
Text Processing with Hadoop and Mahout
Key Concepts for Distributed NLP

EVOLUTION AND CONTINUITY

• Based in Florence, Italy

• Founded in 1998

• 98 employees

• Business Areas

– Retail, Manufacturing and
Fashion

– Knowledge Management

– SOA Integration projects

– BI and Analytics solutions

– DBA services and support

• Highlights

Bridge Consulting

EVOLUTION AND CONTINUITY

Manuel Zini
Distributed Systems and Emerging

Technologies Team Leader@BridgeConsulting

Bridge Consulting

Managing Hadoop Projects to build corporate
knowledge management and search systems

Gained a PhD analyzing patent text into
invention graphs (automatically ☺)

EVOLUTION AND CONTINUITY

Agenda

Architecture
for Text

Processing
on Hadoop

NLP

Hadoop
and Map
Reduce

Typical
Needs Hadoop

Patterns and
Tools

EVOLUTION AND CONTINUITY

• Written natural language text is an enormous potential
resource of information.

• Information lies in e-mails, company documents, web
pages, discussion forums and blogs, customer
feedbacks, clinical records, patents, resumes,
facebook pages, tweets and new sources add
everyday.

• The task of managing , finding and extracting
information from text as already become unfeasible to
be done manually or with traditional technologies.

• The ability to extract information from text is demanded
from the market to increase effectiveness and
competitivity.

Foreword

EVOLUTION AND CONTINUITY

Text Processing

• Processing large quantities of text

requires a significant computing power.

• Think for instance to processing tweets

for sentiment analysis.

Hadoop

• Map Reduce is a programming model

for distributed computation.

• Apache™ Hadoop® is an execution

framework for map reduce on clusters

of commodity servers.

Why Hadoop

Processing text on Hadoop enables the analysis of large

quantities of text in a feasible time frame

EVOLUTION AND CONTINUITY

Agenda

Hadoop and Map Reduce
A Quick Introduction

EVOLUTION AND CONTINUITY

Map Reduce

• MapReduce is a programming model, an

abstraction for writing programs that run

on clusters of machines.

• The execution framework takes care of

distributing data and processing in the

cluster, hiding these complexities to the

programmer.

• It consists basically of two phases: the

Map phase and the Reduce phase

In the Map phase, some computation is

applied over all input records in a

dataset. Several map tasks run in parallel

over splits of input data.

Map Reduce

The Reduce Phase

The output is then grouped by key and fed

to a second user-specified computation for

aggregation.

The Map Phase

EVOLUTION AND CONTINUITY

• Hadoop[9] is an open-source

implementation of an execution

framework for map-reduce

• Fastly growing ecosystem of other

frameworks and tools for distributed

computing

• A framework for writing and executing

map reduce jobs

• HDFS: a distributed file system

implementation that allows for

distributed map reduce execution

exploiting the data locality principle

Hadoop Framework

Hadoop Hadoop comprises

EVOLUTION AND CONTINUITY

Mappers

• A MapReduce job is fed with data stored on the

distributed file system and splitted across nodes.

• A map task is run for every split of the input file.

• The mapper is applied to every input key-value pair and

outputs intermediate key-value pairs.

A complete job

Map Reduce

Reducers

• A distributed ‘group by’ and sort operation is performed

in the Shuffle & Sort phase. All key-value pairs for the

same key are fed to the same reducer.[5]

• A reducer is applied to all values grouped for one key and

in turn generates key-value pairs.

• Key-value pairs from each reducer are written on the

distributed file system.

EVOLUTION AND CONTINUITY

HDFS – Hadoop Distributed File System

• File data is splitted into blocks.

