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• Written natural language text is an enormous potential 
resource of information.

• Information lies in e-mails, company documents, web 
pages, discussion forums and blogs, customer 
feedbacks, clinical records, patents, resumes, 
facebook pages, tweets and new sources add 
everyday.

• The task of managing , finding and extracting
information from text as already become unfeasible to 
be done manually or with traditional technologies.

• The ability to extract information from text is demanded 
from the market to increase effectiveness and 
competitivity.

Foreword
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Text Processing

• Processing large quantities of text 

requires a significant computing power.

• Think for instance to processing tweets 

for sentiment analysis.

Hadoop

• Map Reduce is a programming model 

for distributed computation.

• Apache™ Hadoop® is an execution 

framework for map reduce on clusters 

of commodity servers.

Why Hadoop

Processing text on Hadoop enables the analysis of large 

quantities of text in a feasible time frame
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Agenda

Hadoop and Map Reduce
A Quick Introduction



EVOLUTION AND CONTINUITY

Map Reduce

• MapReduce is a programming model, an 

abstraction for writing programs that run 

on clusters of machines.

• The execution framework takes care of 

distributing data and processing in the 

cluster, hiding these complexities to the 

programmer.

• It consists basically of two phases: the 

Map phase and the Reduce phase

In the Map phase, some computation is 

applied over all input records in a 

dataset. Several map tasks run in parallel 

over splits of input data.

Map Reduce

The Reduce Phase

The output is then grouped by key and fed 

to a second user-specified computation for 

aggregation. 

The Map Phase
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• Hadoop[9] is an open-source 

implementation of an execution 

framework for map-reduce

• Fastly growing ecosystem of other 

frameworks and tools for distributed 

computing

• A framework for writing and executing 

map reduce jobs

• HDFS: a distributed file system 

implementation that allows for 

distributed map reduce execution 

exploiting the data locality principle

Hadoop Framework

Hadoop Hadoop comprises
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Mappers

• A MapReduce job is fed with data stored on the 

distributed file system and splitted across nodes.

• A map task is run for every split of the input file. 

• The mapper is applied to every input key-value pair and 

outputs intermediate key-value pairs. 

A complete job

Map Reduce

Reducers

• A distributed ‘group by’ and sort operation is performed 

in the Shuffle & Sort phase. All key-value pairs for the 

same key are fed to the same reducer.[5]

• A reducer is applied to all values grouped for one key and 

in turn generates key-value pairs. 

• Key-value pairs from each reducer are written on the 

distributed file system.
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HDFS – Hadoop Distributed File System

• File data is splitted into blocks.

• Blocks are stored and replicated in local 

disks of nodes in the cluster 

• Master – Slave architecture

HDFS

• Master keeps file system information (file 

to block mappings, block locations, 

metadata, directory structure, 

permissions)

• Slaves – host the replicated data blocks
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HDFS – Hadoop Distributed File System

• File splitting in blocks allows for 

distributed computation

• Each block can be processed by a different 

mapper

• The mapper is chosen to be co-located 

with data

• Principle of ‘data locality’: computation is 

moved close to data

HDFS and Map Reduce

Overall architecture of a cluster
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Natural Language Processing 

a bird’s eye view
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Natural Language Processing

NLP is the field of AI that aims at extracting information 

and, ultimately, knowledge from natural language.
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Applications of natural language text 

processing

• Text mining

–Document clustering, statistical analysis of text…

• Information and Knowledge extraction

–Structured information

–Semantic networks

• Information Retrieval and Classification

–Findability of relevant information

• Sentiment analysis

–Analyze sentiment of text for customer 

relationship management

• Automatic translation

• Automatic summarization

• …

Applications

While different in purpose and techniques 

all these applications benefit from the tools 

developed by natural language processing
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• False (or not completely true): text has some structure

• Language follows morphological, syntactical, and semantic rules.

