies Team Leader@BridgeConsulting

Managing Hadoop Projects to build corporate
knowledge management and search systems

Gained a PhD analyzing patent text into
invention graphs (automatically ©)

E EVOLUTION AND CONTINUITY ©O

Agenda

Hadoop
and Map
Reduce

Architecture
for Text
Processing
on Hadoop

Hadoop

Patterns and
Tools

E EVOLUTION AND CONTINUITY ©O

Foreword

« Written natural language text is an enormous potential
resource of information.

 Information lies in e-mails, company documents, web
pages, discussion forums and blogs, customer
feedbacks, clinical records, patents, resumes,
facebook pages, tweets and new sources add
everyday.

* The task of managing , finding and extracting
information from text as already become unfeasible to
be done manually or with traditional technologies.

* The ability to extract information from text is demanded
from the market to increase effectiveness and
competitivity.

EVOLUTION AND CONTINUITY ©&O

_N__BRIDGE
Why Hadoop CONSULTING
Text Processing Hadoop
* Processing large quantities of text * Map Reduce is a programming model
requires a significant computing power. for distributed computation.
* Think for instance to processing tweets e Apache™ Hadoop® is an execution
for sentiment analysis. framework for map reduce on clusters

of commodity servers.

Processing text on Hadoop enables the analysis of large
guantities of text in a feasible time frame

E EVOLUTION AND CONTINUITY ©O

Agenda A =

Hadoop and Map Reduce
A Quick Introduction

E EVOLUTION AND CONTINUITY ©O

Map Reduce

Map Reduce

 MapReduce is a programming model, an
abstraction for writing programs that run
on clusters of machines.

* The execution framework takes care of
distributing data and processing in the
cluster, hiding these complexities to the
programmer.

* It consists basically of two phases: the
Map phase and the Reduce phase

The Map Phase

In the Map phase, some computation is
applied over all input records in a
dataset. Several map tasks run in parallel
over splits of input data.

The Reduce Phase

The output is then grouped by key and fed
to a second user-specified computation for
aggregation.

E EVOLUTION AND CONTINUITY ©O

Hadoop Framework

Hadoop

* Hadoop[9] is an open-source
implementation of an execution
framework for map-reduce

 Fastly growing ecosystem of other
frameworks and tools for distributed
computing

Hadoop comprises

* A framework for writing and executing
map reduce jobs

* HDFS: a distributed file system
implementation that allows for
distributed map reduce execution
exploiting the data locality principle

E EVOLUTION AND CONTINUITY ©O

Map Reduce

Mappers

* A MapReduce job is fed with data stored on the
distributed file system and splitted across nodes.

* A map task is run for every split of the input file.

* The mapper is applied to every input key-value pair and
outputs intermediate key-value pairs.

Reducers

e Adistributed ‘group by’ and sort operation is performed
in the Shuffle & Sort phase. All key-value pairs for the
same key are fed to the same reducer.[5]

* Areducer is applied to all values grouped for one key and

in turn generates key-value pairs.

* Key-value pairs from each reducer are written on the
distributed file system.

A complete job

The quick Twelve
brown fox Ziggurats
quick
|
I

| The: 1
quick: 1
| brown: 1
¥ Loxa

jumps a Jumps over

finch box

\J

~@

the fox over quick
jumps over fox

I I
I [
A T

Shuffle and Sort

-
-

fox: 1,1,1
quick: 1,1,1
Twelve:l

I
I ~
|

-

quick: 3
Tweive:l
fox: 3

Reduce

jumps: 1,1,1

-~
-~

E EVOLUTION AND CONTINUITY ©O

HDFS

HDFS — Hadoop Distributed File System

* File data is splitted into blocks.