• Blocks are stored and replicated in local

disks of nodes in the cluster

• Master – Slave architecture

HDFS

• Master keeps file system information (file

to block mappings, block locations,

metadata, directory structure,

permissions)

• Slaves – host the replicated data blocks

EVOLUTION AND CONTINUITY

HDFS – Hadoop Distributed File System

• File splitting in blocks allows for

distributed computation

• Each block can be processed by a different

mapper

• The mapper is chosen to be co-located

with data

• Principle of ‘data locality’: computation is

moved close to data

HDFS and Map Reduce

Overall architecture of a cluster

EVOLUTION AND CONTINUITY

Natural Language Processing

a bird’s eye view

EVOLUTION AND CONTINUITY

Natural Language Processing

NLP is the field of AI that aims at extracting information

and, ultimately, knowledge from natural language.

EVOLUTION AND CONTINUITY

Applications of natural language text

processing

• Text mining

–Document clustering, statistical analysis of text…

• Information and Knowledge extraction

–Structured information

–Semantic networks

• Information Retrieval and Classification

–Findability of relevant information

• Sentiment analysis

–Analyze sentiment of text for customer

relationship management

• Automatic translation

• Automatic summarization

• …

Applications

While different in purpose and techniques

all these applications benefit from the tools

developed by natural language processing

EVOLUTION AND CONTINUITY

• False (or not completely true): text has some structure

• Language follows morphological, syntactical, and semantic rules.

• We have to identify available structure in text to extract information

• Information can then be structured the traditional way

Text is unstructured

EVOLUTION AND CONTINUITY

NLP Approaches

Different approaches to solve common NLP

tasks:

• Text cleanup

• Language identification

• Tokenization

• Lemmatization/stemming

• Stop words filtering

• POS Tagging

• Keywords extraction/weighting

• Document classification

NLP

Machine learning

Statistical

Rule
Based

EVOLUTION AND CONTINUITY

• Text may come from HTML pages, PDFs, word

documents, images and more

• It has to be converted to plain text

• Noise has to be removed (conversion errors, non

printable or non alphabetic characters, spelling

errors/abbreviations)

• In some case structure information may be

retained (e.g. title/header information, bold or

underlined text, metadata)

Text Conversion and Cleanup

EVOLUTION AND CONTINUITY

• Text processing algorithms are language dependent:

tokenization, stop words, lemmatization, POS tagging etc.

• Recognizing the language in which the text is written has

to be performed early in the processing chain

• Language identification is the task of automatically

identifying the language contained in a given document.

Language identification

• Several methodologies: one should be chosen based on

availability for the specific language, size of text,

presence of foreign words.

• Statistical methods based on character strings n-grams

(e.g. Naïve Bayes Classifier)

• Information theory methods (e.g. relative entropy in zip

compression)

• Functional words frequencies (articles, pronouns,

conjunction etc.)

EVOLUTION AND CONTINUITY

• Tokenization is the process of splitting text into words,

phrases and symbols.

• In the simplest case words boundaries can be recognized

through whitespaces.

• This is not true for ‘San Francisco’.

• Some languages do not use spaces between words (e.g.

Thai)… a different approach is required.

• German language allows composition:

‘Lebensversicherungsgesellschaftsangestellter’ means

‘employee of an insurance company’.

Tokenization

EVOLUTION AND CONTINUITY

• Stemming is a heuristic process, just removes affixes or

postfixes following rules.

• Lemmatization tries to derive the ‘base word’ (lemma)

using morphological rules, dictionaries and context.

Lemmatization & Stemming

Stemming:

biologically -> biologic

saw -> s

Lemmatization:

am, are, is, was -> be

have, has, had -> have

saw -> see or saw depending on context

Transformation of inflected forms into a ‘base’

form.

EVOLUTION AND CONTINUITY

Stop words filtering

• Stop words are words that will be removed before

processing.

• Commonly performed to improve information retrieval or

classification tasks (e.g. indexing and search, keyword

extraction).

• Stop words are usually function words.

• Stop words may be application/task specific.

Stop words filtering

EVOLUTION AND CONTINUITY

Part Of Speech Tagging

• Tag each word with its part of speech (word classes like:

adjective, noun, verb, preposition, conjunction, adverb

etc.)

• Tag may include subcategories like: gender, number, tense

etc.