• We have to identify available structure in text to extract information

• Information can then be structured the traditional way

Text is unstructured
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NLP Approaches

Different approaches to solve common NLP 

tasks:

• Text cleanup

• Language identification

• Tokenization

• Lemmatization/stemming

• Stop words filtering

• POS Tagging

• Keywords extraction/weighting

• Document classification

NLP

Machine learning

Statistical

Rule
Based
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• Text may come from HTML pages, PDFs, word 

documents, images and more

• It has to be converted to plain text

• Noise has to be removed (conversion errors, non 

printable or non alphabetic characters, spelling 

errors/abbreviations)

• In some case structure information may be 

retained (e.g. title/header information, bold or 

underlined text, metadata)

Text Conversion and Cleanup
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• Text processing algorithms are language dependent: 

tokenization, stop words, lemmatization, POS tagging etc.

• Recognizing the language in which the text is written has 

to be performed early in the processing chain

• Language identification is the task of automatically 

identifying the language contained in a given document.

Language identification

• Several methodologies: one should be chosen based on 

availability for the specific language, size of text, 

presence of foreign words. 

• Statistical methods based on character strings n-grams 

(e.g. Naïve Bayes Classifier) 

• Information theory methods (e.g. relative entropy in zip 

compression)

• Functional words frequencies (articles, pronouns, 

conjunction etc.)
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• Tokenization is the process of splitting text into words, 

phrases and symbols.

• In the simplest case words boundaries can be recognized 

through whitespaces.

• This is not true for ‘San Francisco’.

• Some languages do not use spaces between words (e.g. 

Thai)… a different approach is required.

• German language allows composition: 

‘Lebensversicherungsgesellschaftsangestellter’ means 

‘employee of an insurance company’. 

Tokenization
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• Stemming is a heuristic process, just removes affixes or 

postfixes following rules.

• Lemmatization tries to derive the ‘base word’ (lemma) 

using morphological rules, dictionaries and context.

Lemmatization & Stemming

Stemming:

biologically -> biologic

saw -> s

Lemmatization:

am, are, is, was -> be

have, has, had -> have

saw -> see or saw depending on context

Transformation of inflected forms into a ‘base’ 

form.
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Stop words filtering

• Stop words are words that will be removed before 

processing.

• Commonly performed to improve information retrieval or 

classification tasks (e.g. indexing and search, keyword 

extraction).

• Stop words are usually function words.

• Stop words may be application/task specific.

Stop words filtering
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Part Of Speech Tagging

• Tag each word with its part of speech (word classes like: 

adjective, noun, verb, preposition, conjunction, adverb 

etc.)

• Tag may include subcategories like: gender, number, tense 

etc.

POS Tagging

<sentence id="0">
<word wid="0" pos="DT">This</word>
<word wid="1" pos="VBZ">is</word> 
<word wid="2" pos="DT">a</word> 
<word wid="3" pos="JJ">short</word>
<word wid="4“pos="NN">sentence</word>
<word wid="5" pos=".">.</word> 

</sentence>

DT Determiner
VBZ Verb, 3rd person singular present
JJ Adjective
NN Noun, singular or mass
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Keyword extraction

• The task of extracting a meaningful subset of words that 

are able to describe the document’s content.

• Usually extracted scoring terms or n-grams with tf-idf

measure.

Keyword extraction

tfk= term frequency of k in document

idfk=log 

tf-idf=tfk idfk•

NDoc
Dk











Term Frequency – Inverse Document Frequency
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• The task of automatically assigning a document 

to a predefined category is called supervised 

classification

• Requires training of the classifier

• Examples:

� Spam filtering is an example

� Can be performed to enrich documents 

metadata with tags representing the 

category to improve findability

Document classification

ORDERS

INVOICES

CLAIMS
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Mahout
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• Apache™ Mahout™ Project [8].

• A collection of machine learning libraries.

• By now supporting three major use cases:

� Recommendations

� Clustering

� Document classification

• Most of the algorithms can be run on Hadoop 

Map Reduce.