* Blocks are stored and replicated in local
disks of nodes in the cluster

* Master — Slave architecture

heartbeat/reports

-
-+

file name, range

Client -1 NameNode commands

block id, block location

block id, range
DataNode DataNode DataNode
block data

* Master keeps file system information (file
to block mappings, block locations,
metadata, directory structure,
permissions)

e Slaves — host the replicated data blocks

E EVOLUTION AND CONTINUITY ©O

HDES and Map Reduce McBoﬁgtl?L

HDFS — Hadoop Distributed File System Overall architecture of a cluster

e File splitting in blocks allows for
distributed computation

NameNode JobTracker

e Each block can be processed by a different
mapper

* The mapper is chosen to be co-located
with data

* Principle of ‘data locality’: computation is rasracker rasracker rasracker
moved close to data

E EVOLUTION AND CONTINUITY ©O

Natural Language Processing
a bird’s eye view

E EVOLUTION AND CONTINUITY ©O

Natural Language Processing N_~_BR

NLP is the field of Al that aims at extracting information
and, ultimately, knowledge from natural language.

E EVOLUTION AND CONTINUITY ©O

Applications MBR

Applications of natural language text
processing

* Text mining
—Document clustering, statistical analysis of text...

* Information and Knowledge extraction .) . .
. 5 While different in purpose and techniques
—Structured information

—Semantic networks j‘> all these applications benefit from the tools

* Information Retrieval and Classification deve|0ped by natural |anguage processing
—Findability of relevant information

* Sentiment analysis
—Analyze sentiment of text for customer
relationship management
e Automatic translation
* Automatic summarization

EVOLUTION AND CONTINUITY ©&O

Text is unstructured MCBORNQR%E
* False (or not completely true): text has some structure
* Language follows morphological, syntactical, and semantic rules.
* We have to identify available structure in text to extract information
e Information can then be structured the traditional way
d lLe_ N
type: banana
:]] : color: yellow
A banana is yellow, weights one hundred grams and costs 20 cents. weight: 100 g

price: 20 cents

—

E EVOLUTION AND CONTINUITY ©O

NLP Approaches M?OREULT(I:-I'\E

NFORMAT N TECHNOLC

Different approaches to solve common NLP
tasks:

e Text cleanup
* Language identification

e Tokenization
* Lemmatization/stemming

Rule ¢ e Stop words filtering

Based e POS Tagging

* Keywords extraction/weighting
e Document classification

E EVOLUTION AND CONTINUITY ©O

Text Conversion and Cleanup

e Text may come from HTML pages, PDFs, word
documents, images and more

* It has to be converted to plain text

* Noise has to be removed (conversion errors, non
printable or non alphabetic characters, spelling
errors/abbreviations)

* In some case structure information may be
retained (e.g. title/header information, bold or
underlined text, metadata)

EVOLUTION AND CONTINUITY ©&O

Language identification

* Text processing algorithms are language dependent:

tokenization, stop words, lemmatization, POS tagging etc.

* Recognizing the language in which the text is written has
to be performed early in the processing chain

e Language identification is the task of automatically
identifying the language contained in a given document.

» Several methodologies: one should be chosen based on
availability for the specific language, size of text,
presence of foreign words.

* Statistical methods based on character strings n-grams
(e.g. Naive Bayes Classifier)

* Information theory methods (e.g. relative entropy in zip
compression)

* Functional words frequencies (articles, pronouns,
conjunction etc.)

E EVOLUTION AND CONTINUITY ©O

Tokenization A~ BR

* Tokenization is the process of splitting text into words,
phrases and symbols.

Sentence
"An uninteresting sentence, [...|
itis."

* In the simplest case words boundaries can be recognized
through whitespaces.

e This is not true for ‘San Francisco’.

e Some languages do not use spaces between words (e.g.
Thai)... a different approach is required.

* German language allows composition:
‘Lebensversicherungsgesellschaftsangestellter’ means
‘employee of an insurance company’.

EVOLUTION AND CONTINUITY ©&O

Lemmatization & Stemming

Transformation of inflected forms into a ‘base’
form.

e Stemming is a heuristic process, just removes affixes or
postfixes following rules.

e Lemmatization tries to derive the ‘base word’ (lemma)
using morphological rules, dictionaries and context.