POS Tagging

<sentence id="0">
<word wid="0" pos="DT">This</word>
<word wid="1" pos="VBZ">is</word>
<word wid="2" pos="DT">a</word>
<word wid="3" pos="JJ">short</word>
<word wid="4“pos="NN">sentence</word>
<word wid="5" pos=".">.</word>

</sentence>

DT Determiner
VBZ Verb, 3rd person singular present
JJ Adjective
NN Noun, singular or mass

EVOLUTION AND CONTINUITY

Keyword extraction

• The task of extracting a meaningful subset of words that

are able to describe the document’s content.

• Usually extracted scoring terms or n-grams with tf-idf

measure.

Keyword extraction

tfk= term frequency of k in document

idfk=log

tf-idf=tfk idfk•

NDoc
Dk











Term Frequency – Inverse Document Frequency

EVOLUTION AND CONTINUITY

• The task of automatically assigning a document

to a predefined category is called supervised

classification

• Requires training of the classifier

• Examples:

� Spam filtering is an example

� Can be performed to enrich documents

metadata with tags representing the

category to improve findability

Document classification

ORDERS

INVOICES

CLAIMS

EVOLUTION AND CONTINUITY

Mahout

EVOLUTION AND CONTINUITY

• Apache™ Mahout™ Project [8].

• A collection of machine learning libraries.

• By now supporting three major use cases:

� Recommendations

� Clustering

� Document classification

• Most of the algorithms can be run on Hadoop

Map Reduce.

The Mahout Project

EVOLUTION AND CONTINUITY

• Recommendations

� User based recommenders, item-based

recommenders

• Clustering

� K-Means, Fuzzy K-Means, Spectral Clustering

• Document classification

� Multinomial Naïve Bayes

� Transformed Weight-Normalized Complement

Naive Bayes implementation

� Logistic Regression

� HMM

Mahout algorithms

EVOLUTION AND CONTINUITY

• Transformed Weight-normalized Complement Naive

Bayes

• Implemented as described in [2]

• Widely used and simple algorithm outperforming

Naïve Bayes (MNB) on text documents

• Performance comparable to more complex

algorithms (SVM)

Naive Bayes

EVOLUTION AND CONTINUITY

Performances

• TWCNB is more tolerant to training set data skew

• TWCNB normalizes for varying document length

• TWCNB makes internal use of TF-IDF weighting, lowering the importance in classification

of common words

• It can be further improved by processing stages like stop words removal and

stemming/lemmatization

MNB TWCNB SVM

Industry Sector 0.582 0.923 0.934

20 Newsgroups 0.848 0.861 0.862

Reuters (micro) 0.739 0.844 0.887

Reuters (macro) 0.270 0.647 0.694

Improvements over Naïve Bayes [2]

EVOLUTION AND CONTINUITY

- Four examples:

• Information extraction

• Keyword extraction

• Mahout TWCNB training

• Automated document classification

Text Processing: some examples

EVOLUTION AND CONTINUITY

• Task

–Extraction of a graph representing the

description of a mechanical artifact

• E.g. an invention described in a patent

• The graph will describe compositional relationships

and interactions between components

Information Extraction

Information extraction example use case

EVOLUTION AND CONTINUITY

• Task

–Train the classifier

• Mahout TWCNB may be used

• One model will be generated for each

language

Document Classification: Training

Document classification training

EVOLUTION AND CONTINUITY

• Task

–Classify each document in a class in a set of

predetermined classes

• Mahout TWCNB may be used

• Classifier should be trained first

Document Classification: Classification

Document classification example use case

EVOLUTION AND CONTINUITY

• Task

–Extract relevant keywords from documents

• Keywords may be selected ranking

words through TF/IDF measure

Keyword extraction

Keyword extraction example use case

EVOLUTION AND CONTINUITY

• Processing happens in a pipeline of stages

– The execution flow may change in

response to some conditions

• Some of the processing stages are the same

and could be reused

• Each use case has some specific processing

stage

• Stages may use external resources

Similarities

In a few text processing examples we’ve
noticed some repeating patterns

EVOLUTION AND CONTINUITY

• The text processing pipeline is a frequent

pattern in text processing

• Several text processing solutions organize these

building blocks in a pipeline

• A key for processing blocks reuse is the

definition of a common exchange data format

Processing pipeline

Processing pipeline

EVOLUTION AND CONTINUITY

Executing NLP Pipelines

on Hadoop

EVOLUTION AND CONTINUITY

Common needs

• A processing pipeline solution with the ability

to define conditional branches in the

execution pipeline

• A mechanism for reuse of ‘processing stages’