The Mahout Project
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• Recommendations

� User based recommenders, item-based 

recommenders

• Clustering

� K-Means, Fuzzy K-Means, Spectral Clustering

• Document classification

� Multinomial Naïve Bayes

� Transformed Weight-Normalized Complement 

Naive Bayes implementation

� Logistic Regression

� HMM

Mahout algorithms
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• Transformed Weight-normalized Complement Naive 

Bayes

• Implemented as described in [2]

• Widely used and simple algorithm outperforming 

Naïve Bayes (MNB) on text documents 

• Performance comparable to more complex 

algorithms (SVM)

Naive Bayes
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Performances

• TWCNB is more tolerant to training set data skew

• TWCNB normalizes for varying document length

• TWCNB makes internal use of TF-IDF weighting, lowering the importance in classification 

of common words

• It can be further improved by processing stages like stop words removal and 

stemming/lemmatization 

MNB TWCNB SVM 

Industry Sector 0.582 0.923 0.934

20 Newsgroups 0.848 0.861 0.862

Reuters (micro) 0.739 0.844 0.887

Reuters (macro) 0.270 0.647 0.694

Improvements over Naïve Bayes [2]



EVOLUTION AND CONTINUITY

- Four examples:

• Information extraction

• Keyword extraction

• Mahout TWCNB training

• Automated document classification

Text Processing: some examples
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• Task

–Extraction of a graph representing the 

description of a mechanical artifact

• E.g. an invention described in a patent

• The graph will describe compositional relationships 

and interactions between components

Information Extraction

Information extraction example use case
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• Task

–Train the classifier

• Mahout TWCNB may be used

• One model will be generated for each 

language

Document Classification: Training

Document classification training
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• Task

–Classify each document in a class in a set of 

predetermined classes

• Mahout TWCNB may be used

• Classifier should be trained first

Document Classification: Classification

Document classification example use case



EVOLUTION AND CONTINUITY

• Task

–Extract relevant keywords from documents

• Keywords may be selected ranking 

words through TF/IDF measure

Keyword extraction

Keyword extraction example use case
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• Processing happens in a pipeline of stages

– The execution flow may change in 

response to some conditions

• Some of the processing stages are the same 

and could be reused

• Each use case has some specific processing 

stage

• Stages may use external resources

Similarities

In a few text processing examples we’ve 
noticed some repeating patterns
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• The text processing pipeline is a frequent 

pattern in text processing

• Several text processing solutions organize these 

building blocks in a pipeline

• A key for processing blocks reuse is the 

definition of a common exchange data format

Processing pipeline

Processing pipeline
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Executing NLP Pipelines 

on Hadoop
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Common needs

• A processing pipeline solution with the ability 

to define conditional branches in the 

execution pipeline

• A mechanism for reuse of ‘processing stages’ 

and the composition of processing stages into 

pipelines.

• A data model and format that allows for 

interoperable data exchange between 

processing stages.

• The ability to make efficient use of external 

resources (dictionaries, graphs) or NLP 

libraries

Common needs emerged for 

processing text
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Common needs

• A processing pipeline solution with the ability 

to define conditional branches in the 

execution pipeline

• A mechanism for reuse of ‘processing stages’ 

and the composition of processing stages into 

pipelines.

• A data model and format that allows for 

interoperable data exchange between 

processing stages.

• The ability to make efficient use of external 

resources (dictionaries, graphs) or NLP 

libraries
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Mapping NLP needs on hadoop

How can we map this… …onto this
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NLP and Hadoop

• Addressing the needs of text processing in a 

traditional non distributed programming 

environment is quite straightforward.

• Addressing them on a distributed computing 

platform like Hadoop can be more 

challenging.

• In order to successfully build NLP solutions on 

Hadoop a set of viable solutions has to be 

identified.

NLP and Hadoop
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Processing pipeline

• A processing pipeline solution that allows for 

the distributed execution of subsequent 

processing stages. 

• The pipeline should also support conditional 

branches in the execution flow.

Problem
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• Map reduce Jobs may be executed in 

sequence.

• A processing stage may be modeled as a 

sequence of map-reduce jobs called 

processors.