Stemming:

biologically -> biologic
saw -> S

Lemmatization:
am, are, is, was -> be

have, has, had -> have
saw -> see or saw depending on context

E EVOLUTION AND CONTINUITY ©O

Stop words filtering

Stop words filtering

e Stop words are words that will be removed before
processing.

e Commonly performed to improve information retrieval or
classification tasks (e.g. indexing and search, keyword
extraction).

 Stop words are usually function words.

» Stop words may be application/task specific.

EVOLUTION AND CONTINUITY ©&O

POS Tagging

Part Of Speech Tagging

e Tag each word with its part of speech (word classes like:
adjective, noun, verb, preposition, conjunction, adverb
etc.)

* Tag may include subcategories like: gender, number, tense
etc.

<word wid="0" pos="DT">This</word>

<word wid="1" pos="VBZ">is</word>

<word wid="2" pos="DT">a</word>

<word wid="3" pos="JJ">short</word>

<word wid="4“pos="NN">sentence</word>

<word wid="5" pos=".">.</word>
</sentence>

DT Determiner

VBZ Verb, 3rd person singular present
JJ Adjective

NN Noun, singular or mass

E EVOLUTION AND CONTINUITY ©O

Keyword extraction

Keyword extraction
e The task of extracting a meaningful subset of words that
are able to describe the document’s content.

e Usually extracted scoring terms or n-grams with tf-idf
measure.

Term Frequency — Inverse Document Frequency

tf,= term frequency of k in document

NDoc

Idf,=log 5
k

tf-idf=tf, . idf,

E EVOLUTION AND CONTINUITY ©O

Document classification

e The task of automatically assigning a document
to a predefined category is called supervised
classification

» Requires training of the classifier

e Examples:

= Spam filtering is an example
= Can be performed to enrich documents

metadata with tags representing the
category to improve findability

ORDERS

INVOICES

CLAIMS

E EVOLUTION AND CONTINUITY ©O

Mahout

E EVOLUTION AND CONTINUITY ©O

The Mahout Project

Q
£
Udow

e Apache™ Mahout™ Project [8].
e A collection of machine learning libraries.
* By now supporting three major use cases:
= Recommendations
= Clustering

= Document classification

* Most of the algorithms can be run on Hadoop
Map Reduce.

E EVOLUTION AND CONTINUITY ©O

Mahout algorithms

O
e
VP

e Recommendations
= User based recommenders, item-based
recommenders

e Clustering
= K-Means, Fuzzy K-Means, Spectral Clustering

* Document classification
= Multinomial Naive Bayes
" Transformed Weight-Normalized Complement
Naive Bayes implementation
= | ogistic Regression
" HMM

E EVOLUTION AND CONTINUITY ©O

Naive Bayes

Q
Udow

* Transformed Weight-normalized Complement Naive
Bayes

* Implemented as described in [2]

* Widely used and simple algorithm outperforming
Naive Bayes (MNB) on text documents

e Performance comparable to more complex
algorithms (SVM)

E EVOLUTION AND CONTINUITY ©O

Performances MBR!DGE

20 Newsgroups

Reuters (macro) 0.270 0.647 0.694

Improvements over Naive Bayes [2]

e TWCNB is more tolerant to training set data skew

e TWCNB normalizes for varying document length

e TWCNB makes internal use of TF-IDF weighting, lowering the importance in classification
of common words

e |t can be further improved by processing stages like stop words removal and
stemming/lemmatization

E EVOLUTION AND CONTINUITY ©O

Text Processing: some examples

- Four examples:

e |nformation extraction
e Keyword extraction

e Mahout TWCNB training
e Automated document classification

E EVOLUTION AND CONTINUITY ©O

Information Extraction CONg

Information extraction example use case

e Task
—Extraction of a graph representing the l[”| {LemmmmJ top J o J sm?m] [ay;::_ug Jl_
filter agagin roie appin:

description of a mechanical artifact

/ f
stop : .
Text Language l Tokenization | | Lemmatization words POS Syntactic | | Synsets Information
Cleansing detection l filter Tagging role Mapping extraction
\ \

e E.g. an invention described in a patent

7

filter

Synsets
Mapping

stop pos ||s i
| _— —— yntactic
'— Tokenization] {Lemmauzanon J words J Tagging role
\

e The graph will describe compositional relationships
and interactions between components

E EVOLUTION AND CONTINUITY ©O

Document Classification: Training CON!