and the composition of processing stages into

pipelines.

• A data model and format that allows for

interoperable data exchange between

processing stages.

• The ability to make efficient use of external

resources (dictionaries, graphs) or NLP

libraries

Common needs emerged for

processing text

EVOLUTION AND CONTINUITY

Common needs

• A processing pipeline solution with the ability

to define conditional branches in the

execution pipeline

• A mechanism for reuse of ‘processing stages’

and the composition of processing stages into

pipelines.

• A data model and format that allows for

interoperable data exchange between

processing stages.

• The ability to make efficient use of external

resources (dictionaries, graphs) or NLP

libraries

EVOLUTION AND CONTINUITY

Mapping NLP needs on hadoop

How can we map this… …onto this

EVOLUTION AND CONTINUITY

NLP and Hadoop

• Addressing the needs of text processing in a

traditional non distributed programming

environment is quite straightforward.

• Addressing them on a distributed computing

platform like Hadoop can be more

challenging.

• In order to successfully build NLP solutions on

Hadoop a set of viable solutions has to be

identified.

NLP and Hadoop

EVOLUTION AND CONTINUITY

Processing pipeline

• A processing pipeline solution that allows for

the distributed execution of subsequent

processing stages.

• The pipeline should also support conditional

branches in the execution flow.

Problem

EVOLUTION AND CONTINUITY

• Map reduce Jobs may be executed in

sequence.

• A processing stage may be modeled as a

sequence of map-reduce jobs called

processors.

• A workflow execution engine can be

used to orchestrate the execution of

processors and processing stages.

• There are several workflow execution

engines available for Hadoop: Oozie,

Azkaban, Luigi.

Processing pipeline

Solution

EVOLUTION AND CONTINUITY

References

• Available or related patterns

–This pattern has already been

described in D.Miner

‘MapReduce Design Patterns’ [1]

as ‘Job Chaining’

• Known implementations or related

tools

–The Oozie[10], Azkaban[12] and

Luigi[13] frameworks address

the problem of executing

workflows of multiple jobs.

EVOLUTION AND CONTINUITY

Oozie in short

• Oozie [10] is a workflow scheduler system

built to manage Apache Hadoop jobs.

• Workflows can be modeled through

actions, decisions, forks and joins.

• Workflow actions are map-reduce jobs (or

PIG, Hive, Shell, HDFS, Java etc.)

• Actions may also start child workflows

• Workflows are attached to coordinators

that start the workflow when conditions are

met

• Coordinators may be organized in bundles

EVOLUTION AND CONTINUITY

Mapping the pipeline

Processor Workflow action

Processing
Stage

Sub Workflow

Workflow

Bundle

EVOLUTION AND CONTINUITY

Pipeline Workflow example

<workflow-app xmlns="uri:oozie:workflow:0.4" name="my-pipeline-wf">
<start to="subworkflow-stage-1"/>
<action name=“stage-1-wf">

<sub-workflow>
<app-path>${nameNode}/${appDir}/wf-stage1.xml</app-path>
<propagate-configuration/>

</sub-workflow>
<ok to="subworkflow-stage-2"/>
<error to="fail"/>

</action>
<action name=“stage-2-wf">

<sub-workflow>
<app-path>${nameNode}/${appDir}/wf-stage2.xml</app-path>
<propagate-configuration/>
<configuration>