• A workflow execution engine can be 

used to orchestrate the execution of 

processors and processing stages.

• There are several workflow execution 

engines available for Hadoop: Oozie, 

Azkaban, Luigi.

Processing pipeline

Solution
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References

• Available or related patterns

–This pattern has already been 

described in D.Miner

‘MapReduce Design Patterns’ [1] 

as ‘Job Chaining’

• Known implementations or related 

tools

–The Oozie[10], Azkaban[12] and 

Luigi[13] frameworks address 

the problem of executing 

workflows of multiple jobs.
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Oozie in short 

• Oozie [10] is a workflow scheduler system 

built to manage Apache Hadoop jobs.

• Workflows can be modeled through 

actions, decisions, forks and joins.

• Workflow actions are map-reduce jobs (or 

PIG, Hive, Shell, HDFS, Java etc.)

• Actions may also start child workflows

• Workflows are attached to coordinators 

that start the workflow when conditions are 

met

• Coordinators may be organized in bundles
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Mapping the pipeline

Processor Workflow action

Processing
Stage

Sub Workflow

Workflow

Bundle
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Pipeline Workflow example

<workflow-app xmlns="uri:oozie:workflow:0.4" name="my-pipeline-wf">
<start to="subworkflow-stage-1"/>
<action name=“stage-1-wf">

<sub-workflow>
<app-path>${nameNode}/${appDir}/wf-stage1.xml</app-path>
<propagate-configuration/>

</sub-workflow>
<ok to="subworkflow-stage-2"/>
<error to="fail"/>

</action>
<action name=“stage-2-wf">

<sub-workflow>
<app-path>${nameNode}/${appDir}/wf-stage2.xml</app-path>
<propagate-configuration/>
<configuration>

<property>
<name>inputDir</name>
<value>/${appDir}/data/output-1</value>

</property>
<property>

<name>outputDir</name>
<value>/${appDir}/data/output-2</value>

</property>
</configuration>

</sub-workflow>
<ok to=”decision"/>
<error to="fail"/>

</action>
<decision name="decision-node">

<switch>
<case to="stage-3-1”>${fs:fileSize(outputFile) gt 10 * GB}</case>

...
<case to="stage-3-2">${fs:fileSize(outputFile) lt 10 * GB}</case>
<default to="end"/>

</switch>
</decision>
…
<kill name="fail">

<message>workflow failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>
</workflow-app>

<action name=“stage-1-wf">
<sub-workflow>

<app-path>${nameNode}/${appDir}/wf-stage1.xml</app-path>
<propagate-configuration/>

</sub-workflow>
<ok to="subworkflow-stage-2"/>
<error to="fail"/>

</action>

<decision name="decision-node">
<switch>

<case to="stage-3-1”>${fs:fileSize(outputFile) gt 10 * 
GB}</case>

...
<case to="stage-3-2">${fs:fileSize(outputFile) lt 10 * GB}</case>
<default to="end"/>

</switch>
</decision>

Processing
Stage

Choice
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<action name=”processor-1">
<map-reduce>

<prepare>
<delete path="${nameNode}/${outputDir}"/>

</prepare>
<configuration>

<property> 
<name>mapred.mapper.class</name> 
<value>Processor1Mapper</value>
<name>mapred.reducer.class</name>
<value>Processor1Reducer</value>

</property>
</configuration>

</map-reduce>
<ok to=”processor-2"/>
<error to="fail"/>

</action>

Stage workflow example

<workflow-app xmlns="uri:oozie:workflow:0.4" name=”stage-1-wf">
<start to=”processor-1"/>
<action name=”processor-1">

<map-reduce>
<prepare>

<delete path="${nameNode}/${outputDir}"/>
</prepare>
<configuration>

<property> 
<name>mapred.mapper.class</name> 
<value>Processor1Mapper</value>
<name>mapred.reducer.class</name>
<value>Processor1Reducer</value>