Document classification training

e Task

Mahout TWCNB
Training

—Train the classifier L,,,,mmm.,,n] {;&‘,’5’5

filter

[stop
Lemmatization words Mahoul:’ TWCNB
filter Training

stop
Lemmatization words
filter

L
&

e Mahout TWCNB may be used

z
&

Language
detection

. Tex
* One model will be generated for each
language

@

7
N

Mahout TWCNB
Training

TT
o

E EVOLUTION AND CONTINUITY ©O

TP P TP AN __~_BRIDGE
Document Classification: Classification CONSULTING
Document classification example use case
e Task | =
—themmatizationJ [v;i?trgrs H Ma'&?::smfm J-—
—Classify each document in a class in a set of v
predetermined classes vode!
¢ Y
[Ma hOUt TWCNB may be Used @@c&?ﬁ |[l-el'v'lmatizationJ \ vziéggs }—»l Mag?:;s-rf\:(rms }—D<>-b[Document Indexer ‘
A
e Classifier should be trained first oge,
Model
=

E EVOLUTION AND CONTINUITY ©O

Keyword extraction

Keyword extraction example use case

e Task

TR

stop
Tokenization Lemmatization words
filter

—Extract relevant keywords from documents

\

POS
Tagging

}7

» Keywords may be selected ranking

stop
Tokenization Lemmatization words
filter

|

POS
Tagging

words through TF/IDF measure

stop
Tokenization Lemmatization words
filter

|

POS
Tagging

Jf

TF-IDF
7| calculation

E EVOLUTION AND CONTINUITY ©O

Similarities CON!ULTIN

In a few text processing examples we've
noticed some repeating patterns

\ Processing !
stage

stop

* Processing happens in a pipeline of stages E'T S | ;

. . ' 1okKenization | emmatization | wpr S

— The execution flow may change in |) \)
response to some conditions

Text | Language
Cleansing detection

e Some of the processing stages are the same
and could be reused

\ Processing
stage

| | stop |
t Tokenization | Lemmatization words
| | ' | filter

e Each use case has some specific processing l
Sta ge External resource

@

¢ Stages May use external resources

E EVOLUTION AND CONTINUITY ©O

Processing pipeline -~ BRIDGE
Processing pipeline
* The text processing pipeline is a frequent m—— J {\53‘335 \ (o
pattern in text processing L S
Text Language
! Cleansing detection
* Several text processing solutions organize these o \
ol g . . . F
building blocks in a pipeline {TokemmonJ Lemmatizaton | | words | | Processing
filter | | stage
i Jd |\

* A key for processing blocks reuse is the
definition of a common exchange data format

External resource

@

E EVOLUTION AND CONTINUITY ©O

Executing NLP Pipelines
on Hadoop

E EVOLUTION AND CONTINUITY ©O

Common needs

Common needs emerged for
processing text

A processing pipeline solution with the ability
to define conditional branches in the
execution pipeline

A mechanism for reuse of ‘processing stages’
and the composition of processing stages into
pipelines.

A data model and format that allows for
interoperable data exchange between
processing stages.

The ability to make efficient use of external
resources (dictionaries, graphs) or NLP
libraries

E EVOLUTION AND CONTINUITY ©O

Common needs

A processing pipeline solution with the ability
to define conditional branches in the
execution pipeline

A mechanism for reuse of ‘processing stages’
and the composition of processing stages into
pipelines.

A data model and format that allows for
interoperable data exchange between
processing stages.

The ability to make efficient use of external
resources (dictionaries, graphs) or NLP
libraries

E EVOLUTION AND CONTINUITY ©O

Mapping NLP needs on hadoop v CON%ULTING

How can we map this...