<property>
<name>inputDir</name>
<value>/${appDir}/data/output-1</value>

</property>
<property>

<name>outputDir</name>
<value>/${appDir}/data/output-2</value>

</property>
</configuration>

</sub-workflow>
<ok to=”decision"/>
<error to="fail"/>

</action>
<decision name="decision-node">

<switch>
<case to="stage-3-1”>${fs:fileSize(outputFile) gt 10 * GB}</case>

...
<case to="stage-3-2">${fs:fileSize(outputFile) lt 10 * GB}</case>
<default to="end"/>

</switch>
</decision>
…
<kill name="fail">

<message>workflow failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

<action name=“stage-1-wf">
<sub-workflow>

<app-path>${nameNode}/${appDir}/wf-stage1.xml</app-path>
<propagate-configuration/>

</sub-workflow>
<ok to="subworkflow-stage-2"/>
<error to="fail"/>

</action>

<decision name="decision-node">
<switch>

<case to="stage-3-1”>${fs:fileSize(outputFile) gt 10 *
GB}</case>

...
<case to="stage-3-2">${fs:fileSize(outputFile) lt 10 * GB}</case>
<default to="end"/>

</switch>
</decision>

Processing
Stage

Choice

EVOLUTION AND CONTINUITY

<action name=”processor-1">
<map-reduce>

<prepare>
<delete path="${nameNode}/${outputDir}"/>

</prepare>
<configuration>

<property>
<name>mapred.mapper.class</name>
<value>Processor1Mapper</value>
<name>mapred.reducer.class</name>
<value>Processor1Reducer</value>

</property>
</configuration>

</map-reduce>
<ok to=”processor-2"/>
<error to="fail"/>

</action>

Stage workflow example

<workflow-app xmlns="uri:oozie:workflow:0.4" name=”stage-1-wf">
<start to=”processor-1"/>
<action name=”processor-1">

<map-reduce>
<prepare>

<delete path="${nameNode}/${outputDir}"/>
</prepare>
<configuration>

<property>
<name>mapred.mapper.class</name>
<value>Processor1Mapper</value>
<name>mapred.reducer.class</name>
<value>Processor1Reducer</value>

</property>
</configuration>

</map-reduce>
<ok to=”processor-2"/>
<error to="fail"/>

</action>
<action name=”processor-2">

<map-reduce>
<prepare>

<delete path="${nameNode}/${outputDir}"/>
</prepare>
<configuration>

<property>
<name>mapred.mapper.class</name>
<value>Processor2Mapper</value>
<name>mapred.reducer.class</name>
<value>Processor2Reducer</value>

</property>
</configuration>

</map-reduce>
<ok to="end"/>
<error to="fail"/>

</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>

</workflow-app>

Map Shuffle
& Sort

Reduce

Processor

Processing
Stage

EVOLUTION AND CONTINUITY

Processing stage reuse

• Processing stages should be designed and

implemented as easily reusable and interoperable

components.

• A stage should be be easily pluggable in different

pipelines, this is not feasible without a common data

structure and serialization format

• Serialized data marshalling/unmarshalling should be

managed at framework level

• The file format should be easy to split for efficient

distribution on the cluster

Problem

EVOLUTION AND CONTINUITY

Processing stage reuse

– Processing stages should be packaged together to
simplify reuse. Oozie workflow allows for the reuse
of stages through the use of subworkflows.

– Processing stages should be pluggable in the
pipeline where needed: a common exchange data
model has to be defined that allows for the
representation of text and text processing
outcomes.

– This may range from a simple generic model to a
more complex type system model.

– Use a compact serialization format, suitable for
serializing the exchange data structure and possibly
‘split’ friendly: Avro may be an example

Solution

EVOLUTION AND CONTINUITY

References

• Available or related patterns

–A common model for analysis is already used for

instance in UIMA™ (Unstructured Information

Management Architecture) [6] and GATE

(General Architecture for Text Engineering) [7]

• Known implementations or related tools

–The UIMA CAS is an example of a common

exchange model (Common Analysis System) for

text processing

–Apache™ Avro™ [11] is a serialization system for

Map Reduce

EVOLUTION AND CONTINUITY

• Generalized framework for analyzing text (or other kinds of

unstructured information)

• Component architecture aimed at maximizing component

reusability and interoperability in the field of text processing

• All processing components in UIMA operate on a common data

structure called CAS.