</property>
</configuration>

</map-reduce>
<ok to=”processor-2"/>
<error to="fail"/>

</action>
<action name=”processor-2">

<map-reduce>
<prepare>

<delete path="${nameNode}/${outputDir}"/>
</prepare>
<configuration>

<property>
<name>mapred.mapper.class</name> 
<value>Processor2Mapper</value>
<name>mapred.reducer.class</name>
<value>Processor2Reducer</value>

</property>
</configuration>

</map-reduce>
<ok to="end"/>
<error to="fail"/>

</action>
<kill name="fail">
<message>Map/Reduce failed, error message[${wf:errorMessage(wf:lastErrorNode())}]</message>
</kill>
<end name="end"/>

</workflow-app>

Map Shuffle 
& Sort

Reduce

Processor

Processing
Stage
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Processing stage reuse

• Processing stages should be designed and 

implemented as easily reusable and interoperable 

components. 

• A stage should be be easily pluggable in different 

pipelines, this is not feasible without a common data 

structure and serialization format

• Serialized data marshalling/unmarshalling should be 

managed at framework level

• The file format should be easy to split for efficient 

distribution on the cluster

Problem
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Processing stage reuse

– Processing stages should be packaged together to 
simplify reuse. Oozie workflow allows for the reuse 
of stages through the use of subworkflows.

– Processing stages should be pluggable in the 
pipeline where needed: a common exchange data 
model has to be defined that allows for the 
representation of text and text processing 
outcomes.

– This may range from a simple generic model to a 
more complex type system model.

– Use a compact serialization format, suitable for 
serializing the exchange data structure and possibly 
‘split’ friendly: Avro may be an example

Solution
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References

• Available or related patterns

–A common model for analysis is already used for 

instance in UIMA™ (Unstructured Information 

Management Architecture) [6] and GATE 

(General Architecture for Text Engineering) [7]

• Known implementations or related tools

–The UIMA CAS is an example of a common 

exchange model (Common Analysis System) for 

text processing

–Apache™  Avro™ [11] is a serialization system for 

Map Reduce
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• Generalized framework for analyzing text (or other kinds of 

unstructured information)

• Component architecture aimed at maximizing component 

reusability and interoperability in the field of text processing

• All processing components in UIMA operate on a common data 

structure called CAS.

• A CAS document instance includes text (artifact), metadata and 

annotations generated by subsequent processing steps.

• Metadata generated by components may include a set of 

annotations that label regions of the document (or more 

generally of the ‘artifact’)

• Stand off model for annotations: annotations are separated 

from text.

UIMA in brief
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AVRO in brief

• Apache™  Avro™ is a language-neutral data 

serialization system.

• Avro schemas are defined in JSON.

• Schema is stored with data in a serialized file.

• Compact format since no information needs to be 

stored with each field value.

• Object Container File Format: Compact file 

format, compressed in blocks.
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•Resources like dictionaries, frequency 

counts etc. are commonly used from 

processing stages.

•Libraries and tools are also needed in 

stages.

•Computation is distributed on potentially a 

great number of nodes.

•Resources and libraries should be available 

locally.

Problem

Usage of External Resources
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•Distributed Cache is a Hadoop facility for the 

automated and efficient distribution of 

read-only files. 

•Compressed files and jars can be distributed 

on the cluster using the distributed cache.

• Jars can be added to the classpath of the 

task.

Distributed Cache

Solution
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References

• Available or related patterns

–Distributed cache is used for 

instance in D.Miner ‘MapReduce

Design Patterns’ [1] in the 

‘Replicated Join Pattern’.

• Known implementations or related tools

–Distributed cache facility is already 

implemented in Hadoop
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Conclusions

• Natural language processing is becoming both a need and an opportunity.

• Hadoop and Map Reduce are enablers for the mass processing of text.

• Some common needs have been identified for text processing.

• Solutions addressing those needs on Hadoop have been proposed, 

exploiting already existing patterns and tools to deploy NLP solutions on a 

distributed platform. 

• Proposed solutions may be leveraged to design a generalized text 

processing architecture on Hadoop.
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