2
"
e
3
@ w
B g2
] RE
a
—
£g
2| | s ;:}3
@
@ - 2 tgg
3B
— 3" ,
2 —_— =
2 3 :: I ™| jumps: 11,1
a2 g h I
g2 _ | wen
2 35 T — -
€ a
|) “
quick: 3
Twelve:1
/\ ox: 3

E EVOLUTION AND CONTINUITY ©O

NLP and Hadoop MBR DGE

NLP and Hadoop

* Addressing the needs of text processingin a u
brown fox ql;l;_k ch bon the lazy dog jumps over fox

traditional non distributed programming

environment is quite straightforward. O
: I
|
\J

,.—
beis

-— -
b d

= |

-
°
EJEP UOWWOD

: _ . fream e | |
e Addressing them on a distributed computing ",’::,m:"' g = - 3 i ' !
platform like Hadoop can be more
challenging. e J “~~\
e In order to successfully build NLP solutions on /*[w

quick: 3

Hadoop a set of viable solutions has to be _
identified. fox:3

EVOLUTION AND CONTINUITY ©&O

Processing pipeline

Problem

e A processing pipeline solution that allows for
the distributed execution of subsequent
processing stages.

e The pipeline should also support conditional
branches in the execution flow.

E EVOLUTION AND CONTINUITY ©O

Processing pipeline CONSU

Solution
e Map reduce Jobs may be executed in S o Siiie o i
& Son & Son & Son
sequence.

e A processing stage may be modeled as a
sequence of map-reduce jobs called
processors.

e A workflow execution engine can be -
. Processor
used to orchestrate the execution of

processors and processing stages. e

* There are several workflow execution _—

engines available for Hadoop: Oozie,
Azkaban, Luigi.

E EVOLUTION AND CONTINUITY ©O

References

 Available or related patterns

—This pattern has already been
described in D.Miner
‘MapReduce Design Patterns’ [1]
as ‘Job Chaining’

* Known implementations or related
tools

—The Oozie[10], Azkaban[12] and
Luigi[13] frameworks address
the problem of executing
workflows of multiple jobs.

E EVOLUTION AND CONTINUITY ©O

Qozie in short

e Qozie [10] is a workflow scheduler system
built to manage Apache Hadoop jobs.

* Workflows can be modeled through
actions, decisions, forks and joins.

e Workflow actions are map-reduce jobs (or
PIG, Hive, Shell, HDFS, Java etc.)

e Actions may also start child workflows
* Workflows are attached to coordinators
that start the workflow when conditions are

met

e Coordinators may be organized in bundles

QiC

E EVOLUTION AND CONTINUITY ©O

Mapping the pipeline

Processor

_

s

Processing
Stage

N

[

Workflow action

Sub Workflow

Workflow

Bundle

E EVOLUTION AND CONTINUITY

Pipeline Workflow example CON%UL ING

<workflow-app xmIns="uri:oozie:workflow:0.4" name="my-pipeline-wf">

<start to="subworkflow-stage-1"/> Processin g
<action name="stage-1-wf"> aag e
<sub-workflow>
<app-path>${nameNode}/${appDir}/wf-stagel.xml</app-path> . —u n
<propagate-configuration/> <action name= Stage'l'Wf >
</sub-workflow>
<ok to="subworkflow-stage-2"/> <su b_WorkﬂOW>
="fail"/ H
_jeyror to="fail'> :> <app-path>${nameNode}/${appDir}/wi-stagel.xml</app-path>
<action name=stage-2-f*> <propagate-configuration/>
<app—path>${nameNoqe}/${appDir}/wf-stageZ.me</app-path> < / su b-Workﬂ ow>
<propagate-configuration/> " "
<configuration> <Ok to= SUbWOfkﬂOW'Stage'Z />
<property> 1 HLU
<name>inputDir</name> <error to="fail"/>
lue>/! Dir}/data/output-1</val .
<lropertye rPOHGBIIOUpuEL<HBlue> </action>
<property>
<name>outputDir</name>
<value>/${appDir}/data/output-2</value>
</property>
</configuration>
</sub-workflow>
<ok to="decision"/>
<error to="fail"/>
/acti . n . n
< decison name="decision-node"> <decision name="decision-node">
<switch> .
<case to="stage-3-1">${fs:fileSize(outputFile) gt 10 * GB}</case> |:> <SWItCh>
] ” Y H H *
<case to="stage-3-2">$({fs:fileSize(outputFile) It 10 * GB}</case> <case to= Stage'3'1 >${fS.f||eS|Ze(OUtpUtFlle) gt 10
<default to="end"/> G B}</Case>
</switch>
</decision> .
<l name="fil"> <case to="stage-3-2">${fs:fileSize(outputFile) It 10 * GB}</case>
<message>workflow failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message> " "
<Ikill> <default to="end"/>
<end ="end"/> .
</ev:/10rl?f?$veiapepn> </ switc h >
</decision>