• A CAS document instance includes text (artifact), metadata and

annotations generated by subsequent processing steps.

• Metadata generated by components may include a set of

annotations that label regions of the document (or more

generally of the ‘artifact’)

• Stand off model for annotations: annotations are separated

from text.

UIMA in brief

EVOLUTION AND CONTINUITY

AVRO in brief

• Apache™ Avro™ is a language-neutral data

serialization system.

• Avro schemas are defined in JSON.

• Schema is stored with data in a serialized file.

• Compact format since no information needs to be

stored with each field value.

• Object Container File Format: Compact file

format, compressed in blocks.

EVOLUTION AND CONTINUITY

•Resources like dictionaries, frequency

counts etc. are commonly used from

processing stages.

•Libraries and tools are also needed in

stages.

•Computation is distributed on potentially a

great number of nodes.

•Resources and libraries should be available

locally.

Problem

Usage of External Resources

EVOLUTION AND CONTINUITY

•Distributed Cache is a Hadoop facility for the

automated and efficient distribution of

read-only files.

•Compressed files and jars can be distributed

on the cluster using the distributed cache.

• Jars can be added to the classpath of the

task.

Distributed Cache

Solution

EVOLUTION AND CONTINUITY

References

• Available or related patterns

–Distributed cache is used for

instance in D.Miner ‘MapReduce

Design Patterns’ [1] in the

‘Replicated Join Pattern’.

• Known implementations or related tools

–Distributed cache facility is already

implemented in Hadoop

EVOLUTION AND CONTINUITY

Conclusions

• Natural language processing is becoming both a need and an opportunity.

• Hadoop and Map Reduce are enablers for the mass processing of text.

• Some common needs have been identified for text processing.

• Solutions addressing those needs on Hadoop have been proposed,

exploiting already existing patterns and tools to deploy NLP solutions on a

distributed platform.

• Proposed solutions may be leveraged to design a generalized text

processing architecture on Hadoop.

EVOLUTION AND CONTINUITY

Bibliography

[1] Miner, Donald, and Adam Shook. MapReduce Design Patterns: Building Effective Algorithms and
Analytics for Hadoop and Other Systems. " O'Reilly Media, Inc.", 2012.
[2] Rennie, Jason D., et al. "Tackling the poor assumptions of naive bayes text classifiers." ICML. Vol.
3. 2003.
[3] Belew, Richard K. "Finding out about." A Cognitive Perspective on Search Engine Tech (2000).
[4] Jurafsky, Daniel, and H. James. "Speech and language processing an introduction to natural
language processing, computational linguistics, and speech." (2000).
[5]Lin, Jimmy, and Chris Dyer. "Data-intensive text processing with MapReduce." Synthesis Lectures
on Human Language Technologies 3.1 (2010): 1-177.
[6] The Apache™ UIMA™ project. https://uima.apache.org/
[7] GATE – General Architecture For Text Engineering. https://gate.ac.uk/ . GATE is free software
under the GNU licences and others.
[8] Apache™ Mahout™ - https://mahout.apache.org/
[9] Apache™ Hadoop® - http://hadoop.apache.org/
[10] Apache™ Oozie - http://oozie.apache.org/
[11] Apache™ Avro™ - http://avro.apache.org/
[12] Azkaban - http://azkaban.github.io/
[13] Luigi - https://github.com/spotify/luigi
[14] White, Tom. Hadoop: The definitive guide. " O'Reilly Media, Inc.", 2012.

EVOLUTION AND CONTINUITY

Q&A

EVOLUTION AND CONTINUITY

Questions & Answers

Contact Info:

Manuel Zini
Team Leader

Distributed Systems and Emerging Technologies
mzini@bridgeconsulting.it