E EVOLUTION AND CONTINUITY ©O

Stage workflow example CONgULT_ING

Processing
Stage

Processor
<workflow-app xmlns="uri:oozie:workflow:0.4" hame="stage-1-wf">
<start to="processor-1"/> Reduce
<action name="processor-1"> Shuffle
<map-reduce> & Sort
<prepare> § . _ , .
</§Eeipl>3treefath: StnamenodelS{outpuibiry’> <action name="processor-1">
< i tion>
Spropertys | - <map-reduce>
< > . . < >
<32|’S§>Frﬂé‘é’éigé?g&%%iéli%allﬂ‘??e <prepare>
< > . . <, > _n H n
/<32|”J§>F'Rﬁﬁéisé‘?lrﬁéﬁ'uﬁeaé?va?fge <delete path="${nameNode}/${outputDir}"/>
</property>
flcoelfiggra)t/iom </p repare>
< -| > . .
<0T?8J%r§§%sor-z--/> <configuration>
< to="fail"/>
<laction> . " <property>
S apeduger ocessorE > <name>mapred.mapper.class</name>
<prepare>
7<dglete path="${nameNode}/${outputDir}'/> <value>ProcessorlMapper</value>
< >
<configuration> <name>mapred.reducer.class</name>
< rty>
p<rr(1)gr€;1ey>mapred.mapper.class</name> <value>ProcessorlReducer</value>
<value>Processor2Mapper</value>
<name>mapred.reducer.class</name> </p roperty>
<value>Processor2Reducer</value> . .
<Iproperty> </configuration>
</configuration>
</map-reduce> </map-reduce>
<ok to="end"/> ” n
<error to="fail"/> <ok to="processor-2"/>
</action> T
<kill name="fail"> <error to="fail"/>
<message>Map/Reduce failed, error message[${wf.errorMessage(wf:lastErrorNode())}|</message> .
</Kkill> </action>

<end name="end"/>
</workflow-app>

EVOLUTION AND CONTINUITY ©&O

Processing stage reuse gg\m_!,pqmg

Problem

* Processing stages should be designed and
implemented as easily reusable and interoperable

components.
. . . Common data Common data
» A stage should be be easily pluggable in different exchange exchange
pipelines, this is not feasible without a common data : . _
structure and serialization format "Sage MSage | o™

e Serialized data marshalling/unmarshalling should be
managed at framework level

e The file format should be easy to split for efficient
distribution on the cluster

E EVOLUTION AND CONTINUITY ©O

Processing stage reuse

Solution

— Processing stages should be packaged together to
simplify reuse. Oozie workflow allows for the reuse
of stages through the use of subworkflows.

— Processing stages should be pluggable in the
pipeline where needed: a common exchange data
model has to be defined that allows for the
representation of text and text processing
outcomes.

— This may range from a simple generic model to a
more complex type system model.

— Use a compact serialization format, suitable for
serializing the exchange data structure and possibly
‘split’ friendly: Avro may be an example

E EVOLUTION AND CONTINUITY ©O

References C_ONgU__LTING

e Available or related patterns

L Unstructured
—A common model for analysis is already used for . Information Management
instance in UIMA™ (Unstructured Information VA g i

™

Management Architecture) [6] and GATE
(General Architecture for Text Engineering) [7]

general architecture
* Known implementations or related tools

&r text engineering

—The UIMA CAS is an example of a common
exchange model (Common Analysis System) for
text processing

—Apache™ Avro™ [11] is a serialization system for
Map Reduce

E EVOLUTION AND CONTINUITY ©O

UIMA In brief

* Generalized framework for analyzing text (or other kinds of
unstructured information)

* Component architecture aimed at maximizing component
reusability and interoperability in the field of text processing

* All processing components in UIMA operate on a common data
structure called CAS.

e A CAS document instance includes text (artifact), metadata and
annotations generated by subsequent processing steps.

* Metadata generated by components may include a set of
annotations that label regions of the document (or more
generally of the ‘artifact’)

 Stand off model for annotations: annotations are separated
from text.

Unstructured
Information Management

Architecture
An Apache Project

E EVOLUTION AND CONTINUITY ©O

AVRO in brief

e Apache™ Avro™ is a language-neutral data
serialization system.

e Avro schemas are defined in JSON.
e Schema is stored with data in a serialized file.

e Compact format since no information needs to be
stored with each field value.

e Object Container File Format: Compact file
format, compressed in blocks.

EVOLUTION AND CONTINUITY ©&O

Usage of External Resources

Problem

e Resources like dictionaries, frequency
counts etc. are commonly used from
processing stages.

eLibraries and tools are also needed in
stages.

e Computation is distributed on potentially a
great number of nodes.

eResources and libraries should be available
locally.

E EVOLUTION AND CONTINUITY ©O

Distributed Cache

Solution

*Distributed Cache is a Hadoop facility for the
automated and efficient distribution of
read-only files.

e Compressed files and jars can be distributed
on the cluster using the distributed cache.

eJars can be added to the classpath of the
task.

EVOLUTION AND CONTINUITY ©&O

References

e Available or related patterns

—Distributed cache is used for
instance in D.Miner ‘MapReduce
Design Patterns’ [1] in the
‘Replicated Join Pattern’.

* Known implementations or related tools

—Distributed cache facility is already
implemented in Hadoop

E EVOLUTION AND CONTINUITY ©O

Conclusions CON

e Natural language processing is becoming both a need and an opportunity.

e Hadoop and Map Reduce are enablers for the mass processing of text.

e Some common needs have been identified for text processing.

* Solutions addressing those needs on Hadoop have been proposed,
exploiting already existing patterns and tools to deploy NLP solutions on a

distributed platform.

* Proposed solutions may be leveraged to design a generalized text
processing architecture on Hadoop.

EVOLUTION AND CONTINUITY ©&O

Bibliography co.w-!,».UL ING

[1] Miner, Donald, and Adam Shook. MapReduce Design Patterns: Building Effective Algorithms and
Analytics for Hadoop and Other Systems. " O'Reilly Media, Inc.", 2012.

[2] Rennie, Jason D., et al. "Tackling the poor assumptions of naive bayes text classifiers." ICML. Vol.
3. 2003.

[3] Belew, Richard K. "Finding out about." A Cognitive Perspective on Search Engine Tech (2000).

[4] Jurafsky, Daniel, and H. James. "Speech and language processing an introduction to natural
language processing, computational linguistics, and speech." (2000).

[5]Lin, Jimmy, and Chris Dyer. "Data-intensive text processing with MapReduce." Synthesis Lectures
on Human Language Technologies 3.1 (2010): 1-177.

[6] The Apache™ UIMA™ project. https://uima.apache.org/

[7] GATE — General Architecture For Text Engineering. . GATE is free software
under the GNU licences and others.

[8] Apache™ Mahout™ -

[9] Apache™ Hadoop® -

[10] Apache™ Oozie - http://oozie.apache.org/

[11] Apache™ Avro™ -

[12] Azkaban -

[13] Luigi -

[14] White, Tom. Hadoop: The definitive guide. " O'Reilly Media, Inc.", 2012.

E EVOLUTION AND CONTINUITY ©O

Q&A

E EVOLUTION AND CONTINUITY ©O

Questions & Answers

Contact Info:

Manuel Zini

Team Leader

Distributed Systems and Emerging Technologies
mzini@bridgeconsulting.it

E EVOLUTION AND CONTINUITY ©O

